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Laín-Calvo

Capítulo 1

Principios de mecánica

1.1. Introducción
La mecánica Newtoniana se centra en los vectores, como la fuerza y el momento de fuerzas:

~F =
d~p

dt

~N0 =
d~L0

dt
Sin embargo, también podemos centrarnos en escalares mediante los conceptos: trabajoW , energía potencial

V y energía cinética T . Iremos desarrollando este otro enfoque a lo largo del curso.

1.1.1. Ejemplos
Ejercicio 1. Tenemos un muelle de masa m y constante k que cuelga del techo. Sobre él actúa la fuerza gra-
vitatoria.

m

P

Fe

Vg = 0

X

x = 0

Solución (Resolución por dinámica). Si escogemos el eje x positivo hacia abajo, las dos fuerzas que actúan son
Fe = kx y P = mg. De esta forma, aplicamos la segunda ley de Newton

∑
i
~Fi = m~a y llegamos a la ecuación

diferencial:
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m
d2x

dt2
= −kx+mg

Alternativamente, en notación de Newton:

mẍ = −kx+mg

Nota 1. En este curso vamos a usar la notación de Newton:

ẋ ≡ dx

dt
ẍ ≡ d2x

dt2

Solución (Resolución por energías). Es importante remarcar que todas las fuerzas que actúan son conservativas.
Tomamos el origen de referencia para el potencial gravitatorio en la posición de equilibrio x = 0. De esta forma,
las diferentes expresiones para las energías presentes son:

Ve =
1

2
kx2

Vg = −mgx

T =
1

2
mẋ2

De esta forma, la energía mecánica es:

Em = Ve + Vg + T =
1

2
kx2 −mgx+

1

2
mẋ2

Aplicamos el teorema de la energía mecánica ∆Em = WFNC . Como no hay fuerzas no conservativas, podemos
escribir:

dEm
dt

= 0⇔

⇔ kxẋ−mgẋ+mẋẍ = 0⇔

⇔ ẋ (kx−mg +mẍ) = 0⇔
{

ẋ = 0
kx−mg +mẍ = 0

Y llegamos a la misma ecuación del movimiento que por Newton.

1.1.2. Conceptos básicos: espacio y tiempo
Veamos cómo son los conceptos de espacio y tiempo dentro del ámbito de la mecánica clásica:

1. Son magnitudes continuas.

2. Son magnitudes universales.

3. El tiempo es absoluto (igual para todos los observadores).

4. La geometría del espacio es euclídea.

5. La precisión es infinita.

6. Principio de relatividad: la posición y la velocidad no son absolutas, dependen del observador. Lo impor-
tante son la posición y la velocidad relativas. Sin embargo, la aceleración sí es absoluta; siempre que el
valor de la aceleración sea nulo, la velocidad es constante, independientemente del sistema de referencia.
Dicho de otra forma, no puede distinguirse el movimiento a velocidad constante del reposo y todos los
observadores situados en sistemas no acelerados son equivalentes.
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7. Sistema de referencia inercial: (en cartesianas) tiene un origen, unos ejes (siempre destrógiros) y un tiempo
cumpliendo que la aceleración que sufren es nula. Aquí es donde están en vigor las leyes de Newton.

y

z

x

t
~r

O

8. Existen magnitudes vectoriales y magnitudes escalares.

1.1.3. Leyes de Newton
Representaremos las posiciones con ~ri, las velocidades con ~vi = ~̇ri y las aceleraciones con ~ai = v̇i = ~̈ri. Es

interesante recordar el siguiente esquema:

~r

d
dt−→
←−−´
dt

~v

d
dt−→
←−−´
dt

~a

Imaginemos un sistema con n cuerpos aislados entre sí, cada uno con una masa mi, entonces las leyes de Newton
son las que siguen:
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mi

mj

~rj

~ri ~rij

Axioma 1 (Segunda ley de Newton). Sea S un sistema aislado de n cuerpos, de manera que el cuerpo i-ésimo
tiene masa mi y está situado en la posición ~ri. Entonces, la suma de las fuerzas que actúan sobre el cuerpo
i-ésimo es igual al producto de la masa de dicho cuerpo y la aceleración que sufre. Matemáticamente:

~Fi = mi~̈ri (1.1.1)

donde

~Fi =

n∑
j=1;j 6=i

~Fi←j

donde ~Fi←j es la fuerza que el cuerpo j ejerce sobre el i.

Teorema 1 (Primera ley de Newton: Ley de inercia). Sea C un cuerpo cualquiera. Las siguientes situaciones
son equivalentes:

1. La fuerza total que actúa sobre C es nula: ~F = ~0.

2. La aceleración que sufre C es nula: ~a = ~0.

3. La velocidad del cuerpo C es constante: ~v =
−→cte

Alternativamente:

~F = ~0⇔ ~a = ~0⇔ ~v =
−→cte (1.1.2)

Demostración. Supongamos que el cuerpo C tiene masa m 6= 0. Por la segunda ley de Newton:

~F = ~0⇔ m~a = ~0⇔ ~a = ~0⇔
ˆ
~adt =

ˆ
~0dt =

−→cte⇔ ~v =
−→cte

Q.E.D.
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Axioma 2 (Tercera ley de Newton: ley de acción y reacción). Sea S un sistema de n cuerpos. La fuerza que el
cuerpo j-ésimo ejerce sobre el cuerpo i-ésimo tiene mismo módulo y dirección que la fuerza que ejerce el cuerpo
i-ésimo sobre el cuerpo j-ésimo; pero tiene sentido contrario. Matemáticamente:

~Fi←j = −~Fj←i (1.1.3)

Observación 1. En general, la fuerza entre dos partículas i y j será función de sus posiciones y velocidades
relativas.

~Fij = F (~ri, ~rj , ~vi, ~vj) = F (~rij , ~vij)

De esta forma, definimos la distancia relativa entre i y j:

~rij := ~ri − ~rj

Y, como consecuencia:

~vij = ~vi − ~vj
Nota 2. Usualmente usaremos la notación ~Fij para referirnos a la fuerza que ejerce el cuerpo j-ésimo sobre el
i-ésimo. Es decir:

~Fij ≡ ~Fi←j

1.1.4. Principio de superposición
Proposición 1. El principio de superposición afirma que cuando las ecuaciones de comportamiento que rigen
un problema físico son lineales, entonces el resultado de una medida o la solución O de un problema práctico
relacionado con una magnitud extensiva asociada al fenómeno, cuando están presentes los conjuntos de factores
causantes I1, . . . , Ik con k ∈ N, puede obtenerse como la suma de los efectos de cada uno.

Demostración. Sea f : Rn −→ Rm una aplicación lineal que relaciona dos magnitudes físicas I (input) y O
(output). Supongamos, además, que contamos con k ∈ N subsistemas tales que cada uno produce una magnitud
física de entrada Iu. Queremos calcular cuál es el valor de O. Para ello:

O = f (I1 + · · ·+ Ik) = f

(
k∑
u=1

Iu

)
Y, como f es lineal por hipótesis:

O =

k∑
u=1

f (Iu)

Q.E.D.

1.1.5. Definición de masa y propiedad aditiva
Definición 1. Llamamos masa inercial de un cuerpo C a la resistencia que presenta dicho cuerpo ante un
cambio de velocidad (una aceleración), medido desde un sistema de referencia inercial.

Observación 2. Esta definición sólo tiene sentido dentro del ámbito de la mecánica clásica.

Ejemplo 1. Imaginemos que contamos con dos cuerpos de masas m1 y m2 que se chocan entre sí:
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m2m1

~F ~F

Tenemos, entonces, por la tercera ley de Newton:

F = m1r̈1 = m2r̈2 ⇔ m2 = m1
r̈1

r̈2

Proposición 2. Sea SA un sistema con n cuerpos de masas m1, . . . ,mn tales que todas sufran la misma

aceleración ~A := ~̈r1 = · · · = ~̈rn. Sea SB un sistema con un único cuerpo de masa M =

n∑
i=1

mi que sufre una

aceleración ~A. Si ~FT es la fuerza externa total que sufren las partículas del sistema SA, entonces la fuerza
total que actúa sobre el sistema SB también es ~FT , y viceversa. En otras palabras, los sistemas SA y SB son
equivalentes.

Demostración. La fuerza total que actúa sobre el sistema SA es, por el principio de superposición:

~FT,SA =

n∑
i=1

mi
~A = ~A

n∑
i=1

mi︸ ︷︷ ︸
=M

= M ~A = ~FT,SB

Q.E.D.

Ejemplo 2. Cambiemos ahora a la siguiente situación:

A

B

m1
m2

m3

m1 M = m2 +m3
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Supongamos en ambas situaciones ~FT = 0⇔ m~a = ~0; es decir, que no actúan fuerzas externas.

Situación A:
Entonces, las fuerzas netas que actúan sobre cada una de las masas de A son:

~FT,1 = m1~a1

~FT,2 = m2~a2

~FT,3 = m3~a3

Usando el principio de superposición:

m1~a1 +m2~a2 +m3~a3 = ~0

Si suponemos ~A = ~a2 = ~a3, la expresión de arriba queda:

m1~a1 + (m2 +m3) ~A = ~0

Situación B:
Las fuerzas que actúan son:

~FT,1 = m1~a1

~FT,M = M ~A

De nuevo, principio de superposición:
m1~a1 +M ~A = ~0

De la última ecuación se sigue:
M = m1

(
−a1

A

)
= m2 +m3

1.2. Preliminares matemáticos
Definición 2. Sea Ω un conjunto abierto de R3 y sea ϕ : Ω −→ R una función escalar tal que ∃∂ϕ∂j (~r) ∀j =
x, y, z;∀~r ∈ Ω. Llamamos gradiente de ϕ a la función vectorial:

gradϕ ≡ d
d~rϕ ≡ ~∇ϕ : Ω −→ R3

~r −→
(
∂ϕ
∂x (~r) , ∂ϕ∂y (~r) , ∂ϕ∂z (~r)

)
Definición 3. Sea Ω un conjunto abierto de R3 y sea ~A : Ω −→ R3 una función vectorial tal que ∃∂Ai∂j (~r) ∀i, j =

x, y, z;∀~r ∈ Ω. Llamamos rotacional de ~A a la función vectorial:

rot ~A ≡ ~∇× ~A : Ω −→ R3

~r −→
((

∂
∂x ,

∂
∂y ,

∂
∂z

)
× (Ax, Ay, Az)

)
(~r) =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ (~r)
Teorema 2 (Teorema de Stokes). Sea ~A : R3 −→ R3 una función vectorial tal que ∃∂Ai∂j ∀i, j = x, y, z y sea
S una superficie abierta. Entonces la integral del rotacional de ~A a lo largo de la superficie S tiene el mismo
valor que la integral de ~A a lo largo de la curva C que delimita la superficie abierta S.

¨
S

(
~∇× ~A

)
· d~S =

˛
C

~A · d~l (1.2.1)
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~A

C

S

d~S

d~l

Teorema 3 (Teorema del gradiente). Sea Ω un conjunto abierto en Rn y sea ϕ : Rn −→ R una función
diferenciable. Sea, además, γ cualquier curva que une dos puntos ~p, ~q ∈ Rn. Entonces, la integral a lo largo de
la curva γ del gradiente de ϕ es igual al valor de la función ϕ en ~q menos el valor de la función ϕ en ~p.

ϕ (~q)− ϕ (~p) =

ˆ
γ(~p,~q)

~∇ϕ (~r) · d~r

Proposición 3. Sea Ω un conjunto abierto en R3 y sea φ : Ω −→ R una función escalar de clase C(2) (Ω,R).
Entonces el rotacional de su gradiente es la función nula en R3:

~∇×
(
~∇φ
)

= ~0

Demostración. Aplicamos la definición:

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
×
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
=

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

∣∣∣∣∣∣∣ =

(
∂2φ

∂y∂z
− ∂2φ

∂z∂y
,
∂2φ

∂z∂x
− ∂2φ

∂x∂z
,
∂2φ

∂x∂y
− ∂2φ

∂y∂x

)

Como la función es de clase C(2), sus derivadas parciales conmutan y, en consecuencia:

~∇×
(
~∇φ
)

= (0, 0, 0) = ~0

Q.E.D.

1.3. Fuerzas centrales y fuerzas conservativas (1ª parte)

1.3.1. Fuerzas centrales
Definición 4 (Fuerza central). Decimos que una fuerza es central cuando siempre está dirigida hacia un punto
O llamado centro del movimiento. Es decir, sea ~R cualquier punto de R3, entonces:

~F es central⇔ ~F
(
~R
)

= F!
(−−→
RO
)

O
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Nota 3 (Terminología relacionada con F). Sean f una función arbitraria, n ∈ N y t1, . . . , tn variables cuales-
quiera. Sean a, b, c ∈ [1, n] ∩ N; definimos la siguiente «tabla de equivalencias»:

f = F (ta, tb) ←→ f es función de ta y de tb. Puede ser función de más variables.
f = F! (ta, tb, tc) ←→ f es únicamente función de ta, tb y tc.

f 6= F (ta) ←→ f no es función de ta.

Usaremos indistintamente la terminología anterior para referirnos a funciones vectoriales o escalares. Siempre
podremos deducir del contexto de qué tipo se trata.

1.3.2. Fuerzas conservativas
Proposición 4. Sea ~F : R3 −→ R3 una función vectorial y ~r ∈ R3. Entonces las siguientes propiedades son
equivalentes:

1. Existe una función escalar diferenciable V : R3 −→ R tal que:

~F (~r) = −~∇V (~r)

2. Para cualquier trayectoria cerrada C se tiene:
˛
C

~F (~r) d~r = 0

3.
~∇× ~F (~r) = ~0

Demostración.

3⇒ 2:
Sea S cualquier superficie abierta cuya frontera es la curva C.

~∇× ~F (~r) = ~0⇒
¨
S

(
~∇× ~F (~r)

)
· d~S = ~0

Ahora, por el teorema de Stokes (ver 2 en la página 11), tenemos que lo anterior es equivalente a:
˛
C

~F (~r) · d~r = ~0

2⇒ 1:
Definamos la función V (~r) como:

V (~r) = −
ˆ ~r

~r0

~F (~ρ) · d~ρ

con ~r0 algún punto de R3. Nótese que la función anterior está bien definida por la propiedad 2: si la integral
a lo largo de un camino cerrado es nula, la integral entre dos puntos no depende del camino escogido (en
otras palabras, es única). Ahora, por el teorema del gradiente ( 3 en la página anterior)

~F (~r) = −~∇V (~r)

1⇒ 3:
~∇× ~F (~r) = ~∇×

(
−~∇V

)
= −~∇×

(
~∇V
)

Y por la proposición 3 en la página anterior, el rotacional de un gradiente es siempre cero, así que:

−~∇×
(
~∇V
)

= ~0

Q.E.D.
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Definición 5 (Fuerza conservativa). Decimos que una fuerza es conservativa si cumplen las propiedades
mencionadas en la proposición 4 en la página anterior y es únicamente función de la posición ~F = F! (~r).

Observación 3. Las fuerzas centrales y conservativas son función de las distancias relativas de los cuerpos
(conservativas) y que van en la dirección de las líneas que unen las partículas (centrales). Es decir, son de la
forma:

~Fij = F! (rij) r̂ij

1.3.3. Ejemplos de fuerzas centrales conservativas
Tenemos estos tipos:

Gravitatoria (Ley de Newton de gravitación universal):
Sean m1,m2 dos masas y ~r12 el vector que va de la masa 1 a la 2, entonces la fuerza que 1 ejerce sobre 2
es:

~F21 = −Gm1m2

r2
12

r̂12 (1.3.1)

donde G = 6, 673 · 10−11 Nm2

kg2 .

Electroestática (Ley de Coulomb):
Sean q1, q2 dos cargas y ~r12 el vector que va de la carga 1 a la carga 2, entonces la fuerza que 1 ejerce
sobre 2 es:

~F21 = K
q1q2

r2
12

r̂12 (1.3.2)

donde K = 8, 99 · 109 Nm2

C2 .

Podemos verlo gráficamente en:

m1

q1

m2

q2

~r12

~F12

Nota 4. ¡Ojo! Con ~F12 nos referimos a la fuerza que 2 hace sobre 1.

Oscilador armónico isótropo:
~F = −k~r = −krr̂ (1.3.3)

Gráficamente:
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~r

1.4. Ligaduras
Consideremos un sistema de partículas. Así tenemos fuerzas internas y externas, como podemos ver en el

dibujo:

InternoExterno

Definición 6. Llamamos fuerzas externas a las ejercidas por cuerpos ajenos al sistema que estamos conside-
rando, mientras que llamamos fuerzas internas a las que ejercidas entre las partículas del sistema estudiado.
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Definición 7. Una ligadura es una condición que limita el movimiento relativo de las partículas. Normalmente,
éstas vendrán dadas por ecuaciones matemáticas de la siguiente forma:

G (q, q̇, t) = 0

donde G es una función que depende de una variable q (una coordenada generalizada, veremos lo que significa
eso más adelante), de su derivada y del tiempo.

Definición 8. Llamamos fuerza de ligadura a aquella que impone una ligadura en el movimiento de una
partícula.

Ejemplos de fuerzas de ligadura son las siguientes:

La normal, que en nuestro ejemplo impone la condición y = y0 donde y0 ∈ R:

M

~N

M~g

La fuerza de rozamiento estática:

~F~Fr

con la ecuación de ligadura:

x = x0

La tensión:
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~P

~T

r

con la ecuación de ligadura:

r = r0

Una articulación: Consideremos el caso de un sólido rígido (una varilla que cuelga del techo):

θ

x

y

cuyas ecuaciones de ligadura son:

y − L

2
cos θ = 0

x− L

2
sen θ = 0

Movimientos de rodadura:
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~v

~R

~ω

En todos los movimientos en los que se rueda, se cumple:

~vA = ~v + ~ω × ~R

donde A es el punto de contacto del cuerpo que gira con el suelo. Sin embargo, si no hay deslizamiento,
sabemos que ~vA = ~0; de esta forma, obtenemos la ecuación de ligadura:

0 = vA = v − ωR⇔ v = ωR

Integrando, obtenemos:

x− θR = 0

En cada instante de tiempo, el punto que está tocando el suelo (el punto A) es el eje de giro.

1.5. Momentos

1.5.1. Momento lineal
1.5.1.1. Definición y primeras propiedades

Definición 9 (Una partícula). El momento lineal de una partícula es una magnitud física que describe la
tendencia de una partícula a continuar con su estado de movimiento, indicando la dirección y el sentido de
aquél. Matemáticamente, el momento lineal de una partícula de masa m y posición ~r se define como:

~p := m~̇r (1.5.1)

Corolario 1. La fuerza que actúa sobre una partícula coincide con la derivada de su momento lineal con respecto
al tiempo.

~F = ~̇p

Demostración.
~F = m~̈r = m

d

dt

(
~̇r
)

=
d

dt

(
m~̇r
)

=
d

dt
(~p) ≡ ~̇p

Q.E.D.

Definición 10 (n partículas). Definimos el momento lineal total de un sistema de partículas como la suma
de los momentos lineales de cada una de las partículas que lo forman.

~P :=

n∑
i=1

~pi =

n∑
i=1

mi~̇ri = M ~̇R (1.5.2)
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donde ~̇R representa la velocidad del centro de masas, siendo ~R la posición del centro de masas:

~R =

∑n
i=1mi~ri∑n
i=1mi

y M =

n∑
i=1

mi.

Proposición 5. La suma de las fuerzas externas que actúan sobre un sistema constituye el cambio del momento
lineal del sistema:

~F (e) =
∑
i

~F
(e)
i = ~̇P

Demostración.

~̇P =

n∑
i=1

mi~̇pi =

n∑
i=1

~Fi =

n∑
i=1

~F (e)
i +

n∑
j = 1
j 6= i

~Fi←j

 =

n∑
i=1

~F
(e)
i +

n∑
i=1

n∑
j = 1
j 6= i

~Fi←j =

=

n∑
i=1

~F
(e)
i +

n∑
i=1

n∑
j=i+1

(
~Fi←j + ~Fj←i

)
Por la tercera ley de Newton ( 2 en la página 9), ~Fi←j = −~Fj←i y, por consiguiente:

~̇P =

n∑
i=1

~F
(e)
i +

n∑
i=1

n∑
j=i+1

(
~Fi←j + ~Fj←i

)
︸ ︷︷ ︸

=0 ∀i,j

=

n∑
i=1

~F
(e)
i = ~F (e)

Q.E.D.

1.5.1.2. Teorema de conservación

Teorema 4 (Teorema de conservación del momento lineal). El momento lineal se conserva si y sólo si la suma
de las fuerzas externas que actúan sobre un sistema es cero.

~F (e) = ~0⇔ ~P =
−→cte (1.5.3)

Demostración. La demostración es trivial a partir de la proposición 5. Q.E.D.

1.5.1.3. Impulso lineal

Definición 11 (Impulso lineal). El impulso lineal es una magnitud física que representa la variación de
momento lineal que se produce en un intervalo de tiempo (normalmente pequeño). Resulta útil para estudiar
los choques.

~I := ∆~p =

ˆ t+∆t

t

~Fi (τ) dτ

Un dibujo para representar estos conceptos:
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~v~v

O

M m

1.5.2. Momento angular
Definición 12 (Una partícula). Llamamos momento angular de una partícula de masa m situada en la
posición ~r y con momento lineal ~p desde un punto O a la magnitud física:

~LO := ~r × ~p = m~r × ~̇r (1.5.4)

Uno puede escoger el punto desde el cual calcular el momento angular. Gráficamente:

~r

~v

~F

O

m

Definición 13 (n partículas). Definimos el momento angular de un sistema de n partículas respecto al punto
O como la suma de los momentos angulares de cada uno de sus integrantes respecto al punto O:

~LO :=

n∑
i=1

LO,i =

n∑
i=1

mi~ri × ~̇ri =

n∑
i=1

~ri × ~pi (1.5.5)
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Observación 4. Como podemos ver, el momento angular de un sistema de partículas no se puede calcular
mediante la posición y velocidad del centro de masas junto con la masa total:

~LO 6= M ~R× ~̇R

Eso se debe a que ~L∗ 6= ~0 (veremos lo que esto significa más adelante).

1.5.3. Momento de fuerzas
1.5.3.1. Definición y primeras propiedades

Definición 14 (Una partícula). Llamamosmomento de fuerzas de una partícula situada en el punto ~r, sobre
la que actúa una fuerza ~F , desde un punto O a la magnitud física:

~NO := ~r × ~F = ~r × ~̇p (1.5.6)

Proposición 6. El momento de fuerzas de una partícula medido desde el punto O es igual a la variación de
momento angular medida desde el punto O:

~NO = ~̇LO

Demostración. Por la definición de momento angular para una partícula ( 12 en la página anterior):

~̇LO =
d

dt
(~r × ~p) = ~̇r × ~p︸︷︷︸

=m~̇r

+~r × ~̇p = m~̇r × ~̇r︸ ︷︷ ︸
=~0

+~r × ~̇p = ~r × ~F = ~NO

Q.E.D.

Definición 15 (n partículas). Definimos el momento de fuerzas para n partículas como la suma de los
momentos de fuerza de cada una de las partículas que componen el sistema:

~N
(e)
O :=

n∑
i=1

~ri × ~F
(e)
i = ~̇LO (1.5.7)

1.5.3.2. Teorema de conservación del momento angular

Teorema 5 (Teorema de conservación del momento angular). El momento total de las fuerzas externas que
actúan sobre un sistema es nulo si y sólo si el momento angular del sistema permanece constante.

~N
(e)
O = ~0⇔ ~LO =

−→cte

Demostración. La demostración es inmediata a partir de la proposición 6 y de la definición 15. Q.E.D.

Ejemplo 3. En este caso, se conserva el momento angular desde el punto O:

~v

O
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1.5.3.3. Resultados sobre fuerzas centrales y conservativas

Proposición 7. El momento angular de una partícula de masa m respecto de un punto O se conserva si y sólo
si la fuerza total ~F que actúa sobre ella es central respecto de O.

~LO =
−→cte⇔ ~F es central

Demostración. Recordemos que el momento de fuerzas de una partícula era (ver definición 14 en la página
anterior) :

~NO = ~r × ~F

Por el teorema 5 en la página anterior, tenemos que:

~LO =
−→cte⇔ ~NO = ~0

y
~NO = ~0⇔ ~r × ~F = ~0⇔ ~r ‖ ~F

Bien, si la fuerza es central respecto de O, entonces ~F llevará la misma dirección que ~r (será paralelo a ~r)
y por lo visto arriba, el momento angular se conserva. Recíprocamente, si el momento angular se conserva ~F y
~r deben ser vectores paralelos. En otras palabras ~F debe tener la misma dirección que ~r y, en consecuencia, es
central. Q.E.D.

Corolario 2. Si la fuerza total ~F que actúa sobre una partícula es central, entonces su movimiento será
unidimensional si ~LO = ~0 y bidimensional si ~LO 6= ~0, pero nunca será tridimensional. En el caso bidimensional,
la trayectoria de la partícula estará contenida en el plano formado por su posición ~r (t0) y su velocidad ~̇r (t0) en
cualquier instante t0.

Demostración. Por la proposición anterior, sabemos que si la fuerza es central, el momento angular es constante
~LO =

−→cte. Por definición de momento angular de una partícula con respecto al punto O (ver definición 14 en la
página anterior), tenemos:

~LO = m~r × ~̇r
Si es ~LO = ~0, como es m 6= 0, necesariamente será ~r× ~̇r = ~0⇔ ~r ‖ ~̇r. Es decir, el vector posición y el vector

velocidad de la partícula tendrán la misma dirección. En ese caso, como la velocidad es la variación de la posición
y la velocidad tiene la misma dirección que la posición, la variación de la posición se producirá unicamente en
la dirección de la posición. Es decir, el movimiento tiene lugar únicamente a lo largo de la dirección de ~r.

Si es ~LO 6= ~0, entonces, si fijamos un t0 tenemos:

~LO = m~r (t0)× ~̇r (t0)

Pero, como es ~LO =
−→cte, debe darse:

m~r (t)× ~̇r (t) = m~r (t0)× ~̇r (t0) ∀t

Por tanto, necesariamente, ~r y ~̇r deben estar contenidos siempre en el mismo plano para cualquier t. Q.E.D.

Lema 1. El gradiente de una función escalar φ : Ω ⊆ R3 → R en coordenadas esféricas (r, θ, ϕ) viene dado por
la expresión:

~∇ϕ =
∂φ

∂r
r̂ +

1

r

∂φ

∂θ
θ̂ +

1

r sen θ

∂φ

∂ϕ
ϕ̂

Proposición 8. Una fuerza ~F es central y conservativa si y sólo si existe una función escalar V : R3 → R
diferenciable que permite expresar ~F como sigue:

~F = −∂V
∂r

r̂

para algún origen de coordenadas O.

Demostración.
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⇐:
Si ~F = −dVdr r̂, entonces el momento de fuerzas de la partícula respecto al punto O es:

~NO = ~r × ~F = ~r ×
(
−∂V
∂r

r̂

)
= −∂V

∂r
~r × r̂︸ ︷︷ ︸

=~0

= 0

En consecuencia, por el teorema 5 en la página 21, el momento angular ~LO se conserva. Y, ahora, por la
proposición 7 en la página anterior, como el momento angular se conserva, ~F es central.
Por otra, parte ~F es trivialmente una fuerza conservativa ya que existe una función escalar V tal que
~F = −~∇V .

⇒:
Como ~F es una fuerza conservativa, sabemos que existe una función escalar V : R3 → R diferenciable que
permite expresar ~F como:

~F = −~∇V
que, según el lema 1 en la página anterior, en coordenadas esféricas puede expresarse como:

∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sen θ

∂V

∂ϕ
ϕ̂

Ahora, como ~F es una fuerza central, por la proposición 7 en la página anterior y el teorema 5 en la
página 21, el momento de fuerzas de la partícula debe ser cero:

~0 = ~NO = ~r × ~F = −~r × ~∇V = −~r ×
(
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sen θ

∂V

∂ϕ
ϕ̂

)
=

= −∂V
∂r

~r × r̂︸ ︷︷ ︸
=~0

−1

r

∂V

∂θ
~r × θ̂ − 1

r sen θ

∂V

∂ϕ
~r × ϕ̂ = −1

r

∂V

∂θ
~r × θ̂ − 1

r sen θ

∂V

∂ϕ
~r × ϕ̂

La única forma de que lo anterior sea cero para todo ~r es que
∂V

∂θ
= 0 =

∂V

∂ϕ
, en consecuencia:

~F = −~∇V = −∂V
∂r

r̂

y, así, la fuerza debe tener la forma descrita en el enunciado.

Q.E.D.

1.5.3.4. Impulso angular

Definición 16 (Impulso angular). El impulso angular es una magnitud física que representa la variación de
momento angular que se produce en un intervalo de tiempo (normalmente pequeño).

∆~LO :=

ˆ t+∆t

t

~NO (τ) dτ

1.6. Energía

1.6.1. Energía cinética EC, T
Definición 17. Llamamos energía cinética a la que posee un cuerpo debido a su movimiento. Matemática-
mente, definimos la energía cinética de un cuerpo de masa m y posición ~r como:

T :=
1

2
m~̇r 2 (1.6.1)

Observación 5. En coordenadas cartesianas la expresión de la energía cinética queda:

T =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
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1.6.2. Trabajo de una fuerza

Definición 18. Sean ~r1, ~r2 ∈ R3. Llamamos trabajo de una fuerza ~F a la energía que transfiere la fuerza al
cuerpo para desplazarlo entre la posición inicial ~r1 y la posición final ~r2 :

W~r1→~r2 :=

ˆ ~r2

~r1

~F · d~r (1.6.2)

Teorema 6 (Teorema de la energía cinética o teorema de las fuerzas vivas). El trabajo realizado por la fuerza
neta que actúa sobre una partícula entre una posición ~r1 y una posición ~r2 es igual al incremento de energía
cinética de la partícula entre las posiciones ~r1 y ~r2:

W~r1→~r2 = T~r2 − T~r1 = ∆T (1.6.3)

Demostración.

W~r1→~r2 =

ˆ ~r2

~r1

~F · d~r =

ˆ ~r2

~r1

m~̈r · d~r = m

ˆ ~r2

~r1

d

dt

(
~̇r
)
d~r = m

ˆ ~r2

~r1

d
(
~̇r
) d~r

dt︸︷︷︸
=~̇r

=

= m

ˆ ~r2

~r1

~̇rd
(
~̇r
)

= m

[
1

2
~̇r 2

]~r2
~r1

=
1

2
m~̇r2 −

1

2
m~̇r1 = T~r2 − T~r1

Q.E.D.

1.6.3. Energía potencial Ep, V
Definición 19. Llamamos energía potencial a la energía asociada a la posición de un cuerpo dentro de un
campo de fuerzas conservativo. Matemáticamente viene dada por una función que depende únicamente de la
posición y denominamos energía potencial V (~r) con referencia en ~r0 a:

V (~r) := −
ˆ ~r

~r0

~F (~ρ) · d~ρ (1.6.4)

Observación 6. Nótese cómo la función V (~r) de la definición anterior sólo está bien definida si la fuerza ~F es
conservativa. Si la fuerza ~F no fuese conservativa, el valor de la integral

´ ~r
~r0
~F · d~r no sería único, dependería del

camino escogido.
Observación 7. En la definición anterior hemos tomado el punto ~r0 como punto de referencia y ~F no depende
ni de t ni de v. Nótese que V (~r) no es un incremento; es una función que definimos como el resultado de la
integral, cuyo extremo inferior está siempre fijo y viene con la definición de V . Hacemos esto para poder decir
que la función V toma un valor para cada punto de R3; lo cual no tendría sentido si fuese un incremento.
Observación 8. La energía potencial asociada a una fuerza conservativa no es única. Pero todas ellas difieren
únicamente en una constante que depende del ~r0 tomado para la definición de la energía potencial.

Corolario 3. Sean ~r1, ~r2 dos puntos de R3 y sean ~F una fuerza conservativa y V uno de sus potenciales
asociados. La diferencia de energía potencial entre los puntos ~r2 y ~r1 coincide con el opuesto del valor del
trabajo que realiza la fuerza ~F asociada al potencial V para desplazar el cuerpo de la posición ~r1 a la posición
~r2 y también coincide con la diferencia entre la energía cinética inicial (posición ~r1) y final (posición ~r2).

V (~r2)− V (~r1) = −W~r1→~r2 = T~r1 − T~r2
Alternativamente, se usa la notación resumida:

∆V = −W = −∆T

Demostración. Por definición de energía potencial, tenemos:

V (~r2)− V (~r1)
def
= −

ˆ ~r2

~r0

~F · d~r +

ˆ ~r1

~r0

~F · d~r =

ˆ ~r0

~r2

~F · d~r +

ˆ ~r1

~r0

~F · d~r =

ˆ ~r1

~r2

~F · d~r = −
ˆ ~r2

~r1

~F · d~r
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Ahora, por la definición de trabajo ( 18 en la página anterior):

−
ˆ ~r2

~r1

~F · d~r = −W~r1→~r2

Por último, por el teorema de la energía cinética ( 6 en la página anterior):

−W~r1→~r2 = − (T~r2 − T~r1) = T~r1 − T~r2
Q.E.D.

1.6.4. Energía mecánica Em, E
Definición 20 (Energía mecánica). Llamamos energía mecánica a la capacidad de un cuerpo de producir
un trabajo mecánico debido a su posición o su velocidad. Matemáticamente, es la suma de la energía cinética y
potencial de dicho cuerpo.

Em := T + V (1.6.5)

Teorema 7 (Teorema de conservación). La energía total de un cuerpo no varía con el tiempo si y sólo si la
fuerza total que actúa sobre él es conservativa.

~F es conservativa⇔ E = cte (1.6.6)

Demostración. Q.E.D.

⇒:
Sean ~r1, ~r2 dos puntos de R3 y sea V el potencial asociado a ~F . Por el corolario 3 en la página anterior,
sabemos que si una fuerza es conservativa, se cumple:

V (~r2)− V (~r1) = T~r1 − T~r2 ∀~r1, ~r2 ∈ R3 ⇔

⇔ V (~r2) + T~r2︸ ︷︷ ︸
=E~r2

= V (~r1) + T~r1︸ ︷︷ ︸
=E~r1

∀~r1, ~r2 ∈ R3 ⇔ E~r2 = E~r1 ∀~r1, ~r2 ∈ R3 ⇔ E = cte

⇐:
Definimos:

V~r2 := E − T~r2
V~r1 := E − T~r1

Si estudiamos:
V~r2 − V~r1 = −T~r2 + T~r1 = − (T~r2 − T~r1)

Por el teorema de la energía cinética ( 6 en la página anterior):

V~r2 − V~r1 = −
ˆ ~r2

~r1

~F · d~r

Ahora bien, como la resta V~r2 − V~r1 únicamente depende de ~r2 y ~r1, la integral también debe depender
únicamente de ~r2 y ~r1. En consecuencia, la mencionada integral no puede depender del camino escogido.
En cuyo caso es: ˛

C

~F · d~r = 0

para cualquier curva cerrada C y, por consiguiente, la fuerza ~F es conservativa.

Corolario 4. La energía total de un sistema de partículas S con n partículas se conserva si todas las fuerzas
totales que actúan sobre cada una de las partículas son conservativas. El recíproco no es cierto, en general.
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Demostración. Por el principio de superposición (ver proposición 1 en la página 9), puede tratarse un sistema
de varias partículas como la suma de varios subsistemas de una partícula. Por tanto, la energía total del sistema
es:

ET =

n∑
i=1

Ei

Ahora, estudiamos:

ĖT =

n∑
i=1

Ėi

Como todas las fuerzas totales que actúan sobre cada una de las partículas del sistema son conservativas,
tenemos por el teorema anterior que Ei = cte⇒ Ėi = 0; y esto se cumple ∀i = 1, . . . , n. En consecuencia:

Ėi = 0 ∀i = 1, . . . , n⇒ ĖT = 0⇔ ET = cte

Q.E.D.

Observación 9. En general, no es necesario que todas las fuerzas que actúan sobre una partícula sean conserva-
tivas para que la fuerza total que actúa sobre la partícula sea conservativa. Por ejemplo, si tenemos un cuerpo
que se desliza en un plano inclinado sin rozamiento, sobre él actúan dos fuerzas, el peso y la normal, la primera
es conservativa, pero la segunda no. Sin embargo, su suma es conservativa, pues la normal no hace trabajo.

1.6.5. Fuerzas conservativas (2a parte)

Proposición 9. La energía potencial V asociada a una fuerza conservativa ~F no puede depender explícitamente
del tiempo t.

Demostración. Demostramos que es condición necesaria para que la fuerza sea conservativa que la función V
no dependa explícitamente del tiempo. Supongamos que se cumple ~∇ × ~F = ~0. Ahora bien, supongamos que
nuestra función V es de la forma V (x (t) , y (t) , z (t) , t). Entonces, su derivada con respecto del tiempo es:

dV

dt
= V̇ :=

∑
j=x,y,z,t

∂V

∂j

∂j

∂t
=
∂V

∂x
ẋ+

∂V

∂y
ẏ +

∂V

∂z
ż +

∂V

∂t
= ~̇r · ~∇V +

∂V

∂t

Por otra parte:

Ṫ = mẋẍ+mẏÿ +mżz̈ = m~̇r · ~̈r = ~̇r · ~F
Calculemos Ėm = Ṫ + V̇ . Si la fuerza es conservativa, debe ser cero:

Ṫ + V̇ = ~̇r · ~F + ~̇r · ~∇V︸︷︷︸
−~F

+
∂V

∂t
= ~̇r · ~F − ~̇r · ~F +

∂V

∂t
=
∂V

∂t

Por tanto:

Ėm = 0⇔ Ṫ + V̇ = 0⇔ ∂V

∂t
= 0

Es decir, nuestra función V no puede depender directamente del tiempo para ser conservativa. Q.E.D.

Conclusión 1.

~F es conservativa⇔
{
~∇× ~F = ~0
~F = F! (~r)

(1.6.7)
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1.6.5.1. Ejemplos

Ejercicio 2. Ver si la siguiente fuerza es conservativa y calcular su potencial asociado (si existe):

~F = 6xyî+ 3x2ĵ + 4zk̂

Solución. Para ello, calculamos su rotacional:

~∇× ~F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ = (6x− 6x) î+ (0− 0) ĵ + (0− 0) k̂ = ~0

El rotacional es nulo y obviamente ∂ ~F
∂t = 0, ∂ ~F∂ẋ = ∂ ~F

∂ẏ = ∂ ~F
∂ż = 0; en consecuencia ~F no depende explícita-

mente ni del tiempo ni de la velocidad, luego la fuerza es conservativa.
Nuestro siguiente objetivo es calcular el potencial. Para ello, sabemos:

~F = −~∇V
Hacemos la «integral» a ambos lados y obtenemos:

V (~r) = −
ˆ ~r

~r0

~Fd~r = −
ˆ (x,y0,z0)

(x0,y0,z0)

Fxdx−
ˆ (x,y,z0)

(x,y0,z0)

Fydy −
ˆ (x,y,z)

(x,y,z0)

Fzdz =

= −
ˆ (x,y0,z0)

(x0,y0,z0)

6xydx−
ˆ (x,y,z0)

(x,y0,z0)

3x2dy −
ˆ (x,y,z)

(x,y,z0)

4zdz =

= −
[
3x2y

](x,y0,z0)

(x0,y0,z0)
−
[
3x2y

](x,y,z0)

(x,y0,z0)
−
[
2z2
](x,y,z)
(x,y,z0)

=

= 3x2
0y0 − 3x2y0 + 3x2y0 − 3x2y + 2z2

0 − 2z2

Observación 10. Podemos descomponer la integral vectorial en tres integrales escalares, pues al ser la fuerza
conservativa, el trabajo no va a depender del camino escogido; eso quiere decir que podemos escoger el camino
que hace que realizar la integral sea más sencillo.

Alternativamente, podemos hallar el potencial a través de las ecuaciones:

Fx =
dV

dx
= 6xy ⇒ V = 3x2y + k (x0, y0, z0)

Fy =
dV

dy
= 3x2 ⇒ V = 3x2y + k (x0, y0, z0)

Fz =
dV

dz
= 4z ⇒ V = 2z2 + k (x0, y0, z0)

Luego si hacemos x0 = y0 = z0 = 0, obtenemos una solución:

V = −3x2y − 2z2

Ejemplo 4. Tenemos una partícula de masa m, que sufre una fuerza:

F = −cx3

donde c > 0. También conocemos ẋ (x = a) = 0. Nos piden hallar la velocidad de la partícula cuando x = 0.
Calculemos la energía potencial:

V (x) = −
ˆ x

x0

Fdx =

ˆ x

x0

cχ3dχ =
c

4

(
x4 − x4

0

)
=
c

4
x4 + C

donde C es una constante. Como la fuerza es conservativa, sabemos que:

Em =
1

2
mẋ2 +

cx4

4
= cte
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Si evaluamos en x = a, podemos hallar el valor de la energía:

Em =
ca4

4

Queremos calcular la velocidad cuando x = 0:

1

2
mv2

0 + 0 =
ca4

4
⇔ v0 = a2

√
c

2m

Veamos la situación gráficamente:

−a a
x

V

ca4

4

Ejemplo 5. Tenemos un péndulo simple; es decir una varilla con masa nula y de longitud L. De la varilla
cuelga una partícula de masa m.
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h
V = 0

θ
L

h = L− L cos θ

Ejemplo 6. Tenemos un alambre rígido sin masa de longitud L. Nos piden determinar los tipos de movimiento
en función de v. Estudiamos la energía potencial:

V = mgh = mg (L− L cos θ)

Vemos que:

θ = 0⇒ V = 0
θ = π

2 ⇒ V = mgL

Si pintamos la gráfica V en función de θ, obtenemos un función sinusoidal.
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−π π
θ

2mgL

V

Examinamos el intervalo [−π, π]. Calculemos la energía total:

E =
1

2
m~̇r2 + V (r) = E (θ = 0) =

1

2
mv2 = V (θmáx) = mgL (1− cos θmáx)⇔

⇔ 1

2
v2 = gL− gL cos θmáx ⇔ gL cos θmáx = gL− 1

2
v2 ⇔ cos θmáx = 1− v2

2gL

Si la energía es justo E = 2mgL, la bola llegará arriba con v = 0. Si E > 2mgL, entonces la bola llegará
con v > 0 y continuará girando.

Examinemos qué ocurriría si el alambre fuese una cuerda. En ese caso, tendríamos una tensión. Visto de
otra forma, la distancia entre el punto de anclaje y la bola es constante en el caso del alambre mientras que
puede variar en el caso de la cuerda. Es decir:

alambre: ṙ = 0
cuerda: ṙ ≤ 0

Ejemplo 7. Tenemos:
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L

~v

ṙ ≈ 0

v0 = ω0L

El momento angular se conserva:

mL2ω0 = mr2ω ⇔ ω (r) =
L2

r2
ω0

Sacamos la tensión:

T (r) = mω2r = m
L4

r3
ω2

0

Ahora tenemos que comprobar que ∆T = WT .

T (r)− T (L) =
1

2
mr2L

4

r4
ω2

0 −
1

2
mL2ω2

0 =
1

2
mL2ω2

0

(
L2

r2
− 1

)

WL→r =

ˆ
~T (ρ) dρ = −

ˆ r

L

mL4ω2
0

ρ3
dρ =

[
mL4ω2

0

2ρ2

]r
L

=
1

2
mL2ω2

0

(
L2

r2
− 1

)
Ejemplo 8. Tenemos una bola que cuelga de una varilla de longitud L y otra bola que impacta contra la varilla
a distancia L

2 del punto de anclaje.
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~v1

m

m

L
2

m~g

Se conserva el momento angular desde el punto de anclaje, porque todas las fuerzas externas actúan allí.
Hallemos el momento inicial y final:

L0i = mv0
L

2

L0f = mω

(
L

2

)2

+mωL2

De esta forma, como se conserva el momento angular:

mv0
L

2
= mω

(
L

2

)2

+mωL2 ⇔

⇔ ωL

(
L

4
+ L

)
= v0

L

2
⇔

⇔ ω = v0
4

5 · 2L =
2v0

5L

Si la varilla tuviera masa, sería un sólido rígido y tendríamos que usar momentos de inercia. Ahora calculemos
el momento lineal inicial y el final y veamos si ha ganado o perdido momento el sistema:

Pi = mv0

Pf = mω

(
L

2
+ L

)
=

3

2
mωL =

3

2
m

2v0

5L
L =

3

5
mv0 < mv0 = Pi

Es decir, el momento lineal ha disminuido. Esto implica que la fuerza que ha actuado sobre el punto de
anclaje iba hacia la izquierda. Veamos la pérdida habida en energía cinética:

Ei =
1

2

P 2
i

m
=

1

2
mv2

0

Ef =
1

2
I0ω

2 =
1

2
m

(
L2

4
+ L2

)(
2v0

5L

)2

=
1

10
mv2

0

Luego:

Licencia: Creative Commons 32

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 1. PRINCIPIOS DE MECÁNICA

1.7. CÁLCULO DE VARIACIONES. ECUACIONES DE EULER-LAGRANGE

∆T =

(
1

10
− 1

2

)
mv2

0 = −2

5
mv2

0

1.7. Cálculo de variaciones. Ecuaciones de Euler-Lagrange

1.7.1. Expresión de la posición, la velocidad y la aceleración en coordenadas ci-
líndricas y esféricas (ejercicio para casa)

1.7.1.1. Coordenadas polares r, ϕ

Recordemos: {
x = r cosϕ
y = r senϕ

r
ϕ

X

Y

∣∣∣~R∣∣∣2 = x2 + y2 = r2 cos2 ϕ+ r2 sen2 ϕ = r2

Luego: {
ẋ = ṙ cosϕ− r sen (ϕ) ϕ̇
ẏ = ṙ senϕ+ r cos (ϕ) ϕ̇

ẋ2 = ṙ2 cos2 ϕ+ r2 sen2 (ϕ) ϕ̇2 − 2ṙr sen (ϕ) cos (ϕ) ϕ̇
+ ẏ2 = ṙ2 sen2 ϕ+ r2 cos2 (ϕ) ϕ̇2 + 2ṙr sen (ϕ) cos (ϕ) ϕ̇∣∣∣~V ∣∣∣2 = ṙ2 + r2ϕ̇2

Por último: {
ẍ = r̈ cosϕ− 2ṙ sen (ϕ) ϕ̇− r

[
cos (ϕ) ϕ̇2 + sen (ϕ) ϕ̈

]
ÿ = r̈ senϕ+ 2ṙ cos (ϕ) ϕ̇+ r

[
− sen (ϕ) ϕ̇2 + cos (ϕ) ϕ̈

]
ẍ2 =

r̈2 cos2 ϕ+ 4ṙ2 sen2 (ϕ) ϕ̇2 + r2
[
cos2 (ϕ) ϕ̇4 + sen2 (ϕ) ϕ̈2 + 2 cos (ϕ) ϕ̇2 sen (ϕ) ϕ̈

]
+

+4rṙ sen (ϕ) ϕ̇
[
cos (ϕ) ϕ̇2 + sen (ϕ) ϕ̈

]
− 2r̈ cosϕ

[
2ṙ sen (ϕ) ϕ̇+ r

[
cos (ϕ) ϕ̇2 + sen (ϕ) ϕ̈

]]
+ ÿ2 =

r̈2 sen2 ϕ+ 4ṙ2 cos2 (ϕ) ϕ̇2 + r2
[
sen2 (ϕ) ϕ̇4 + cos2 (ϕ) ϕ̈2 − 2 sen (ϕ) ϕ̇2 cos (ϕ) ϕ̈

]
+

+4rṙ cos (ϕ) ϕ̇
[
− sen (ϕ) ϕ̇2 + cos (ϕ) ϕ̈

]
+ 2r̈ senϕ

[
2ṙ cos (ϕ) ϕ̇+ r

[
− sen (ϕ) ϕ̇2 + cos (ϕ) ϕ̈

]]∣∣∣ ~A∣∣∣2 = r̈2 + 4ṙ2ϕ̇2 + r2ϕ̇4 + r2ϕ̈2 − 2r̈ϕ̇2 + 4rṙϕ̇ϕ̈
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1.7.1.2. Coordenadas cilíndricas r, ϕ, z

Recordemos: x = r cosϕ
y = r senϕ
z = z

r
z

ϕ
X

Y

Z

∣∣∣~R∣∣∣2 = x2 + y2 + z2 = r2 cos2 ϕ+ r2 sen2 ϕ+ z2 = r2 + z2

Luego: ẋ = ṙ cosϕ− r sen (ϕ) ϕ̇
ẏ = ṙ senϕ+ r cos (ϕ) ϕ̇

ż = ż

ẋ2 = ṙ2 cos2 ϕ+ r2 sen2 (ϕ) ϕ̇2 − 2ṙr sen (ϕ) cos (ϕ) ϕ̇
+ ẏ2 = ṙ2 sen2 ϕ+ r2 cos2 (ϕ) ϕ̇2 + 2ṙr sen (ϕ) cos (ϕ) ϕ̇

ż2 = ż2∣∣∣~V ∣∣∣2 = ṙ2 + r2ϕ̇2 + ż2

Por último:  ẍ = r̈ cosϕ− 2ṙ sen (ϕ) ϕ̇− r
[
cos (ϕ) ϕ̇2 + sen (ϕ) ϕ̈

]
ÿ = r̈ senϕ+ 2ṙ cos (ϕ) ϕ̇+ r

[
− sen (ϕ) ϕ̇2 + cos (ϕ) ϕ̈

]
z̈ = z̈

ẍ2 =
r̈2 cos2 ϕ+ 4ṙ2 sen2 (ϕ) ϕ̇2 + r2

[
cos2 (ϕ) ϕ̇4 + sen2 (ϕ) ϕ̈2 + 2 cos (ϕ) ϕ̇2 sen (ϕ) ϕ̈

]
+

+4rṙ sen (ϕ) ϕ̇
[
cos (ϕ) ϕ̇2 + sen (ϕ) ϕ̈

]
− 2r̈ cosϕ

[
2ṙ sen (ϕ) ϕ̇+ r

[
cos (ϕ) ϕ̇2 + sen (ϕ) ϕ̈

]]
+ ÿ2 =

r̈2 sen2 ϕ+ 4ṙ2 cos2 (ϕ) ϕ̇2 + r2
[
sen2 (ϕ) ϕ̇4 + cos2 (ϕ) ϕ̈2 − 2 sen (ϕ) ϕ̇2 cos (ϕ) ϕ̈

]
+

+4rṙ cos (ϕ) ϕ̇
[
− sen (ϕ) ϕ̇2 + cos (ϕ) ϕ̈

]
+ 2r̈ senϕ

[
2ṙ cos (ϕ) ϕ̇+ r

[
− sen (ϕ) ϕ̇2 + cos (ϕ) ϕ̈

]]
z̈2 = z̈2∣∣∣ ~A∣∣∣2 = r̈2 + 4ṙ2ϕ̇2 + r2ϕ̇4 + r2ϕ̈2 − 2r̈ϕ̇2 + 4rṙϕ̇ϕ̈+ z̈2

1.7.1.3. Coordenadas esféricas r, ϕ, θ

Recordemos: x = r sen θ cosϕ
y = r sen θ senϕ
z = r cos θ
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θ

ϕ
X

Y

Z

r

∣∣∣~R∣∣∣2 = x2 + y2 + z2 = r2 sen2 θ cos2 ϕ+ r2 sen2 θ sen2 ϕ+ r2 cos2 θ = r2

Luego: 
ẋ = ṙ sen θ cosϕ+ r

[
cos (θ) θ̇ cosϕ− sen θ sen (ϕ) ϕ̇

]
ẏ = ṙ sen θ senϕ+ r

[
cos (θ) θ̇ senϕ+ sen θ cos (ϕ) ϕ̇

]
ż = ṙ cos θ − r sen (θ) θ̇

ẋ2 =
ṙ2 sen2 θ cos2 ϕ+ r2

[
cos2 θ cos2 (ϕ) θ̇2 + sen2 θ sen2 (ϕ) ϕ̇2 − 2 sen θ cos θ senϕ cos (ϕ) θ̇ϕ̇

]
+

+2ṙr sen θ cosϕ
[
cos θ cos (ϕ) θ̇ − sen θ sen (ϕ) ϕ̇

]
+ ẏ2 =

ṙ2 sen2 θ sen2 ϕ+ r2
[
cos2 θ sen2 (ϕ) θ̇2 + sen2 θ cos2 (ϕ) ϕ̇2 + 2 sen θ cos θ senϕ cos (ϕ) θ̇ϕ̇

]
+

+2ṙr sen θ senϕ
[
cos θ sen (ϕ) θ̇ + sen θ cos (ϕ) ϕ̇

]
ż2 = ṙ2 cos2 θ + r2 sen2 (θ) θ̇2 − 2ṙr sen (θ) cos (θ) θ̇∣∣∣~V ∣∣∣2 = ṙ2 + r2θ̇2 + r2 sen2 θ ϕ̇2

Por último:



ẍ = r̈ sen θ cosϕ+ 2ṙ
[
cos (θ) θ̇ cosϕ− sen θ sen (ϕ) ϕ̇

]
+

+r
[
− sen (θ) θ̇2 cosϕ+ cos θ

[
θ̈ cosϕ− θ̇ sen (ϕ) ϕ̇

]
− cos (θ) θ̇ sen (ϕ) ϕ̇− sen θ

[
cos (ϕ) ϕ̇2 + sen (ϕ) ϕ̈

]]
ÿ = r̈ sen θ senϕ+ 2ṙ

[
cos (θ) θ̇ cosϕ− sen θ sen (ϕ) ϕ̇

]
+

+r
[
− sen (θ) θ̇ senϕ+ cos θ

[
θ̈ senϕ+ θ̇ cos (ϕ) ϕ̇

]
+ cos (θ) θ̇ cos (ϕ) ϕ̇+ sen θ

[
− sen (ϕ) ϕ̇2 + cos (ϕ) ϕ̈

]]
z̈ = r̈ cos θ − 2ṙ sen (θ) θ̇ − r

[
cos (θ) θ̇2 + sen (θ) θ̈

]
1.7.2. Ecuaciones de Euler-Lagrange
1.7.2.1. Preliminares matemáticos

Definición 21. Sea Ω un abierto en Rn y sea f : Ω → R una función diferenciable (eso significa que existen
las derivadas parciales con respecto a todas sus variables). Sea ~a ∈ Ω. Entonces, llamaremos diferencial de la
función f en el punto ~a a la aplicación lineal:
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df (~a) : Rn −→ R

~x = (x1, . . . , xn)

n∑
i=1

∂f

∂xi
(a)xi

donde df representa «diferencial de la función f».
Alternativamente, podemos definir la aplicación lineal como:

df (~a) :=

n∑
i=1

∂f

∂xi
(~a) dxi =

∂f

∂x1
(~a) dx1 + · · ·+ ∂f

∂xn
(~a) dxn

donde dxi es el elemento de la base dual canónica correspondiente a la coordenada xi.

Definición 22. Sea Ω un abierto en Rn y sea f : Ω→ R una función diferenciable. Llamamos diferencial de
f a la aplicación lineal:

df : Rn −→ L (Rn,R)
~a −→ df (~a)

donde L (Rn,R) representa el conjunto de aplicaciones lineales entre Rn y R.

Definición 23. Sea Ω un abierto en Rn y sea f : Ω −→ R una función diferenciable que depende de las variables
x1, . . . , xn. Entonces, llamamos derivada total de f respecto a una variable t a:

df

dt
:= df ((x1 (t) , . . . , xn (t))) ◦ d (x1 (t) , . . . , xn (t)) =

=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
·
(
dx1

dt
(t) , . . . ,

dxn
dt

(t)

)
=

n∑
i=1

∂f

∂xi

dxi
dt

=
∂f

∂x1

dx1

dt
+ · · ·+ ∂f

∂xn

dxn
dt

Definición 24. Sea n ∈ N. Se llama funcional a toda aplicación F : Fn −→ K que lleva una función a un
cuerpo, donde con Fn denotamos el anillo de las funciones con n variables y con K denotamos un cuerpo.

Ejemplos:
A : F1 −→ R

f (x) −→ f (0)

B : F1 −→ R
f (x) −→ f ′ (0) e2

donde con ′ denotamos derivada.

C : F1 −→ R

f (x) −→
10∑
i=1

f (i)

D : F1 −→ R

f (x) −→
ˆ 5

−5

f (x) dx

E : F1 −→ R

f (x) −→
ˆ ∞
−∞
|f (x)|3 dx

F : F2 −→ R

f (x, t) −→
ˆ a

−a

∂f

∂x

[
f (x, t) +

(
∂f

∂t

)2
]
dx

donde con F2 denotamos el anillo de funciones de dos variables.
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Observación 11. En física, vamos a usar en general funcionales de tipo integral como el D y el E. Por ejemplo,
podemos definir un funcional que dada una curva en R2 expresada como ~c (x) = (x, y (x)), nos devuelva su
longitud entre dos puntos x = x1 y x = x2:

L : F1 ×F1 −→ R

(x, y (x)) −→
ˆ x2

x1

√
1 + [y′ (x)]

2
dx

x1

x2

dl

Por ejemplo, creamos un funcional t que, dadas dos funciones y (x) y z (x), de manera que ~r = (x, y (x) , z (x)),
calcule el tiempo que le cuesta a luz recorrer dicha trayectoria desde el punto ~r1 = (x1, y (x1) , z (x1)) hasta el
punto ~r2 = (x2, y (x2) , x (x2)). Conociendo que la trayectoria tiene lugar en un medio de índice de refracción n,
el funcional buscado es:

t : F1 ×F1 −→ R

(y (x) , z (x)) −→
ˆ x2

x1

n

c︸︷︷︸
=v

√
1 + [y′ (x)]

2
+ [z′ (x)]

2
dx

En una notación alternativa, definiríamos t como:

t (y (x) , z (x)) :=

ˆ x2

x1

n

c

√
1 + [y′ (x)]

2
+ [z′ (x)]

2
dx

Observación 12. Como puede verse en el ejemplo F , el funcional puede ser todo lo complicado que se quiera.

Definición 25. Llamaremos extremal de un funcional a aquella función que haga que el valor del funcional
sea un máximo o mínimo local (en su entorno). Nótese que la definición es equivalente a la de extremo relativo
de una función sustituyendo «función» por «funcional» y «extremo» por «extremal».

Definición 26. Sea F : Fn −→ K un funcional diferenciable y sea f ∈ Fn. Diremos que f es punto crítico
de F si dF (f) = 0; en otras palabras, si la diferencial del funcional F evaluado en f es la aplicación nula.

Proposición 10. Sea F : Fn −→ K un funcional diferenciable y sea f ∈ Fn tal que f es extremal de F .
Entonces f es punto crítico de F . Es decir: dF (f) = 0.

Definición 27. Sea Ω un abierto en Rn y sean f : Ω −→ R y A ⊆ Ω. Llamamos norma de f sobre el conjunto
A a:

||f ||A := máx
~x∈A
|f (~x)|

Proposición 11. Sea B un conjunto cerrado no acotado de Fn y sea F : B −→ K un funcional continuo tal
que ĺım

||f ||B→∞
F (f) = +∞, entonces F alcanza en B un mínimo absoluto.
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1.7.2.2. Deducción matemática

Lema 2. Sea (x1, x2) un intervalo de R. Además, sean g (x) y h (x) dos funciones continuas en (x1, x2) con
h (x) 6= 0 para al menos algún x ∈ (x1, x2), entonces:

ˆ x2

x1

g (x)h (x) dx = 0⇒ g (x) = 0 ∀x ∈ (x1, x2)

Teorema 8 (Ecuación de Euler-Lagrange). Sea Ω un abierto en R y sea f : Ω ⊆ R −→ R una función continua
arbitraria tal que f = F (y (x) , ẏ (x) , x); es decir, una función que depende de otra función y (x), de su derivada
y de x; si bien implícitamente depende únicamente de x. Por otra parte, sean x1, x2 ∈ R tales que x1 6= x2,
F :=

´ x2

x1
fdx. Toda función f ∈ A que sea extremal de F debe cumplir la condición:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (1.7.1)

Además, si el funcional F está acotado inferiormente ∀f ∈ A y la solución de la ecuación diferencial anterior
es única, entonces dicha solución es un punto de mínimo de F .

Demostración. (Requiere leer los preliminares matemáticos. Posiblemente incluya errores matemáticos. Difícil
de comprender. Hay una demostración alternativa abajo.)

Sean x1, x2, y1, y2 ∈ R. Sea FF := {y ∈ F1 t.q. y (x1) = y1 y y (x2) = y2}. Ahora, sea F un funcional del
tipo:

F : FF −→ R
y (x) −→

´ x2

x1
fdx

con y′ = dy
dx y f = F (y (x) , y′ (x) , x). Con F denotamos una función cualquiera que depende explícitamente

de los argumentos suministrados entre paréntesis. Es decir, en nuestro caso, el integrando depende explícitamente
de y, y′ y x. Sin embargo, como y = F (x) y y′ = F (x), el integrando depende implícitamente únicamente de
x (es una función de una variable); esto es importante para que la integral tenga sentido. Nuestro objetivo es
ahora hallar la función f que hace que el valor de F sea mínimo. Un mínimo debe ser punto crítico, luego, como
hemos visto en los preliminares, debe cumplirse:

δF = 0

Recordemos:

F =

ˆ x2

x1

fdx

Si hacemos la diferencial en ambos lados, obtenemos:

δF = δ

(ˆ x2

x1

fdx

)
Como estamos en física, podemos suponer que nuestra función f es diferenciable; por lo que la integral y la

diferencial conmutan:

δF =

ˆ x2

x1

δfdx

Por tanto, nuestro problema consiste ahora en resolver:
ˆ x2

x1

δfdx = 0

Para ello, recordemos nuestra definición de diferencial de una función y calculemos δf :

δf =
∂f

∂y
δy +

∂f

∂y′
δy′ +

∂f

∂x
dx
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Recordemos que y e y′ son funciones, por eso hemos usado un δ; mientras que x es una variable. Ahora bien,
fijémonos en que:

δy′ ≡ δ
(
dy

dx

)
Si suponemos que nuestra función f es de clase C2, el orden de la diferencial y la parcial no importa y

podemos reescribir:

δy′ =
d

dx
(δy)

De esta forma,

δF =

ˆ x2

x1

(
∂f

∂y
δy +

∂f

∂y′
d

dx
(δy) +

∂f

∂x
dx

)
dx

Ahora, de los tres términos del integrando, sabemos que el tercero se va a anular pues es (dx)
2

= 0 1. En
consecuencia:

δF =

ˆ x2

x1

(
∂f

∂y
δy +

∂f

∂y′
d

dx
(δy)

)
dx =

ˆ x2

x1

∂f

∂y
δydx+

ˆ x2

x1

∂f

∂y′
d

dx
(δy) dx =

=

ˆ x2

x1

∂f

∂y
δydx+

ˆ x2

x1

∂f

∂y′
d (δy)

Nótese que aunque haya desaparecido el dx en la segunda integral, en el fondo la integral depende implíci-
tamente de x, luego los límites de integración no necesitan ser cambiados. Quedémonos con la segunda integral
e intentemos resolverla mediante integración por partes:

ˆ x2

x1

∂f

∂y′︸︷︷︸
u

d (δy)︸ ︷︷ ︸
dv

=

 ∂f
∂y′

δy︸︷︷︸
=
´
d(δy)


x2

x1

−
ˆ x2

x1

d

(
∂f

∂y′

)
δy

Si multiplicamos y dividimos por dx en la integral, obtenemos:
ˆ x2

x1

∂f

∂y′
d (δy) =

[
∂f

∂y′
δy

]x2

x1

−
ˆ x2

x1

d

dx

(
∂f

∂y′

)
δydx

Como y ∈ FF , se cumple y (x1) = y1 y y (x2) = y2 independientemente de la forma de y, luego δy en esos
puntos debe ser necesariamente cero (el valor de la función y nunca varía en esos puntos); por lo que el primer
sumando es cero. Por consiguiente:

ˆ x2

x1

∂f

∂y′
d (δy) = −

ˆ x2

x1

d

dx

(
∂f

∂y′

)
δydx

Volviendo a nuestra expresión para δF :

δF =

ˆ x2

x1

∂f

∂y
δydx−

ˆ x2

x1

d

dx

(
∂f

∂y′

)
δydx

Juntando ambas integrales, se obtiene:

δF =

ˆ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
δydx

Recordemos δF = 0; luego:

0 =

ˆ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
δydx

1Esto se debe a que (dx)2 ≡ |dx̂× dx̂| = 0. Más información en https://math.stackexchange.com/a/854915.
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Suponiendo que todas las funciones involucradas son continuas (algo normal en física) podemos aplicar el
nada trivial teorema que dice que: sean g (x) y h (x) dos funciones continuas con h (x) 6= 0 para al menos algún
x, entonces

´
g (x)h (x) dx = 0 ⇒ g (x) = 0 ∀x. En nuestro caso, como δy no es necesariamente cero, el otro

factor debe ser nulo. Es decir, obtenemos la condición:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

Q.E.D.

Demostración. (Extraído de Taylor (2013) [2]) Requiere leer los preliminares matemáticos igualmente, pero es
más fácil de comprender. Recomendado estudiar ésta.

Tenemos una integral de la forma:

S =

ˆ x2

x1

f (Y (x) , Y ′ (x) , x) dx

donde Y ′ ≡ dY
dx y Y (x) es una curva desconocida que une los puntos (x1, y1 = Y (x1)) y (x2, y2 = Y (x2)).

Entre todas las posibles funciones Y (x) queremos hallar aquella que hace que el valor de S sea mínimo. Cabe
destacar que aunque f = F (Y ′ (x) , Y (x) , x) (recordamos que con F queremos indicar una función cualquiera
que depende explícitamente de los argumentos entre paréntesis; es decir, se lee «es función de »), el integrando
depende implícitamente únicamente de x, pues tanto Y como Y ′ dependen sólo de x. En otras palabras, el
integrando es una función real de una variable real.

Bien, ahora llamemos y (x) a la función que constituye un extremal de S, aunque desconozcamos cuál es.
Siempre vamos a poder escribir una función cualquiera Y (x) como:

Y (x) = y (x) + αη (x) (1.7.2)

donde α ∈ R y η (x) es cualquier función. Derivando obtenemos:

Y ′ = y′ + αη′ (1.7.3)

Ahora bien: {
Y (x1) = y1

Y (x2) = y2
⇔
{
y (x1) + αη (x1) = y1

y (x2) + αη (x2) = y2

Como y (x) es del tipo Y (x) = y (x) + αη (x) ,y (x1) debe ser necesariamente y1 y y (x2) debe ser necesaria-
mente y2. Por tanto: {

y1 + αη (x1) = y1

y2 + αη (x2) = y2
⇔
{
αη (x1) = 0
αη (x2) = 0

Como α puede ser cualquier número real (es decir, no siempre es cero), debe ser:

η (x1) = 0 = η (x2)

Con lo hecho hasta ahora hemos conseguido que la integral S dependa del parámetro α y de η (x), pero ya
no me depende de y (x), pues está fija. Al hacer esto, hemos convertido un problema complicado que requeriría
de matemáticas avanzadas en un problema clásico de cálculo elemental de funciones de una variable. Sabemos
que el punto crítico Y (x) = y (x) se produce cuando α = 0. Luego debe ser obligatoriamente:

dS

dα
= 0 (1.7.4)

cuando α = 0. Calculemos, entonces:

dS

dα
=

d

dα

(ˆ x2

x1

f (Y, Y ′, x)

)
dx

Como f es continua, la derivada y la integral conmutan:
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dS

dα
=

ˆ x2

x1

df

dα
dx (1.7.5)

Ahora, aplicando la regla de la cadena2 llegamos a:

df

dα
=
∂f

∂Y

∂Y

∂α
+

∂f

∂Y ′
∂Y ′

∂α
+
∂f

∂x

∂x

∂α

Como x no depende de α, ∂x∂α = 0 y el tercero sumando se anula. Es decir, queda:

df

dα
=
∂f

∂Y

∂Y

∂α︸︷︷︸
=η

+
∂f

∂Y ′
∂Y ′

∂α︸︷︷︸
=η′

Los valores de las parciales se obtienen al derivar las ecuaciones 1.7.2 en la página anterior y 1.7.3 en la
página anterior. En consecuencia:

df

dα
=
∂f

∂Y
η +

∂f

∂Y ′
η′ (1.7.6)

En este momento, nos interesaría que en la expresión anterior apareciera ∂f
∂y en vez de ∂f

∂Y y ∂f
∂y′ en vez de

∂f
∂Y ′ . Para ello, calculemos:

∂f

∂y
=
∂f

∂Y

∂Y

∂y︸︷︷︸
=1

+
∂f

∂Y ′
∂Y ′

∂y︸︷︷︸
=0

+
∂f

∂x

∂x

∂y︸︷︷︸
=0

∂f

∂y′
=
∂f

∂Y

∂Y

∂y′︸︷︷︸
=0

+
∂f

∂Y ′
∂Y ′

∂y′︸︷︷︸
=1

+
∂f

∂x

∂x

∂y′︸︷︷︸
=0

Nótese ∂x
∂y = 0 porque x no depende de y, aunque es ∂y

∂x 6= 0. Lo mismo sucede con ∂x
∂y′ y

∂y′

∂x . Esto se debe

a que con derivadas parciales no siempre se cumple ∂y
∂x =

(
∂x
∂y

)−1
3. El valor del resto de las derivadas parciales

se obtiene al derivar las ecuaciones 1.7.2 en la página anterior y 1.7.3 en la página anterior. En consecuencia,
obtenemos:

∂f

∂y
=
∂f

∂Y

∂f

∂y′
=

∂f

∂Y ′

Por tanto, sustituyendo en 1.7.6, obtenemos:

df

dα
=
∂f

∂y
η +

∂f

∂y′
η′

A continuación, sustituyendo en 1.7.5, llegamos a:

dS

dα
=

ˆ x2

x1

(
∂f

∂y
η +

∂f

∂y′
η′
)
dx

dS

dα
=

ˆ x2

x1

∂f

∂y
ηdx+

ˆ x2

x1

∂f

∂y′
η′dx (1.7.7)

Implementemos la integración por partes para intentar resolver la segunda integral:
2Si no queda claro cómo aplicamos la regla de la cadena, en la página http://wwwf.imperial.ac.uk/~jdg/AECHAIN.PDF se explica

de qué manera se debe aplicar la regla de la cadena a las derivadas parciales.
3Más información en la página http://wwwf.imperial.ac.uk/~jdg/AECHAIN.PDF.
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ˆ x2

x1

∂f

∂y′︸︷︷︸
u

η′dx︸︷︷︸
dv

=

[
∂f

∂y′
η

]x2

x1

−
ˆ x2

x1

η
d

dx

(
∂f

∂y′

)
dx

Recordemos que era η (x1) = 0 = η (x2), luego el primer sumando es cero. Por tanto:
ˆ x2

x1

∂f

∂y′
η′dx = −

ˆ x2

x1

η
d

dx

(
∂f

∂y′

)
dx

Sustituyendo en 1.7.7 en la página anterior, obtenemos:

dS

dα
=

ˆ x2

x1

∂f

∂y
ηdx−

ˆ x2

x1

η
d

dx

(
∂f

∂y′

)
dx =

=

ˆ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η (x) dx

Recordando 1.7.4 en la página 40, concluimos:

0 =

ˆ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η (x) dx

Como η (x) no es necesariamente cero, por el lema 2 en la página 38, llegamos a:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

Por consiguiente, hemos conseguido demostrar que el extremal de S se alcanza cuando f cumple la condición
dada arriba.

Ahora, supongamos que ∀f ∈ A, tenemos que F está acotada inferiormente. Entonces, si ||f ||A → ∞,
necesariamente, debe darse |S| → +∞. En consecuencia, por la proposición 11 en la página 37, F debe tener
un mínimo absoluto en A. Además, como, por hipótesis, la solución de la ecuación diferencial anterior es única,
F únicamente tiene un extremal. En consecuencia, dicho extremal será el mínimo de F en A. Q.E.D.

Observación 13. En general, no será fácil saber si la solución de la ecuación de Euler-Lagrange es un punto de
mínimo, de máximo o silla. Esto es algo a tener en cuenta; si bien es verdad que en lo que atañe a este curso,
este no será el caso.

Observación 14. Gráficamente estamos intentando resolver este problema:
Imaginemos la siguiente situación:
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(x1, y1)

(x2, y2)

X

Y

δy(x)

y1(x)

y2(x) =
= y(x) + δy(x)

Yo quiero hallar el camino más corto entre los puntos (x1, y1) y (x2, y2); es decir, mi objetivo es hallar la
función y (x) tal que la longitud de la curva ~c = (x, y (x)) sea lo más pequeña posible (esa longitud era justo el
funcional F que yo quería minimizar). Aquí podemos entender bien el concepto de diferencial de función. Del
mismo modo que al integrar respecto de dx uno recorre todos los posibles valores de x, si integramos respecto de
δy recorremos todas las formas posibles de la función y. Gráficamente, vemos muy bien por qué hemos impuesto
antes δy (x1) = 0 = δy (x2) = 0. Nuestro objetivo es, por tanto, hallar y (x) o cuando menos obtener alguna
condición que debe cumplir y. Eso es justo la ecuación de Euler-Lagrange.

Ejemplo 9. Vamos a comprobar que en la geometría euclídea el camino más rápido entre dos puntos es la línea
recta que los une:

Recordemos que la longitud de una curva ~c = (x, y (x)) entre los puntos (x1, y (x1)) y (x2, y (x2)) viene dada
por:

L (y) =

ˆ x2

x1

√
1 + y′2dx

Es decir, nuestra función f es:

f =
√

1 + y′2

De esta forma, llegamos a las ecuaciones:

∂f

∂y
= 0⇒ d

dx

(
∂f

∂y′

)
= 0

∂f

∂y′
=

y′√
1 + y′2

= cte := a

Esto último es cierto pues al ser la derivada total de d
dx

(
∂f
∂y′

)
= 0, ∂f

∂y′ no puede depender ni explícita- ni
implícitamente de x, luego no puede depender ni de y′ ni de y. Por tanto, debe ser constante. De esta forma, la
función:

y = ax+ b

es solución de la ecuación.
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1.7.2.3. Ecuaciones de Euler-Lagrange en física

Observación 15 (Notación que vamos a usar en física). Para nosotros las funciones que aparecen en el funcional
van a ser q1 (t) , . . . , qn (t), del mismo modo que la variable independiente no va a ser x sino t:

I =

ˆ t2

t1

f (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t) dt

La ecuación de Euler-Lagrange quedará expresada de esta forma:

∂f

∂qi
− d

dt

(
∂f

∂q̇i

)
= 0 ∀i = 1, . . . , n (1.7.8)

una ecuación diferencial de segundo orden.

1.8. Coordenadas generalizadas y ligaduras
Definición 28. Sea S un sistema arbitrario de N partículas. Llamamos coordenadas generalizadas a un
conjunto de parámetros q1, . . . , qn (longitudes, ángulos, magnitudes de cualquier tipo) independientes tales que
la posición de cada una de las partículas del sistema puede expresarse como una función de q1, . . . , qn y del
tiempo t.

~ri = F! (q1, . . . , qn, t) ∀i = 1, . . . , N

Nótese que en general N 6= n; de hecho, al conjunto {qk}k=1,...,n se le llama sistema o conjunto de
coordenadas y n es el número de grados de libertad del sistema.

Observación 16. El máximo grado de libertad de un sistema es 3N , ya que todos los cuerpos viven en R3.
Además, si el grado de libertad no es 3N , entonces es que hay al menos una ligadura; de hecho, todo sistema
tiene 3N − n ligaduras.

Definición 29. Sea S un sistema arbitrario de N partículas y sea {qk}k=1,...,n un conjunto de coordenadas
generalizadas. Llamamos velocidades (generalizadas) a las magnitudes q̇i ∀i = 1, . . . , n. Nótese que estas
velocidades pueden ser tanto «lineares» como «angulares».

Definición 30. Sea S un sistema arbitrario de N partículas y sea {qk}k=1,...,n un conjunto de coordenadas
generalizadas. Llamamos espacio de configuración a un espacio vectorial con n dimensiones en el que cada
posición del sistema se representa como un punto. La curva determinada por las funciones q1 (t) , . . . , qn (t) en
el espacio de configuración se llama trayectoria, órbita, camino o itinerario del sistema.

Ejemplos:

El péndulo: aquí sólo tenemos un grado de libertad, el ángulo θ que puede variar de 0 a 2π, pues el radio
está fijo.

0 2π
θ

Un péndulo cuyo punto de anclaje se puede mover en una dirección: en este caso,
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θ

X

θ

x

0 2π

1.8.1. Ligaduras
Recordemos la definición de ligadura dada en 6 en la página 15.

Definición 31. Se llama condición de ligadura holónoma a toda ligadura G (qi, t) = 0 tal que en ella no
aparecen velocidades.

Por ejemplo G (qi, q̇i, t) = 0, G (qi, t) ≤ 0 y G (qi, t) ≥ 0 no serían holónomas.

Definición 32. Se llama ligadura reológica a toda ligadura G (qi, q̇i, t) en la que aparece el tiempo.

Definición 33. Se llama ligadura esclerómina a toda ligadura G (qi, q̇i) en la que no aparece el tiempo.

Veamos unos ejemplos:

G (qi, t) = 0 holónoma reológica.

G (qi) = 0 holónoma esclerómina.

1.8.2. Coordenadas naturales y forzadas
Definición 34. Sea S un sistema de N partículas. Un conjunto de coordenadas {qk}k=1,...,n del sistema S se
dice natural si la relación entre la posición de cada una de las partículas y las coordenadas generalizadas es
independiente del tiempo. Es decir, si:

~ri = F! (q1, . . . , qn) ∀i = 1, . . . , n

En este caso, la energía cinética T es función cuadrática homogénea cualquiera de las velocidades q̇1, . . . , q̇n.

Definición 35. Sea S un sistema de N partículas. Un conjunto de coordenadas {qk}k=1,...,n del sistema S se
dice forzado si el tiempo aparece en la relación entre la posición de alguna de las partículas de S y {qk}k=1,...,n.

~ri = F (t)

para al menos algún i ∈ [1, N ] ∩ N.

Definición 36. Llamamos sistema mecánico ideal a aquel que o bien es aislado, o bien su entorno influye
de forma despreciable en él. En ambos casos es necesario, además, que el sistema no tenga grados de libertad
internos.
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1.9. Principio de Hamilton. Ecuaciones de Lagrange
Definición 37. Llamamos lagrangiano o función lagrangiana de un sistema ideal S (con n partículas y tal
que todas las fuerzas totales que actúan sobre cada cuerpo del sistema son conservativas) descrito mediante las
coordenadas generalizadas q1, . . . , qn a la función:

L (q1, . . . , qn, q̇1, . . . , q̇n) := T − V (1.9.1)

Observación 17. La condición de que las fuerzas sean conservativas es necesaria para que exista la función V .
Observación 18. Nótese que el lagrangiano es únicamente función de las posiciones, de las velocidades y del
tiempo.

L = F! (qi, q̇i, t)

Axioma 3 (Principio de Hamilton o principio de mínima acción). Sea S un sistema con n grados de libertad
y sean ~r1, ~r2 ∈ R3; t1, t2 ∈ R 3 t1 < t2. Las trayectorias reales que siguen las partículas de dicho sistema entre
dos puntos ~r1 y ~r2 en un intervalo de tiempo (t1, t2) son tales que la acción:

S =

ˆ t2

t1

Ldt

es estacionaria cuando se toma a lo largo de los itinerarios reales.

Corolario 5. Por la ecuación 1.7.8 en la página 44 tenemos que el lagrangiano expresado en función de las
coordenadas generalizadas q1, . . . , qn de un sistema ideal S (tal que las fuerzas totales que actúan sobre cada
una de las partículas son conservativas) debe cumplir:

δS = 0⇔ ∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0 ∀i = 1, . . . , n (1.9.2)

Proposición 12. Para el caso de una partícula sobre la que actúa una fuerza conservativa, la segunda ley de
Newton y el principio de Hamilton son equivalentes.

Demostración. Por el corolario 5, sabemos que el principio de Hamilton es equivalente a las ecuaciones de
Euler-Lagrange para el lagrangiano. Si representamos la posición de la partícula a través de las coordenadas
generalizadas x, y, z, obtenemos:

∂L
∂x
− d

dt

(
∂L
∂ẋ

)
= 0

∂L
∂y
− d

dt

(
∂L
∂ẏ

)
= 0

∂L
∂z
− d

dt

(
∂L
∂ż

)
= 0⇔

⇔ ∂L
∂x

=
d

dt

(
∂L
∂ẋ

)
∂L
∂y

=
d

dt

(
∂L
∂ẏ

)
∂L
∂z

=
d

dt

(
∂L
∂ż

)
Por otra parte:

L = T − V =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− V (x, y, z)

En consecuencia:

∂L
∂ẋ

= mẋ
∂L
∂ẏ

= mẏ
∂L
∂ẋ

= mẏ

d

dt

(
∂L
∂ẋ

)
= mẍ

d

dt

(
∂L
∂ẏ

)
= mÿ

d

dt

(
∂L
∂ż

)
= mz̈

∂L
∂x

= −∂V
∂x

= Fx
∂L
∂y

= −∂V
∂y

= Fy
∂L
∂y

= −∂V
∂y

= Fz

Lo anterior es cierto si y sólo si: mẍ = Fx
mÿ = Fy
mz̈ = Fz

⇔ ~F = m~̈r

Q.E.D.

Licencia: Creative Commons 46

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 1. PRINCIPIOS DE MECÁNICA

1.9. PRINCIPIO DE HAMILTON. ECUACIONES DE LAGRANGE

Observación 19. El lagrangiano va a resultar una forma muy útil de resolver los problemas de mecánica ya que
nos va a permitir trabajar con escalares (las coordenadas generalizadas), pudiendo olvidarnos de los vectores.
Además, tampoco tendremos que descomponer las fuerzas, lo que evitará errores en ese aspecto. La única
desventaja que tiene el método del lagrangiano es que incluye una gran cantidad de derivadas.

1.9.1. Momentos y fuerzas generalizadas
1.9.1.1. Definiciones

Definición 38. Sea S un sistema ideal tal que las fuerzas totales que actúan sobre cada una de sus partículas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1, . . . , qn. Se llama momento generalizado i-ésimo a la derivada parcial del lagrangiano con respecto a la
variación con respecto al tiempo de la coordenada i-ésima:

pi :=
∂L
∂q̇i

(1.9.3)

Observación 20. Nótese que no se distingue entre momento angular y momento lineal.

Definición 39. Sea S un sistema ideal tal que las fuerzas totales que actúan sobre cada una de sus partículas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1, . . . , qn. Se llama fuerza generalizada i-ésima. a la derivada parcial del lagrangiano con respecto a la
coordenada i-ésima.:

Qi :=
∂L
∂qi

(1.9.4)

Observación 21. Tanto el momento generalizado como la fuerza generalizada son escalares, no vectores.

1.9.1.2. Propiedades

Proposición 13. Sea S un sistema ideal tal que las fuerzas totales que actúan sobre cada una de sus partículas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1, . . . , qn. La fuerza generalizada i-ésima es la derivada con respecto al tiempo del momento generalizado i-
ésimo.

Qi = ṗi

Demostración. Por el corolario 5 en la página anterior es:

∂L
∂qi︸︷︷︸
=Qi

=
d

dt

 ∂L
∂q̇i︸︷︷︸
=pi


Q.E.D.

Observación 22. Nótese que:

∂L
∂qi︸︷︷︸
=Qi

= 0⇒ ∂L
∂q̇i︸︷︷︸
=pi

= cte

Proposición 14. Sea S un sistema ideal con N partículas tal que las fuerzas totales que actúan sobre cada una
de las partículas son conservativas. Entonces la fuerza generalizada j-ésima puede expresarse como:

Qj =

N∑
i=1

~Fi
∂~ri
∂qj
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Demostración. Por la defininción de fuerza generalizada ( 39 en la página anterior):

Qj =
∂L
∂qj

Ahora, por la definición de lagrangiano ( 37 en la página 46):

Qj =
∂ (T − V )

∂qj
=
∂T

∂qj︸︷︷︸
=0

−∂V
∂qj

donde el primer término se anula, dado que por la definición de energía cinética ( 17 en la página 23), ésta sólo
puede depender de las velocidades y nunca de las posiciones. Así:

Qj = −∂V
∂qj

Ahora, por la regla de la cadena, podemos expresar qj en función de las posiciones de todas las partículas
de mi sistema (pues la relación tiene que ser biyectiva). Así:

Qj =

N∑
i=1

−∂V
∂~ri︸ ︷︷ ︸

=~Fi

∂~ri
∂qj

Nótese que − ∂V
∂~ri

= −~∇~riV = ~Fi. En consecuencia, llegamos a:

Qj =

N∑
i=1

~Fi
∂~ri
∂qj

Q.E.D.

1.9.1.3. Generalizaciones y coordenadas cíclicas

Lo anterior motiva la siguiente definición:

Definición 40 (Definición generalizada de fuerza generalizada). Sea S un sistema ideal con N partículas y
sea {qk}k=1,...,n un conjunto de coordenadas generalizadas. Independiente de si las fuerzas que actúan sobre las
partículas de S son conservativas o no, llamamos fuerza generalizada (generalizada) a j-ésima a:

Qj =

N∑
i=1

~Fi
∂~ri
∂qj

Observación 23. La definición anterior no es más que una generalización de la definición de fuerza generalizada
para fuerzas conservativas. De esta forma, el concepto de fuerza generalizada adquiere sentido aunque no exista
el lagrangiano de un sistema. Veremos la utilidad de esto más adelante.

Definición 41. Sea S un sistema ideal tal que las fuerzas totales que actúan sobre cada una de sus partículas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1, . . . , qn. Si el lagrangiano L no depende de qi, se dice que qi es una coordenada cíclica.

qi es coordenada cíclica⇔ L 6= F (qi)

Proposición 15. Sea S un sistema ideal tal que las fuerzas totales que actúan sobre cada una de sus partículas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1, . . . , qn. Si qi es una coordenada cíclica, entonces el momento generalizado asociado pi se conserva. En otras
palabras:

ṗi = 0
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Demostración. Como el lagrangiano no depende de qi, necesariamente, la fuerza generalizada i-ésima debe ser
nula por la definición 39 en la página 47.

Qi =
∂L
∂qi

= 0

Ahora, por la proposición 13 en la página 47:

Qi = 0⇔ ṗi = 0

Q.E.D.

1.9.1.4. Ejemplos

Ejercicio 3 (el péndulo (2 coordenadas generalizadas)).

Y

X

m

L

h

~T

m~g

Solución (Mediante el lagrangiano del sistema). Lo primero es encontrar la ecuación de ligadura:

x2 + y2 − L2 = 0

Es decir, nuestro sistema tiene un grado de libertad. Podemos expresar x e y como:

x = L sen θ y = L cos θ

ẋ = L cos (θ) θ̇ ẏ = −L sen (θ) θ̇

De esta forma:

T =
1

2
mv2 =

1

2
m
(
ẋ2 + ẏ2

)
=

1

2
mL2θ̇2

V = −mgy = −mgL cos θ

Por tanto:

L =
1

2
mL2θ̇2 +mgL cos θ

Calculamos las parciales que aparecen en la ecuación de Euler-Lagrange (corolario 5 en la página 46):

∂L
∂θ

= −mgL sen θ
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∂L
∂θ̇

= mL2θ̇

d

dt

(
∂L
∂θ̇

)
= mL2θ̈

Aplicando el corolario 5 en la página 46, se llega a:

mL2θ̈ = −mgL sen θ ⇔ θ̈ = − g
L

sen θ

Solución (Mediante Newton). Sabemos que la aceleración tangencial es:

at = Lθ̈

Aplicando la segunda ley de Newton, llegamos a:

−mg sen θ = mLθ̈ ⇔ θ̈ = − g
L

sen θ

Solución (Por momento angular medido desde el punto de anclaje del péndulo).

NO︸︷︷︸
−mgL sen θ

= IO θ̈︸︷︷︸
mL2θ̈

⇔ θ̈ = − g
L

sen θ

Resolución (parcial) de la ecuación diferencial resultante:
Primero, debemos notar que:

θ̈ =
d

dt

(
θ̇
)

=
d

dθ

(
θ̇
) dθ
dt

=
dθ̇

dθ
θ̇

De esta forma:

dθ̇

dθ
θ̇ = − g

L
sen θ ⇔ θ̇dθ̇ = − g

L
sen θdθ ⇔

⇔
ˆ θ̇

θ̇0

Θ̇dΘ̇ = − g
L

ˆ θ

θ0

sen ΘdΘ⇔
[

Θ̇2

2

]θ̇
θ̇0

=
g

L
[cos Θ]

θ
θ0
⇔

⇔ 1

2

(
θ̇2 − θ̇2

0

)
=
g

L
(cos θ − cos θ0)

1.9.2. Fuerzas de ligadura Q′i

1.9.2.1. Definiciones y propiedades

El lagrangiano normal nos es útil para obtener las ecuaciones de movimiento, pues uno puede dejar de lado
las fuerzas de ligadura. Sin embargo, en ocasiones necesitaremos conocer dichas fuerzas. En la práctica, por
ejemplo, un diseñador de una montaña rusa necesita conocer el valor de la fuerza normal de la vía sobre el coche
para poder construir dicha vía.

Del mismo modo que para resolver el problema de hallar extremos de una función f condicionados a una

variedad diferenciable trabajamos con la función φ = f −
M∑
i=1

λiGi donde {Gi}i=1,...,M son las ecuaciones que

describen la variedad de ligadura de la variedad y los λi son los multiplicadores de Lagrange; aquí vamos a
hacer algo similar con el lagrangiano.
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Definición 42. Sea un sistema ideal S con N partículas y M ligaduras holónomas Gk (q, t) = 0 ∀k = 1, . . . ,M .
Supongamos, además que las fuerzas totales que actúan sobre cada una de las partículas del sistema son
conservativas. Llamaremos lagrangiano modificado o «langrangiano prima» a:

L′ := L+

M∑
k=1

λkGk

donde λk son los multiplicadores de Lagrange y hemos obtenido el lagrangiano L respecto a un sistema de
coordenadas q1, . . . , q3N . Es decir, hemos desarrollado el lagrangiano para el mayor grado de libertad posible
(con 3N coordenadas), independientemente de cuál sea el número de grados de libertad real. De esta forma,
tendremos 3N ecuaciones de Lagrange, M ecuaciones de ligadura, 3N aceleraciones y M multiplicadores λk.

Teorema 9. Sea S un sistema ideal (tal que las fuerzas totales que actúan sobre cada una de sus partículas
son conservativas) con M ligaduras holónomas {Gk}k=1,...,M y sean q1, . . . , q3N las coordenadas con respecto a
las cuales hemos hallado el lagrangiano del sistema L. Entonces, se cumple:

M∑
k=1

λk
∂Gk
∂qi

=
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi
∀i = 1, . . . , 3N

Demostración. El lagrangiano modificado cumple las ecuaciones de Euler-Lagrange por el teorema de los mul-
tiplicadores de Lagrange4. En consecuencia, por el corolario 5 en la página 46:

d

dt

(
∂L′
∂q̇i

)
− ∂L′
∂qi

= 0⇔

⇔ d

dt

(
∂

∂q̇i

(
L+

M∑
k=1

λkGk

))
− ∂

∂qi

(
L+

M∑
k=1

λkGk

)
= 0

Como la derivada parcial es una aplicación lineal:

d

dt

(
∂L
∂q̇i

+

M∑
k=1

λk
∂Gk
∂q̇i

)
− ∂L
∂qi
−

M∑
k=1

λk
∂Gk
∂qi

= 0

Nótese que ∂Gk
∂q̇i

= 0, pues Gk (q, t) 6= F (q̇i) ∀i, ya que las ligaduras son holónomas. De esta forma, la
ecuación queda:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi
−

M∑
k=1

λk
∂Gk
∂qi

= 0

Pasando el tercer sumando al otro lado, obtenemos:

M∑
k=1

λk
∂Gk
∂qi

=
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

Q.E.D.

Definición 43. Sea S un sistema ideal (tal que las fuerzas totales que actúan sobre cada una de sus partículas
son conservativas), cuyo lagrangiano L hemos hallado mediante las coordenadas q1, . . . , q3N . Entonces, llamamos
fuerza de ligadura en la coordenada qi a:

Q′i :=

M∑
k=1

λk
∂Gk
∂qi

=
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

(1.9.5)

4Este teorema no es nada fácil de demostrar; requiere un estudio profundo del análisis funcional que está muy fuera del alcance
de este curso. Por ello, simplemente nos creeremos este resultado.
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1.9.2.2. Ejemplos

Ejemplo 10 (El péndulo). Tenemos dos coordenadas:{
x = r sen θ
y = r cos θ

Y una ecuación de ligadura:

G1 = r − L = 0

Desconocemos, por ahora, el valor de λ1. Calculemos el L′. Para ello:

T =
1

2
m
(
ṙ2 + r2θ̇2

)
V = −mgr cos θ

L′ =
1

2
m
(
ṙ2 + r2θ̇2

)
+mgr cos θ + λ1 (r − L)

Calculemos las parciales:

∂L′
∂r

= mrθ̇2 +mg cos θ + λ1

∂L′
∂ṙ

= mṙ

d

dt

(
∂L′
∂ṙ

)
= mr̈

∂L′
∂θ

= −mgr sen θ

∂L′
∂θ̇

= mr2θ̇

d

dt

(
∂L′
∂θ̇

)
= mr2θ̈ + 2mrṙθ̇

Por el corolario 5 en la página 46:

mr̈ = mrθ̇2 +mg cos θ + λ1

−mgr sen θ = mr2θ̈ + 2mrṙθ̇

Usando las condiciones r = L, ṙ = 0 y r̈ = 0, llegamos a:

mLθ̇2 +mg cos θ + λ1 = 0⇔ λ1 = −
(
mLθ̇2 +mg cos θ

)
mL2θ̈ = −mgL sen θ ⇔ θ̈ = − g

L
sen θ

Aplicando la definición 43 en la página anterior, llegamos a:

Q′r = λ1
∂G1

∂r
= λ1 = −

(
mLθ̇2 +mg cos θ

)
= −T

Q′θ = λ1
∂G1

∂θ︸︷︷︸
=0

= 0

Nótese que Q′r = −T donde T es la tensión a la que se ve sometida la masa. El hecho de que Q′θ = 0 indica
que la tensión no tiene componente en el eje θ̂.
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1.10. Principio de d’Alembert y principio de los trabajos virtuales

1.10.1. Definiciones previas
Vamos a establecer unas equivalencias entre el uso de ecuaciones de Lagrange y las leyes de Newton para la

resolución de problemas.

Lagrange Newton
∂L
∂q − d

dt

(
∂L
∂q

)
= 0 ∆E = 0

∃L′, λ⇔ ∃Q′i ⇔ ∃ ligaduras subsistemas

Definición 44. Llamaremos desplazamiento virtual a aquél que no depende del tiempo.

Observación 24. El lector no debe centrarse en intentar encontrar sentido físico a un desplazamiento indepen-
diente del tiempo. Es una creación matemática que usamos porque nos es útil; pero no tiene sentido físico. La
idea es que el aparato matemático de la mecánica clásica permite ese tipo de desplazamientos y dichos despla-
zamientos tienen propiedades que nos pueden ayudar a resolver problemas reales. Como en un desplazamiento
virtual la variación de posición no depende del tiempo, su derivada respecto al tiempo es cero.

Notación 1. Usaremos d para indicar un cambio en la posición respecto al tiempo, mientras que usaremos δ
para referirnos a desplazamientos virtuales (cambios de posición «instantáneos» en los que el tiempo no juega
ningún papel).

Definición 45. Llamaremos trabajo virtual a aquél que realiza una fuerza ~F sobre un cuerpo C de manera
que el desplazamiento que le produce es virtual, es decir, éste no depende del tiempo.

Definición 46. Decimos que una fuerza de ligadura ~F ′ es ideal si no realiza trabajo virtual.

Proposición 16. Una fuerza de ligadura ~F ′ es ideal si y sólo si es perpendicular al movimiento de la partícula
en todo momento.

Demostración. Para todo t tenemos:

d̄W = ~F ′ · d~r = 0⇔ ~F ′ ⊥ d~r

Q.E.D.

Observación 25. Es importante recordar que las fuerzas de ligadura no son siempre ideales. Resulta útil recordar
el enunciado de la proposición anterior para reconocerlas.

Definición 47. Llamamos fuerza aplicada a aquella que no es una fuerza de ligadura.

1.10.2. Principio de D’Alembert
Teorema 10 (Principio de D’Alembert). Sea S un sistema de N partículas, de manera que sobre cada una de
ellas actúa una fuerza ~Fi (la fuerza total que actúa sobre la partícula i-ésima eliminando las fuerzas de ligadura
ideales) y una fuerza de ligadura ideal ~F ′i . Entonces la diferencia entre la fuerza ~Fi y la fuerza inercial ~̇pi no
hace trabajo virtual. En otras palabras, siendo δ~ri un desplazamiento virtual cualquiera, tenemos:

δ̄Wi =
(
~Fi − ~̇pi

)
· δ~ri = 0 ∀i = 1, . . . , N

Demostración. Partimos de la segunda ley de Newton (ver axioma 1 en la página 8):

~FT,i = m~̈ri = ~̇pi ∀i = 1, . . . , N

donde ~FT,i es la fuerza total que actúa sobre la partícula i y ~̇pi es la fuerza inercial, que coincide con la fuerza
total. Pasando términos al otro lado, tenemos:

~FT,i − ~̇pi = ~0 ∀i = 1, . . . , N

Multiplicando escalarmente por un desplazamiento virtual arbitrario δ~ri, obtenemos:
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δ̄Wi =
(
~FT,i − ~̇pi

)
· δ~ri = ~0 · δ~ri = 0 ∀i = 1, . . . , N

Si ahora sustituimos la fuerza total que actúa sobre cada partícula por la suma de la fuerza ~Fi más la fuerza
de ligadura ~F ′i que actúan sobre dicha partícula; es decir, ~FT.i = ~Fi + ~F ′i , obtenemos que ∀i = 1, . . . , N :

δ̄Wi =
(
~Fi + ~F ′i − ~̇pi

)
· δ~ri = 0⇔

(
~Fi − ~̇pi

)
· δ~ri + ~F ′i · δ~ri︸ ︷︷ ︸

=0

= 0

Por hipótesis, las fuerzas de ligadura ~F ′i son ideales y, en consecuencia, por la proposición 16 en la página
anterior, no realizan trabajo virtual. Por consiguiente, llegamos a:

δ̄Wi =
(
~Fi − ~̇pi

)
· δ~ri = 0 ∀i = 1, . . . , N

Q.E.D.

Observación 26. Nótese que la δ̄W es una diferencial virtual inexacta. Es virtual, porque es «imaginaria» y no
depende del tiempo y es inexacta puesto que no representa una variación del trabajo; simplemente indica que
el trabajo es «pequeño».

1.10.3. Principio de los trabajos virtuales (estática)

Corolario 6 (Principio de los trabajos virtuales). Sea S un sistema con N partículas. Sean
{
~Fi

}
i=1,...,N

las

fuerzas que actúan sobre cada partícula, excluyendo toda fuerza de ligadura ideal. En condiciones de estática, el
trabajo virtual de cada una de las fuerzas

{
~Fi

}
i=1,...,N

es nulo:

δ̄Wi = ~Fi · δ~ri = 0 ∀i = 1, . . . , N

Demostración. Por el principio de D’Alembert (teorema anterior), tenemos:

δ̄Wi =
(
~Fi − ~̇pi

)
· δ~ri = 0 ∀i = 1, . . . , N

En condiciones de estática es ~̇pi = ~0 ∀i = 1, . . . , N , luego tenemos:

δ̄Wi = ~Fi · δ~ri = 0 ∀i = 1, . . . , N

Q.E.D.

1.10.4. Reelaboración del principio de los trabajos virtuales
Proposición 17. Sean i y j dos partículas de un sistema S sobre las que actúa una fuerza de ligadura, cuya
ligadura asociada satisface que ∃O1, O2 ∈ R3 (dos puntos cualesquiera) tales que

∣∣∣∣∣∣−−−→O1Ri

∣∣∣∣∣∣ +
∣∣∣∣∣∣−−−→O2Rj

∣∣∣∣∣∣ = cte,

F =
∣∣∣∣∣∣~Fi←j∣∣∣∣∣∣ =

∣∣∣∣∣∣~Fj←i∣∣∣∣∣∣ donde Ri ∈ A ≡ R3 es la posición de la partícula i y Rj ∈ A ≡ R3 es la posición de la

partícula j, ~Fi←j = −FÔ1Ri y ~Fj←i = −FÔ2Rj. Entonces, el trabajo virtual total que realiza ~F sobre ambas
partículas es nulo. En otras palabras:

~Fi←j · δ~ri + ~Fj←i · δ~rj = 0

Demostración. Llamaremos ~ri =
−−−→
O1Ri y ~rj =

−−−→
O2Rj , así:

||~ri||+ ||~rj || = cte⇒ δ (||~ri||+ ||~rj ||) = 0⇔ δ

(√
~r 2
i +

√
~r 2
j

)
= 0⇔

⇔ 1

2
√
~r 2
i

2~ri · δ~ri +
1

2
√
~r 2
j

2~rj · δ~rj = 0⇔ ~ri
||~ri||

· δ~ri +
~rj
||~rj ||

· δ~rj = 0⇔ r̂i · δ~ri + r̂j · δ~rj = 0

Multiplicando por F :=
∣∣∣∣∣∣~Fi←j∣∣∣∣∣∣ =

∣∣∣∣∣∣~Fj←i∣∣∣∣∣∣ a ambos lados, obtenemos:
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F r̂i · δ~ri + F r̂j · δ~rj = 0

Como ~Fi←j = −F r̂i y ~Fj←i = −F r̂j por hipótesis, tenemos:

−~Fi←j · δ~ri − ~Fj←i · δ~rj = 0⇔ ~Fi←j · δ~ri + ~Fj←i · δ~rj = 0

Q.E.D.

Observación 27. Las fuerzas de ligadura más habituales en mecánica cumplen las condiciones de la proposición
anterior. Por ejemplo, si tenemos una varilla recta, cualquier punto O = O1 = O2 de ella va a cumplir las
condiciones requeridas; en consecuencia, palancas y varillas no realizan trabajo total sobre el sistema. En el caso
de una cuerda con varios dobles, si tomamos O1 como el punto más alejado de Ri tal que la cuerda entre O1 y
Ri es una línea recta y tomamos O2 como el punto más alejado de Rj tal que la cuerda entre O2 y Rj es una
línea recta, obtenemos que los puntos O1 y O2 satisfacen las condiciones anteriores.

En otras palabras, cuerdas, varillas y palancas no realizan trabajo total sobre el sistema. Esto nos será muy
útil en la práctica.

Ejemplo 11 (Un caso particular de la proposición anterior). Consideremos esta situación: Tenemos dos bolas
unidades por una varilla rígida.

~r1

~r2

~l

~l

d~r1

d~r2

¿La tensión realiza trabajo al desplazar el conjunto de dos bolas? Por la proposición 17 en la página anterior
ya sabemos que no; pero veámoslo de otra forma. Si realizamos una traslación, vemos que el la tensión hace el
mismo trabajo en ambas partículas, pero al ser las tensiones de signo contrario, el trabajo total realizado sobre
el sistema es cero. Nos quedaría una duda sobre las rotaciones. No obstante, aquí ofrecemos la demostración
completa.

Sabemos:

~l = ~r2 − ~r1

Ahora bien, la longitud de la varilla que une ambas masas no varía, es siempre constante. En consecuencia:

cte = ~l 2 = ~l ·~l = ~r2 · ~r2 + ~r1 · ~r1 − 2~r1 · ~r2

Por tanto, también:

Licencia: Creative Commons 55

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 1. PRINCIPIOS DE MECÁNICA

1.10. PRINCIPIO DE D’ALEMBERT Y PRINCIPIO DE LOS TRABAJOS VIRTUALES

δ
(
l2
)

= 0

De lo anterior, se sigue:

δ
(
l2
)

= δ
(
~l ·~l
)

= 2~l · δ~l =

= 2~r2 · δ~r2 + 2~r1 · δ~r1 − 2~r1 · δ~r2 − 2δ~r1 · ~r2 = 2 (~r2 − ~r1) (δ~r2 − δ~r1)

Así pues, vemos que:

δ
(
l2
)

= 2~l · δ~l = 0⇔

δ
~l = ~0⇔ δ~r1 = δ~r2 ⇔ traslación

o
~l ⊥ δ~l ⇔ rotación

Luego, en las traslaciones y las rotaciones el trabajo neto es nulo.
En la traslación de nuestro sistema de dos bolas, suponiendo que actuara la fuerza ~f1 sobre la bola 1 y la

fuerza ~f2 sobre la partícula 2, llegamos a:

~f1 · δ~r1 + ~f2 · δ~r2 = 0
δ~r1=δ~r2⇔ ~f1 + ~f2 = ~0

Es decir, ambas fuerzas deben ser iguales, pero de signo contrario.

Teorema 11 (Principio de los trabajos virtuales [propiedades de la suma]). Sea S un sistema de N partículas.
Sean

{
~Fi

}
i=1,...,N

las fuerzas que actúan sobre cada una de las partículas, excluyendo las fuerzas como las de la

proposición 17 en la página 54 y las fuerzas de ligadura ideales. Entonces, en condiciones de estática, el trabajo
virtual total cumple:

δ̄W =

N∑
i=1

~Fi · δ~ri = 0

Demostración. Por el principio de los trabajos virtuales (ver corolario 6 en la página 54), tenemos que para
cualquier desplazamiento arbitrario δ~ri se da:

~Fi · δ~ri = 0 ∀i = 1, . . . , N

donde ~Fi contiene todas las fuerzas que actúan sobre la partícula i menos las fuerzas de ligadura ideales. A
continuación, descompongamos ~Fi como:

~Fi = ~F ′i + ~F ′′i

donde el término ~F ′′i es la suma de las fuerzas que actúan sobre i que cumplen las condiciones de la proposición 17
en la página 54 y el término ~F ′i contiene el resto de fuerzas. Entonces, tenemos:(

~F ′i + ~F ′′i
)
· δ~ri = 0 ∀i = 1, . . . , N

Sumando la ecuación anterior entre i = 1 e i = N , llegamos a:

δ̄W =

N∑
i=1

(
~F ′i + ~F ′′i

)
· δ~ri = 0⇔ δ̄W =

N∑
i=1

~F ′i · δ~ri +

N∑
i=1

~F ′′i · δ~ri = 0

Recordando que ~Fi =

N∑
j = 1
j 6= i

~Fi←j , tenemos:

δ̄W =

N∑
i=1

~F ′i · δ~ri +

N∑
i=1

N∑
j = 1
j 6= i

~F ′′i←j · δ~ri = 0⇔ δ̄W =

N∑
i=1

~F ′i · δ~ri +

N∑
i=1

N∑
j=i+1

(
~F ′′i←j · δ~ri + ~F ′′j←i · δ~rj

)
︸ ︷︷ ︸

=0

= 0

Licencia: Creative Commons 56

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 1. PRINCIPIOS DE MECÁNICA

1.10. PRINCIPIO DE D’ALEMBERT Y PRINCIPIO DE LOS TRABAJOS VIRTUALES

Por la proposición 17 en la página 54, el término marcado entre llaves es nulo. Así, llegamos a:

δ̄W =

N∑
i=1

~F ′i · δ~ri = 0

Q.E.D.

Observación 28. Es decir, el teorema anterior nos asegura que en condiciones de estática, uno puede obviar
todas las fuerzas que cumplan las condiciones de la proposición 17 en la página 54 y las fuerzas de ligadura
ideales.

Ejemplo 12. Tenemos la siguiente situación (el problema de la escalera sin rozamiento):

~Fθ

δ~ri

δ~rj

θ + δθ

Tenemos una varilla de masa m y longitud L apoyada en la pared y en el suelo. Imaginemos que nos piden
hallar cuál es el módulo de la fuerza F para que la escalera esté inclinada un ángulo θ en condiciones de estática.

Supongamos que la base de la varilla sufre un desplazamiento δ~ri y el centro de masas de la varilla sufre
un desplazamiento en vertical δ~rj . Vemos que las normales son fuerzas de ligadura ideales, pues su dirección
es perpendicular a la dirección de δ~rj y δ~ri. Por otra parte, podemos ignorar la tensión ejercida por la varilla
porque cumple las condiciones de la proposición 17 en la página 54. En consecuencia, por el teorema 11 en la
página anterior, tenemos:

δ̄W = ~F · δ~ri +m~g · δ~rj = 0

Llamando δxF = |δ~ri| y δyP = |δ~rj |, tenemos:

⇔ FδxF −mgδyP = 0

Como las dos partículas i, j (los extremos de la varilla) están ligados por una fuerza de ligadura, el desplaza-
miento δ~ri depende del desplazamiento δ~rj . Si tomamos el ángulo θ como coordenada generalizada, obtenemos:
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xF = L cos θ ⇒ δxF = |−L sen θ δθ| = L sen θ δθ

yP =
L

2
sen θ ⇒ δyP =

∣∣∣∣L2 cos θ δθ

∣∣∣∣ =
L

2
cos θ δθ

Así, sustituyendo, llegamos a que:

FL sen θ δθ −mgL
2

cos δ δθ = 0⇔
(
FL sen θ −mgL

2
cos θ

)
δθ = 0

δθ 6=0⇔

⇔ FL sen θ = mg
L

2
cos θ ⇔ F tan θ =

mg

2
⇔ F =

mg

2 tan θ

1.10.5. Fuerzas generalizadas en función del trabajo virtual

Proposición 18. Sea S un sistema ideal con N partículas. Sean
{
~Fi

}
i=1,...,N

las fuerzas que actúan sobre

cada una de las partículas, excluyendo las fuerzas de ligadura ideales. En condiciones de estática, la fuerza
generalizada j-ésima es igual al cociente entre el trabajo realizado por la fuerza ~Fj asociada y la variación de la
coordenada qj; es decir:

Qj =
δ̄W

δqj

Demostración. Mediante la regla de la cadena, podemos expresar un desplazamiento virtual cualquiera δ~ri en
función de las variaciones virtuales de las coordenadas que usamos para estudiar el sistema {qi}i=1,...,n como:

δ~ri =

n∑
j=1

∂~ri
∂qj

δqj

La regla de la cadena queda como un sumatorio porque la función que relaciona las coordenadas generalizadas

{qk}k=1,...,n con ~ri es de la forma f : Rn −→ R3

(q1, . . . , qn) −→ ~ri
cuyo jacobiano sería Jf =

(
∂~ri
∂q1

. . . ∂~ri
∂qn

)
. Nótese

que
∂~ri
∂qj

=

(
∂rxi
∂qj

,
∂ryi
∂qj

,
∂rzi
∂qj

)
es un vector, donde los superíndices indican las coordenadas. Sustituyendo la

expresión hallada para δ~ri en el corolario 6 en la página 54, obtenemos:

δ̄W =
N∑
i=1

~Fi ·

 n∑
j=1

∂~ri
∂qj

δqj

 = 0⇔

⇔ δ̄W =

n∑
j=1

N∑
i=1

~Fi ·
∂~ri
∂qj︸ ︷︷ ︸

=Qj

δqj = 0

Por la definición generalizada de fuerza generalizada ( 40 en la página 48) Qj es lo indicado entre llaves en la
fórmula. Por consiguiente, debe ser:

δ̄W =

n∑
j=1

Qjδqj = 0

Ahora, si dividimos con respecto a δqi a ambos lados, obtenemos:

δ̄W

δqi
=

n∑
j=1

Qjδqj

δqi
=

n∑
j=1

Qj
δqj
δqi
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Como las coordenadas generalizadas q1, . . . , qn son linealmente independientes entre sí, es
δqj
δqi

= δij . Por

tanto:

δ̄W

δqi
=

n∑
j=1

Qjδij = Qi

Q.E.D.

1.11. Ecs. de Lagrange para sistemas con fuerzas no conservativas

1.11.1. Sin ligaduras
Lema 3. Sea S un sistema ideal de N partículas y sea {qk}k=1,...,n un sistema de coordenadas generalizadas
del sistema S. Entonces, si δ~ri es un desplazamiento virtual cualquiera, se cumple:

N∑
i=1

~̇pi · δ~ri =

n∑
j=1

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
δqj

*Demostración (No entra). Por la definición de momento lineal y al ser dm
dt = 0, tenemos:

N∑
i=1

~̇pi · δ~ri =

N∑
i=1

d

dt

(
m~̇ri

)
· δ~ri =

n∑
i=1

m
d~̇ri
dt︸︷︷︸

=dv

· δ~ri︸︷︷︸
=u

En la ecuación anterior aplicamos: d (uv) = du · v+u ·dv ⇔ u ·dv = d (uv)−du · v, de forma que obtenemos:

N∑
i=1

~̇pi · δ~ri =

N∑
i=1

[
m
d

dt

(
δ~ri · ~̇ri

)
−m~̇ri ·

d

dt
(δ~ri)

]
Ahora, expresemos δ~ri en función de las coordenadas generalizadas. Recordemos que era:

δ~ri =

n∑
j=1

∂~ri
∂qj

δqj ∀i = 1, . . . , N

En consecuencia:

N∑
i=1

~̇pi · δ~ri =

N∑
i=1

m d

dt

~̇ri n∑
j=1

∂~ri
∂qj

δqj

−m~̇ri d
dt

 n∑
j=1

∂~ri
∂qj

δqj


Como la derivada es una aplicación lineal:

N∑
i=1

~̇pi · δ~ri =

N∑
i=1

m n∑
j=1

d

dt

(
~̇ri
∂~ri
∂qj

δqj

)
−m

n∑
j=1

~̇ri
d

dt

(
∂~ri
∂qj

δqj

) =

=

N∑
i=1

 n∑
j=1

[
m
d

dt

(
~̇ri
∂~ri
∂qj

δqj

)
−m~̇ri

d

dt

(
∂~ri
∂qj

δqj

)]
Por la propiedad distributiva, tenemos:

N∑
i=1

Ai n∑
j=1

Bj

 =

n∑
j=1

(
Bj

n∑
i=1

Ai

)

de manera que:
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N∑
i=1

~̇pi · δ~ri =

n∑
j=1

[
N∑
i=1

d

dt

(
m~̇ri

∂~ri
∂qj

δqj

)
−

N∑
i=1

m~̇ri
d

dt

(
∂~ri
∂qj

δqj

)]
Asombrosamente, por el teorema de la función inversa, se cumple:

∂~ri
∂qj

=
∂~ri
∂qj

dt

dt
=
∂~ri
dt

dt

∂qj
=

∂~ri
dt
∂qj
dt

=
∂~̇ri
∂q̇j
∀i = 1, . . . , N ; j = 1, . . . , n

Además, como δqj es un desplazamiento virtual; es decir, por definción, no depende del tiempo, llegamos a:

N∑
i=1

~̇pi · δ~ri =

n∑
j=1

[
N∑
i=1

d

dt

(
m~̇ri

∂~̇ri
∂q̇j

)
δqj −

N∑
i=1

m~̇ri
d

dt

(
∂~ri
∂qj

)
δqj

]

Toda función posición en física debe ser al menos de clase C(2) (para que tenga sentido hablar de acelera-
ciones); en particular ~ri ∈ C(2) ∀i = 1, . . . , N , de manera que su parcial respecto a qj y su derivada respecto al
tiempo conmutan:

N∑
i=1

~̇pi · δ~ri =

n∑
j=1

[
N∑
i=1

d

dt

(
m~̇ri

∂~̇ri
∂q̇j

)
δqj −

N∑
i=1

m~̇ri
∂~̇ri
∂qj

δqj

]
Ahora, nótese que por la regla de la cadena, tenemos:

T =

N∑
i=1

1

2
m~̇r 2

i ⇒
∂T

∂qj
=

N∑
i=1

1

2
2m~̇ri

∂~̇ri
∂qj

=

N∑
i=1

m~̇ri
∂~̇ri
∂qj

Por tanto:

N∑
i=1

~̇pi · δ~ri =

n∑
j=1

[
N∑
i=1

d

dt

(
m~̇ri

∂~̇ri
∂q̇j

)
δqj −

N∑
i=1

m~̇ri
∂~̇ri
∂qj

δqj

]
Como la derivada es lineal, se puede meter el sumatorio dentro de la derivada en el término de la izquierda.

Así:

N∑
i=1

~̇pi · δ~ri =

n∑
j=1


d

dt

=
∂T

∂qj︷ ︸︸ ︷(
N∑
i=1

m~̇ri
∂~̇ri
∂q̇j

)
δqj −

=
∂T

∂qj︷ ︸︸ ︷
N∑
i=1

m~̇ri
∂~̇ri
∂qj

δqj


=

=

n∑
j=1

[
d

dt

(
∂T

∂q̇j

)
δqj −

∂T

∂qj
δqj

]
=

n∑
j=1

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
δqj

Q.E.D.

Teorema 12. Sea S un sistema ideal de N partículas y sea {qk}k=1,...,n un sistema de coordenadas generalizadas
del sistema S. Entonces, se tiene la siguiente relación:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj ∀j = 1, . . . , n (1.11.1)

donde Qj es la fuerza generalizada j-ésima.
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Demostración. Por la segunda ley de Newton (ver 1 en la página 8), tenemos:

~Fi = ~̇pi ⇔ ~Fi − ~̇pi = ~0 ∀i = 1, . . . , N

Multiplicando escalarmente por un desplazamiento virtual arbitrario δ~ri y sumando a todas las partículas,
obtenemos:

n∑
i=1

(
~Fi − ~̇pi

)
· δ~ri = 0⇔

⇔
n∑
i=1

~Fi · δ~ri −
n∑
i=1

~̇pi · δ~ri = 0

Por el lema 3 en la página 59 y recordando cómo podemos expresar el desplazamiento virtual en función de
las coordenadas generalizadas:

δ~ri =

n∑
j=1

∂~ri
∂qj

δqj ∀i = 1, . . . , N

obtenemos:

N∑
i=1

~Fi

n∑
j=1

∂~ri
∂qj

δqj −
n∑
j=1

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
δqj = 0⇔

⇔
n∑
j=1

N∑
i=1

~Fi
∂~ri
∂qj︸ ︷︷ ︸

=Qj

δqj −
n∑
j=1

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
δqj = 0

Por la definición 40 en la página 48 Qj es lo indicado entre llaves en la fórmula. Así, obtenemos:

n∑
j=1

Qjδqj −
n∑
j=1

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
δqj =

n∑
j=1

(
Qj −

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

])
︸ ︷︷ ︸

=0

δqj

El término con la llave por debajo debe ser forzosamente cero, pues la igualdad debe ser cierta para cualquier
variación virtual δqj . Q.E.D.

Observación 29. Nótese que lo anterior es equivalente a lo siguiente en Newton:

W = ∆T

Corolario 7. Sea S un sistema ideal de N partículas tal que las fuerzas totales que actúan sobre cada una
de las partículas son conservativas y sea {qk}k=1,...,n un sistema de coordenadas generalizadas del sistema S.
Entonces, debe cumplirse:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= −∂V

∂qj
∀j = 1, . . . , n

Demostración. Como las fuerzas totales que actúan sobre cada una de las partículas son conservativas, sabemos
que existe una función V (~r1, . . . , ~rN ) tal que:

~Fi = −~∇V (~ri) = −∂V
∂~ri
∀i = 1, . . . , N

Entonces, aplicando la proposición 14 en la página 47, llegamos a:

Qj =

N∑
i=1

~Fi
∂~ri
∂qj

=

N∑
i=1

−∂V
∂~ri

∂~ri
∂qj

= −∂V
∂qj
∀j = 1, . . . , n

pues ∂~ri
∂qj

= 0 ∀i 6= j y ∂V
∂~rj

∂~rj
∂qj

= ∂V
∂qj

. Por consiguiente, aplicando el teorema anterior, debe cumplirse:
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d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj = −∂V

∂qj
∀j = 1, . . . , n

Q.E.D.

Ejemplo 13. Tenemos el péndulo de siempre:

δθ

θ l

m

m~g

La energía cinética es:

T =
1

2
ml2θ̇2

Calculemos el trabajo virtual:

δW = m~g · δ~rp = −mg sen (θ) lδθ

De esta forma por la proposición 18:

Qθ =
δW

δθ
= −mgl sen θ

Obtengamos las siguientes derivadas parciales:

∂T

∂θ
= 0

∂T

∂θ̇
= ml2θ̇

En consecuencia:

d

dt

(
∂T

∂θ̇

)
= ml2θ̈

Aplicando el teorema 12 en la página 60, llegamos a:
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ml2θ̈ = −mgl sen θ ⇔

⇔ θ̈ = −g
l

sen θ

Teorema 13. Sea S un sistema ideal de N partículas y sea {qk}k=1,...,n un sistema de coordenadas generalizadas
del sistema S. Consideramos Qj = Qconservativa

j + Qno conservativa
j ∀j = 1, . . . , n. En este caso, la siguiente

propiedad debe satisfacerse:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= Qno conservativa
j ∀j = 1, . . . , n (1.11.2)

donde L = T − V es tal que Qconservativa
j = −∂V

∂qj
∀j = 1, . . . , n.

Demostración. Sea V (q1, . . . , qn) tal que:

Qconservativa
j = −∂V

∂qj
∀j = 1, . . . , n

Debe ser:

∂V

∂q̇j
= 0 ∀j = 1, . . . , n

en consecuencia:

d

dt

(
∂T

∂q̇j

)
=

d

dt

(
∂T

∂q̇j
− ∂V

∂q̇j

)
∀j = 1, . . . , n

Como la derivada parcial es una aplicación lineal, se sigue:

d

dt

(
∂T

∂q̇j
− ∂V

∂q̇j

)
=

d

dt

(
∂

∂q̇j
(T − V )

)
∀j = 1, . . . , n

Y, por la definición de lagrangiano ( 37 en la página 46), se sigue:

d

dt

(
∂

∂q̇j
(T − V )

)
=

d

dt

(
∂L
∂q̇j

)
∀j = 1, . . . , n

Recordemos, que, por hipótesis, era:

Qj = Qconservativa
j +Qno conservativa

j ∀j = 1, . . . , n

Ahora bien, por la proposición 14 en la página 47 sabemos que Qconservativas
j = −∂V

∂qj
, de forma que:

Qj = −∂V
∂qj

+Qno conservativas
j ∀j = 1, . . . , n

Utilizando el teorema 12 en la página 60 y todo lo hallado anteriormente, tenemos:

d

dt

(
∂T

∂q̇j

)
︸ ︷︷ ︸
= d
dt

(
∂L
∂q̇j

)
− ∂T
∂qj

= Qj︸︷︷︸
=− ∂V

∂qj
+Qno conservativas

j

∀j = 1, . . . , n⇔

⇔ d

dt

(
∂L
∂q̇j

)
− ∂T

∂qj
= −∂V

∂qj
+Qno conservativas

j ∀j = 1, . . . , n⇔

⇔ d

dt

(
∂L
∂q̇j

)
− ∂T

∂qj
+
∂V

∂qj
= Qno conservativas

j ∀j = 1, . . . , n⇔
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⇔ d

dt

(
∂L
∂q̇j

)
−
(
∂T

∂qj
− ∂V

∂qj

)
= Qno conservativas

j ∀j = 1, . . . , n

De nuevo, al ser la derivada parcial una aplicación lineal:

d

dt

(
∂L
∂q̇j

)
−
(
∂

∂qj
(T − V )

)
= Qno conservativas

j ∀j = 1, . . . , n

De nuevo, por la definición de lagrangiano ( 37 en la página 46), tenemos:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= Qno conservativas
j ∀j = 1, . . . , n

Q.E.D.

Observación 30. Lo anterior es equivalente en Newton a:

Wnc = ∆E

1.11.2. Con ligaduras
Teorema 14. Sea S un sistema ideal con M ligaduras holónomas {Gk}k=1,...,M y sean q1, . . . , q3N las coorde-
nadas con respecto a las cuales hemos hallado el lagrangiano del sistema L. Consideramos Qj = Qconservativa

j +

Qno conservativa
j ∀j = 1, . . . , n. En este caso, la siguiente propiedad debe satisfacerse:

M∑
k=1

λk
∂Gk
∂qi

+Qno conservativa
j =

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi
∀i = 1, . . . , 3N

donde L = T − V es tal que Qconservativa
j = −∂V

∂qj
∀j = 1, . . . , 3N .

Demostración. El lagrangiano modificado cumple las ecuaciones de Euler-Lagrange por el teorema de los mul-
tiplicadores de Lagrange5. En consecuencia, por el teorema 13 en la página anterior:

d

dt

(
∂L′
∂q̇i

)
− ∂L′
∂qi

= Qno conservativa
j ⇔

⇔ d

dt

(
∂

∂q̇i

(
L+

M∑
k=1

λkGk

))
− ∂

∂qi

(
L+

M∑
k=1

λkGk

)
= Qno conservativa

j

Como la derivada parcial es una aplicación lineal:

d

dt

(
∂L
∂q̇i

+

M∑
k=1

λk
∂Gk
∂q̇i

)
− ∂L
∂qi
−

M∑
k=1

λk
∂Gk
∂qi

= Qno conservativa
j

Nótese que ∂Gk
∂q̇i

= 0, pues Gk (q, t) 6= F (q̇i) ∀i, ya que las ligaduras son holónomas. De esta forma, la
ecuación queda:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi
−

M∑
k=1

λk
∂Gk
∂qi

= Qno conservativa
j

Pasando el tercer sumando al otro lado, obtenemos:

M∑
k=1

λk
∂Gk
∂qi

+Qno conservativa
j =

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

Q.E.D.

5Este teorema no es nada fácil de demostrar; requiere un estudio profundo del análisis funcional que está muy fuera del alcance
de este curso. Por ello, simplemente nos creeremos este resultado.
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1.12. Hamiltoniano

1.12.1. Definición y primeras propiedades
Definición 48. Sea S un sistema ideal de N partículas tal que las fuerzas totales que actúan sobre cada una
de las partículas son conservativas y sean {qk}k=1,...,n un sistema de coordenadas generalizadas del sistema S y
{pk}k=1,...,n un conjunto de momentos generalizados de S. Llamamos función hamiltoniana o hamiltoniano
a:

H (q1, . . . , qn, p1, . . . , pn, t) :=

n∑
j=1

pj q̇j − L (q1, . . . , qn, q̇1, . . . , q̇n, t)︸ ︷︷ ︸
=T−V

Proposición 19. S un sistema ideal de N partículas tal que las fuerzas totales que actúan sobre cada una
de las partículas son conservativas y sean {qk}k=1,...,n un sistema de coordenadas generalizadas naturales del
sistema S y {pk}k=1,...,n un conjunto de momentos generalizados de S. Entonces, el hamiltoniano del sistema
coincide con la energía:

H = T + V = E

Demostración. Por la definición de energía cinética ( 17 en la página 23), tenemos:

T =
1

2

N∑
i=1

mi~̇r
2
i

Por la regla de la cadena, podemos expresar ~̇ri en función de las velocidades q̇1, . . . , q̇n como sigue:

~̇ri =
d

dt
~ri =

n∑
j=1

∂~ri
∂qj

∂qj
∂t

+
∂~ri
∂t

=

n∑
j=1

∂~ri
∂qj

q̇j +
∂~ri
∂t︸︷︷︸
=0

Como las coordenadas son naturales, debe ser
∂~ri
∂t

= 0. De esta forma:

~̇ri =

n∑
j=1

∂~ri
∂qj

q̇j

En consecuencia:

~̇r2
i =

 n∑
j=1

∂~ri
∂qj

q̇j

2

=

 n∑
j=1

∂~ri
∂qj

q̇j

( n∑
k=1

∂~ri
∂qk

q̇k

)
Así:

T =
1

2

N∑
i=1

mi

 n∑
j=1

∂~ri
∂qj

q̇j

( n∑
k=1

∂~ri
∂qk

q̇k

)

Por la definición de momento generalizado (ver 38 en la página 47), tenemos:

pu =
∂L
∂q̇u

=
∂T

∂q̇u
=

1

2

N∑
i=1

mi

 ∂~ri
∂qu

n∑
k=1

∂~ri
∂qk

q̇k +

n∑
j=1

∂~ri
∂qj

q̇j
∂~ri
∂qu

 =

N∑
i=1

mi

n∑
j=1

∂~ri
∂qu

∂~ri
∂qj

q̇j

Para hallar la derivada anterior hemos tenido en cuenta lo siguiente: lo primero, nótese que
∂

∂q̇u

(
∂~ri
∂qj

)
= 0

∀i = 1, . . . , N ; j = 1, . . . , n. Ahora, para realizar la derivada hemos aplicado la regla del producto. Nótese que

∂

∂q̇u

 n∑
j=1

∂~ri
∂qj

q̇j

 =
∂~ri
∂qu

.

A continuación, tenemos:
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n∑
u=1

puq̇u =

n∑
u=1

N∑
i=1

n∑
j=1

mi
∂~ri
∂qu

∂~ri
∂qj

q̇j q̇u =

N∑
i=1

mi

(
n∑
u=1

∂~ri
∂qu

q̇u

) n∑
j=1

∂~ri
∂qj

q̇j

 = 2T

Finalmente, aplicando la definición de hamiltoniano (ver 48 en la página anterior) y la de lagrangiano (ver 37
en la página 46), tenemos:

H =

n∑
u=1

puq̇u − L = 2T − (T − V ) = T + V = E

Q.E.D.

Corolario 8. S un sistema ideal de N partículas tal que las fuerzas totales que actúan sobre cada una de las
partículas son conservativas y sean {qk}k=1,...,n un sistema de coordenadas generalizadas naturales del sistema
S y {pk}k=1,...,n un conjunto de momentos generalizados de S. Si, además, el sistema es conservativo, tenemos:

E = H = cte

Observación 31. Si no se cumplen las condiciones mencionadas en la proposición 19 en la página anterior,
podemos intentar conseguir un término T ′ que contenga la dependencia respecto a la velocidad de V y un
término V ′ que contenga la dependencia respecto del tiempo de T . Es decir, conseguir un H = T ′ + V ′ que
cumpla los requisitos anteriores. Nótese que en ese caso H 6= E.

1.12.2. Conservación del Hamiltoniano
Teorema 15. Sea S un sistema ideal de N partículas tal que las fuerzas totales que actúan sobre cada una de
las partículas son conservativas y sean {qk}k=1,...,n un sistema de coordenadas generalizadas del sistema S y
{pk}k=1,...,n un conjunto de momentos generalizados de S. Sea H el hamiltoniano del sistema. Entonces, si el
lagrangiano no depende explícitamente del tiempo, el hamiltoniano se conserva.

dH
dt

= 0⇔ ∂L
∂t

= 0

Demostración. Estudiamos cómo varía el hamiltoniano en función del tiempo:

H =

n∑
j=1

pj q̇j − L

Aplicando la regla de la cadena, tenemos:

dH
dt

=

n∑
j=1

(ṗj q̇j + pj q̈j)−


n∑
j=1

 ∂L
∂qj︸︷︷︸
=ṗj

q̇j +
∂L
∂q̇j︸︷︷︸
=pj

q̈j

+
∂L
∂t

 =

=

n∑
j=1

(ṗj q̇j + pj q̈j)−
n∑
j=1

(ṗj q̇j + pj q̈j)−
∂L
∂t

= −∂L
∂t

Quizás sea importante recordar q̇j ≡
∂qj
∂t

y q̈j ≡
∂q̇j
∂t

. Por tanto:

∂L
∂t

= 0⇔ dH
dt

= 0⇔ H = cte

Q.E.D.
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1.12.3. Ecuaciones de Hamilton
Teorema 16. Sea S un sistema ideal de N partículas tal que las fuerzas totales que actúan sobre cada una
de las partículas son conservativas y sean {qk}k=1,...,n un sistema de coordenadas generalizadas del sistema
S y {pk}k=1,...,n un conjunto de momentos generalizados de S. Sea H el hamiltoniano del sistema. Entonces,
∀i = 1, . . . , n se cumple:

1. Primera ecuación de Hamilton:
∂H
∂pi

= q̇i (1.12.1)

2. Segunda ecuación de Hamilton:
∂H
∂qi

= −ṗi (1.12.2)

Demostración. Sea qi una coordenada concreta y recordemos H =

n∑
j=1

pj q̇j − L, entonces:

1. Como L = F (q1, . . . , qn, q̇1, . . . , q̇n), tenemos por la regla de la cadena:

∂H
∂pi

=
n∑
j=1

∂pj
∂pi

q̇j +
n∑
j=1

pj
∂q̇j
∂pi
−

n∑
j=1

 ∂L
∂q̇j︸︷︷︸
=pj

∂q̇j
∂pi

+
∂L
∂qj

∂qj
∂pi︸︷︷︸
=0


= q̇i +

n∑
j=1

pj
∂q̇j
∂pi
−

n∑
j=1

pj
∂q̇j
∂pi

= q̇i

n∑
j=1

∂pj
∂pi

q̇j = q̇i pues
∂pj
∂pi

= δij =

{
0 si i 6= j
1 si i = j

pues los momentos generalizados no dependen uno de

otro. Al estar en una suma, el único término que «sobrevive» es
∂pi
∂pi

q̇i = q̇i. Por otra parte,
∂L
∂q̇j

= pj

porque esa es justo la definición de pj . En el último sumando de la primera línea hemos aplicado la regla
de la cadena para derivadas parciales, sin embargo como las posiciones no dependen de los momentos,
∂qj
∂pi

= 0. En consecuencia:

∂H
∂pi

= q̇i

2.
∂H
∂qi

=

n∑
j=1

pj
∂q̇j
∂qi

+

n∑
j=1

∂pj
∂qi︸︷︷︸
=0

q̇j −
∂L
∂qi︸︷︷︸
=ṗi

−
n∑
j=1

∂L
∂q̇j︸︷︷︸
=pj

∂q̇j
∂qi

=

=

n∑
j=1

pj
∂q̇j
∂qi
−

n∑
j=1

pj
∂q̇j
∂qi
− ṗi = −ṗi

∂pj
∂qi

= 0, pues los momentos generalizados nunca dependen de las posiciones.
∂L
∂q̇i

= pj , porque esa es la

propia definición de pj . Por último,
∂L
∂qi

= Qi = ṗi por la definición 38 y la proposición 13. De esta forma,

llegamos a la segunda ecuación de Hamilton:

∂H
∂qi

= −ṗi

Q.E.D.
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Observación 32. Las ecuaciones de Hamilton se dicen canónicas conjugadas.

Observación 33. El hamiltoniano resulta especialmente útil si las coordenadas son cíclicas. Cabe resaltar que
siempre se pueden realizar transformaciones de Jacobi de manera que todas las coordenadas sean cíclicas (algo
que queda fuera del alcance de este curso). En ese caso, por el corolario 5 en la página 46:

0 =
∂L
∂qi

=
d

dt

 ∂L
∂q̇i︸︷︷︸
=pi

 = 0⇔ pi = cte

Ahora, por la primera ecuación del teorema 16 en la página anterior:

∂H
∂pi

= q̇i ⇔ qi = C +

ˆ
q̇idt

1.12.4. Ejemplos
Ejemplo 14 (El péndulo). Tenemos:

θ

l

m

y

Hallamos el lagrangiano:

L =
1

2
ml2θ̇2 +mgl cos θ

Y el momento generalizado:

pθ =
∂L
∂θ̇

= ml2θ̇

Escribimos el hamiltoniano:

H = pθ θ̇ − L
(
θ, θ̇
)

= ml2θ̇2 −
(

1

2
ml2θ̇2 +mgl cos θ

)
=

1

2
ml2θ̇2︸ ︷︷ ︸
=T

−mgl cos θ︸ ︷︷ ︸
=V

Nótese que en este caso H = E. Tenemos que conseguir expresar el hamiltoniano de manera que no dependa
de la velocidad, haciendo que aparezca el momento en su lugar:

H (θ, pθ) =
p2
θ

2ml2
−mgl cos θ

Ahora podemos aplicar la primera ecuación del teorema 16 en la página anterior:
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∂H
∂pθ

= θ̇ ⇒ θ̇ =
pθ
ml2

Y la segunda ecuación del teorema 16 en la página 67:

∂H
∂θ

= −ṗθ ⇒ −mgl sen θ = ṗθ = ml2θ̈ ⇔ θ̈ = −g
l

sen θ

Nótese que al haber obtenido el hamiltoniano a través del lagrangiano, la primera ecuación de Hamilton
nos dice lo que ya sabemos del lagrangiano. En el caso de que hubiéramos podido escribir el hamiltoniano sin
haber escrito el lagrangiano, la primera ecuación de Hamilton nos habría permitido sacar la velocidad. En este
ejemplo lo siguiente es cierto:

∂L
∂t

= 0⇒ dH
dt

= 0⇔ H = cte E=H⇔ E = cte

Nótese cómo hemos obtenido la ecuación del movimiento de siempre.

Ejercicio 4. Ecuaciones de Hamilton para una partícula en un campo cuyo potencial depende únicamente de
la distancia al centro.

Solución. Al depender el potencial únicamente de la distancia al centro, sabemos que la fuerza será:

~F = −dV
dr
r̂

En cualquier caso, aquí tenemos una representación gráfica de la situación:

r

θ

Y

X

Vamos a usar coordenadas polares:

x = r cos θ

y = r sen θ

De forma que:

T =
1

2
m
(
ṙ2 + r2θ̇2

)
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L = T − V =
1

2
m
(
ṙ2 + r2θ̇2

)
− V (r)

Nótese que L 6= F (θ), de manera que θ es una coordenada cíclica. Eso implica que pθ = cte, como hemos
probado antes. Escribamos el hamiltoniano:

H (r, pr, θ, pθ) = pr ṙ + pθ θ̇︸ ︷︷ ︸
=2T

−L =
1

2
m
(
ṙ2 + r2θ̇2

)
+ V (r)

pr ṙ + pθ θ̇ = 2T por lo siguiente:

pr =
∂L
∂ṙ

= mṙ

pθ =
∂L
∂θ̇

= mr2θ̇

pr ṙ + pθ θ̇ = mṙ2 +mr2θ̇2 = 2

(
1

2
m
[
ṙ2 + r2θ̇2

])
= 2T

Ahora tengo que escribir el hamiltoniano en función de los momentos:

H =
1

2m

(
p2
r +

p2
θ

r2

)
+ V (r)

Aplicando la primera ecuación del teorema 16 en la página 67, llegamos a:

ṙ =
∂H
∂pr

=
pr
m

= ṙ

θ̇ =
∂H
∂pθ

=
pθ
mr2

= θ̇

Ahora si usamos la segunda ecuación del teorema 16 en la página 67, obtenemos:

−ṗr =
∂H
∂r

= − p2
θ

mr3
+
∂V

∂r

−ṗθ =
∂H
∂θ

= 0⇔ pθ = cte⇔ mr2θ̇ = cte

De la primera ecuación obtenemos, al ser ṗr = mr̈:

mr̈ =
p2
θ

mr3
− dV

dr

Ahora definimos un potencial efectivo U de manera que:

−dU
dr

=
p2
θ

mr3
− dV

dr
⇔

⇔ U = V +
p2
θ

2mr2

En consecuencia, yo puedo escribir el Hamiltoniano como:

H =
1

2m
p2
r︸ ︷︷ ︸

=T

+

=cte︷ ︸︸ ︷
p2
θ

2mr2
+V (r)︸ ︷︷ ︸

=U

= F (r, pr) = cte

Por consiguiente, al ser H = E, podemos escribir la energía como:

Licencia: Creative Commons 70

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 1. PRINCIPIOS DE MECÁNICA

1.12. HAMILTONIANO

E =
1

2
mṙ2 + Ueff (r)

Podemos combinar las ecuaciones anteriores y obtenemos:

p2
θ

mr3
= mrθ̇2

que es la ecuación de una fuerza centrífuga.
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Capítulo 2

Movimiento oscilatorio

2.1. Ejemplos introductorios
Un muelle con una constante elástica k unido a una masa m que no está inmóvil.

Un péndulo

Magnitudes físicas en un circuito. Por ejemplo: la tensión en el circuito RLC sufre una oscilación amorti-
guada.

Una onda

Licencia: Creative Commons 72

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 2. MOVIMIENTO OSCILATORIO

2.2. PRELIMINARES MATEMÁTICOS

2.2. Preliminares matemáticos
Definición 49. Llamamos polinomio característico de una ecuación diferencial lineal de coeficientes constantes
al polinomio que se obtiene al intercambiar derivadas por potencias.

Proposición 20. Sean n ∈ N e y (t) : I ⊆ R −→ R una función de clase C(n). Si y (t) cumple la ecuación
diferencial lineal homogénea de coeficientes constantes:

y(n) (t) + an−1y
(n−1) (t) + · · ·+ a2ÿ (t) + a1ẏ (t) + a0y (t) = 0

donde ai ∈ R ∀i = 0, . . . , n− 1. Entonces la solución general y (t) debe ser de la forma:

y (t) =

r∑
i=1

eλitpi (t)

donde λ1, . . . , λr ∈ C son las raíces distintas del polinomio característico:

p (s) = sn − an−1s
n−1 + · · ·+ a1s+ a0

y pi (t) ∈ C [t] es un polinomio complejo arbitrario de grado menor que mi (la multiplicidad de la raíz λi).

Proposición 21. Sean n ∈ N, y (t) : I ⊆ R −→ R una función de clase C(n) y f (t) : I ⊆ R −→ R una función
continua. Si y (t) cumple la ecuación diferencial lineal no homogénea de coeficientes constantes:

y(n) (t) + an−1y
(n−1) (t) + · · ·+ a2ÿ (t) + a1ẏ (t) + a0y (t) = f (t)

donde ai ∈ R ∀i = 0, . . . , n− 1. Entonces la solución general y (t) debe ser de la forma:

y (t) = yn (t) + yp (t)

donde yn (t) es la solución general de la ecuación homogénea asociada y(n) (t) + an−1y
(n−1) (t) + · · ·+ a2ÿ (t) +

a1ẏ (t) + a0y (t) = 0 e yp (t) es una solución particular de la ecuación no homogénea:

yp (t) =

ˆ t

t0

γ (t− τ) f (τ) dτ

para un t0 ∈ I cualquiera donde γ (t− τ) es la solución de la ecuación diferencial homogénea γ(n) (t) +
an−1γ

(n−1) (t)+· · ·+a2γ̈ (t)+a1γ̇ (t)+a0γ (t) = 0 con condiciones iniciales γ (0) = 0, . . . , γ(n−2) (0) = 0, γ(n−1) =
1.

Proposición 22 (Metódo de los coeficientes indeterminados). Sean n ∈ N, y (t) : I ⊆ R −→ R una función
de clase C(n) y f (t) : I ⊆ R −→ R una función continua. Supongamos que y (t) cumple la ecuación diferencial
lineal no homogénea de coeficientes constantes:

y(n) (t) + an−1y
(n−1) (t) + · · ·+ a2ÿ (t) + a1ẏ (t) + a0y (t) = f (t)

donde ai ∈ R ∀i = 0, . . . , n− 1. Si f (t) es de la forma:

f (t) =

n∑
i=1

eµitPi (t)

donde Pi (t) ∈ C [t] es un polinomio complejo de grado ri y µi ∈ C. Entonces, una solución particular de la
ecuación no homogénea es:

yp (t) =

n∑
i=1

tmiRi (t) eµit

donde mi es la multiplicidad de µi como raíz del polinomio característico de y (t) y Ri (t) ∈ C [t] es un polinomio
de grado ri.
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Proposición 23. Se dan las siguientes igualdades trigonométricas:

cosx =
eix + e−ix

2
senx =

eix − e−ix
2i

coshx =
ex + e−x

2
senhx =

ex − e−x
2

eix = cosx+ i senx

Proposición 24. Cualquier ecuación diferencial de la forma:

ẍ+ αẋ+ βx = C

donde α, β, C ∈ R admite un cambio de variable x = y +
C

β
⇔ y = x− C

β
que transforma la ecuación en una

homogénea:

ÿ + αy + βy = 0

donde α y β son las mismas que en la ecuación original.

Demostración. Haciendo el cambio de variable x = y +
C

β
, llegamos a:

d2

dt2

(
y +

C

β

)
+ α

d

dt

(
y +

C

β

)
+ β

(
y +

C

β

)
= C ⇔

⇔ ÿ + αẏ + βy + β
C

β
= C ⇔ ÿ + αẏ + βy + C = C ⇔

⇔ ÿ + αẏ + βy = 0

Q.E.D.

Definición 50. Decimos que una solución x (t) de una ecuación diferencial cualquiera es asintóticamente
estable si:

ĺım
t→∞

x (t) = 0

2.3. Conceptos previos
Hecho 1 (Ley de Hooke). La fuerza recuperadora de un medio elástico en un movimiento unidimensional es:

F (x) = −kx

donde k ∈ R 3 k > 0 es la constante recuperadora del muelle y x representa el desplazamiento del muelle desde
su posición de equilibrio xeq.

Definición 51. Decimos que una magnitud física x describe una oscilación armónica simple si puede
expresarse como combinación lineal de un seno y un coseno. En otras palabras, si x (t) es de la forma:

x (t) = A cos (ωt) +B sen (ωt)

para algunos A,B, ω ∈ R 3 ω > 0 donde ω recibe el nombre de frecuencia angular o pulsación. Sus unidades
en el sistema internacional son rad

s .

Definición 52. Llamamos periodo de una oscilación armónica simple a:

T :=
2π

ω

Se corresponde con el tiempo transcurrido entre dos máximos (o dos mínimos) de la magnitud física x.
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Definición 53. Llamamos frecuencia de una oscilación armónica simple a:

ν ≡ f =
1

T

cuyas unidades en el sistema internacional son s−1 = Hz.

Definición 54. La oscilación de una magnitud física x se dice lineal si satisface la ecuación diferencial:

ẍ+ αẋ+ βx = f (t)

para algunos α, β ∈ R y para alguna función f (t) continua en su dominio.

Definición 55. Una oscilación lineal de una magnitud física x se dice libre si satisface la ecuación diferencial:

ẍ+ αẋ+ βx = 0

para algunos α, β ∈ R.

Definición 56. Una oscilación lineal de una magnitud física x se dice forzada si satisface la ecuación diferencial:

ẍ+ αẋ+ βx = f (t)

para algunos α, β ∈ R y para alguna función f (t) 6= 0 continua en su dominio.

Definición 57. Llamamos energía potencial elástica a la asociada a una partícula que sufre una fuerza con
la forma matemática de la ley de Hooke (ver hecho 1 en la página anterior) por el hecho de estar desplazada
una cierta distancia con respecto al punto de equilibrio.

Proposición 25. La energía potencial elástica de una partícula puede expresarse como:

Ve (x) =
1

2
kx2 + C

donde k ∈ R 3 k > 0 es la constante recuperadora y C ∈ R es una constante.

Demostración. Partimos de la ley de Hooke (ver hecho 1 en la página anterior) y de la definición de energía
potencial (ver definición 19 en la página 24). De esta forma, tenemos:

Ve (x) = −
ˆ
Fdx+ C = −

ˆ
−kxdx+ C =

1

2
kx2 + C

donde C es una constante. Q.E.D.

2.4. Oscilaciones lineales no amortiguadas (armónicas)
Definición 58. Decimos que una oscilación lineal de una magnitud física x es no amortiguada si satisface la
ecuación diferencial:

ẍ+ ω2x = f (t)

donde ω ∈ R 3 ω > 0 es la frecuencia angular o pulsación.

Definición 59. Se dice que un oscilador lineal no amortiguado tiene posición de equilibrio no nula si
satisface la ecuación diferencial:

ẍ+ ω2x = C

donde ω ∈ R 3 ω > 0 es la frecuencia angular o pulsación y C ∈ R.

Proposición 26. La posición x de una partícula de masa m 6= 0 sometida a una fuerza elástica (ley de Hooke,
ver hecho 1 en la página anterior) describe una oscilación lineal libre no amortiguada con ω2 = k

m .

Demostración. Partimos de la segunda ley de Newton (ver axioma 1 en la página 8):

mẍ = F = −kx⇔ mẍ+ kx = 0
m 6=0⇐=⇒ ẍ+

k

m
x = 0

Por analogía con la definición 58, debe ser ω2 = k
m . Q.E.D.
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2.4.1. Solución de la ecuación diferencial
2.4.1.1. La solución como exponenciales complejas

Proposición 27. Cualquier oscilación lineal libre no amortiguada de una magnitud física x puede ser expresada
de la forma:

x (t) = Aeiωt +Be−iωt

donde A,B ∈ C.

Demostración. Partimos de la ecuación diferencial de la definición 58 en la página anterior:

ẍ+ ω2x = 0

Obtenemos el polinomio característico (ver definición 49 en la página 73) de la ecuación diferencial anterior:

p (s) = s2 + ω2 = 0⇔ (s+ iω) (s− iω) = 0⇔
{
λ1 = iω
λ2 = −iω

En consecuencia, por la proposición 20 en la página 73, tenemos que la solución general de nuestra ecuación
diferencial es:

x (t) = Aeiωt +Be−iωt

donde A,B ∈ C. Q.E.D.

2.4.1.2. La solución como seno y coseno

Lema 4. Las funciones eiωt y e−iωt son linealmente independientes ∀t ∈ R.

Demostración. Si eiωt y e−iωt son linealmente independientes ∀t ∈ R, entonces debe darse:

αeiωt + βe−iωt = 0⇔ α = β = 0

El sentido ⇐ es trivial. Para el sentido ⇒ supongamos inicialmente α, β 6= 0, entonces llegamos a:

αeiωt + βe−iωt = 0⇔ αeiωt = −βe−iωt

Evaluando en t = 0, llegamos a:

α = −β
Luego debería ser:

αeiωt = αe−iωt ∀t ∈ R α6=0⇔ eiωt = e−iωt ∀t ∈ R

lo que es absurdo. Por tanto, necesariamente es α = 0 = β y las funciones eiωt y e−iωt son linealmente
independientes. Q.E.D.

Proposición 28. Cualquier oscilación lineal libre no amortiguada de una magnitud física x puede ser expresada
de la forma:

x (t) = A cosωt+B senωt

donde A,B ∈ R.

Demostración. Partimos de que toda oscilación armónica libre no amortiguada admite una solución como la
dada en la proposición 27:

x (t) = Aeiωt +Be−iωt

Ahora bien, x (t) ∈ R ∀t ∈ R. En consecuencia, x (t) debe coincidir con su complejo conjugado:

x (t) = x (t)⇔ Aeiωt +Be−iωt = Aeiωt +Be−iωt = Aeiωt +Be−iωt = Aeiωt +Be−iωt =
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= Aeiωt +Be−iωt = Ae−iωt +Beiωt ⇔ Aeiωt +Be−iωt −Ae−iωt −Beiωt = 0⇔

⇔
(
A−B

)
eiωt +

(
B −A

)
e−iωt = 0

Por el lema 4 en la página anterior, eiωt y e−iωt son linealmente independientes. En consecuencia, debe ser:{
A = B
B = A

⇔ A = B

Así, obtenemos que podemos expresar x (t) como:

x (t) = Aeiωt +Ae−iωt

Tomando A = a+ bi con a, b ∈ R, tenemos:

x (t) = (a+ bi) eiωt + (a− bi) e−iωt = a
(
eiωt + e−iωt

)
+ bi

(
eiωt − e−iωt

)
=

= 2a
eiωt + e−iωt

2︸ ︷︷ ︸
=cosωt

+2bi2
eiωt − e−iωt

2i︸ ︷︷ ︸
=senωt

= 2a cosωt− 2b senωt

por las igualdades dadas en la proposición 23 en la página 74. De esta forma, tomando A′ = 2a y B′ = −2b,
llegamos a:

x (t) = A′ cosωt+B′ senωt

donde claramente A′, B′ ∈ R, pues a, b ∈ R. Q.E.D.

Corolario 9. Toda oscilación libre lineal no amortiguada es armónica simple.

Demostración. Trivial, ya que la solución dada en la proposición anterior es armónica. Q.E.D.

2.4.1.3. La solución como coseno desplazado en fase

Lema 5. Las funciones senωt y cosωt son linealmente independientes ∀t ∈ R.

Demostración. Las funciones senωt y cosωt serán linealmente independientes si y sólo si:

α senωt+ β cosωt = 0⇔ α, β = 0

El sentido ⇐ es trivial. Para el sentido ⇒ supongamos inicialmente α, β 6= 0, entonces llegamos a:

α senωt+ β cosωt = 0⇔ α senωt = −β cosωt

Evaluando en t = 0, llegamos a:

0 = −β
Pero β 6= 0 por hipótesis. Por tanto, llegamos a un absurdo y necesariamente debe ser β = 0. Entonces nos

queda:

α senωt = 0 ∀t ∈ R

Y así, necesariamente debe ser α = 0. Q.E.D.

Lema 6. Sean α, β ∈ R, entonces se cumple:

cos (α+ β) = cosα cosβ − senα senβ

Licencia: Creative Commons 77

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 2. MOVIMIENTO OSCILATORIO

2.4. OSCILACIONES LINEALES NO AMORTIGUADAS (ARMÓNICAS)

Proposición 29. Cualquier oscilación lineal libre no amortiguada de una magnitud física x puede ser expresada
de la forma:

x (t) = A cos (ωt+ ϕ)

donde A ∈ R 3 A ≥ 0 es la amplitud y ϕ ∈ R recibe el nombre de desfase o fase inicial, ωt + ϕ recibe el
nombre de fase.

Demostración. Partiendo de la proposición 28 en la página 76, estudiemos si ∃!A,ϕ ∈ R tales que:

x (t) = B cosωt+ C senωt = A cos (ωt+ ϕ)

Si B = C = 0, entonces claramente es A = 0 y la igualdad se cumple.

Si es A = 0, como cosωt y senωt son linealmente independientes por el lema 5 en la página anterior,
tenemos que B = 0 = C y la igualdad se cumple.

Si es A 6= 0, podemos dividir a ambos lados de la ecuación por A y obtenemos:

B

A
cosωt+

C

A
senωt = cos (ωt+ ϕ)

Supongamos que existe un ϕ tal que
B

A
= cosϕ y −C

A
= senϕ y veamos que ϕ y A están unívocamente

definidos ∀B,C ∈ R de esta forma. Entonces, tendríamos:
−C
A

= senϕ

B

A
= cosϕ

⇒ tanϕ = −C
B

que está bien definida si B 6= 0. Por otra parte, despejando de la segunda ecuación y usando que
cos arctanx = 1√

1+x2
1, tenemos:

A =
B

cosϕ
=

B

cos arctan
(
−CB

) =
B
1√

1+C2

B2

= B

√
1 +

C2

B2

que también está bien definida si B 6= 0.
Si B = 0, entonces cosϕ = 0⇔ ϕ = π

2 ∨ ϕ = −π2 . Como en ese caso sería senϕ = −CA , tendríamos:

−C
A
> 0⇒ ϕ =

π

2

−C
A
< 0⇒ ϕ = −π

2

Por otra parte, trivialmente tendríamos C = A cuando B = 0.

Así, hemos probado que ∀B,C ∈ R ∃!A,ϕ ∈ R (siempre que A 6= 0) tales que:

x (t) = B cosωt+ C senωt = A

(
B

A
cosωt+

C

A
senωt

)
= A (cosϕ cosωt− senϕ senωt)

Ahora, aplicando el lema 6 en la página anterior, tenemos que:

x (t) = A cos (ωt+ ϕ)

Q.E.D.

1Este dato puede encontrarse en la página https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&
oldid=876493420#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions.
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Definición 60. Diremos que dos funciones f1 (t) = A cos (ωt+ ϕ1) y f2 (t) = A cos (ωt+ ϕ2) están en fase si
∆ϕ = ϕ2 − ϕ1 = 2πk con k ∈ Z.

Definición 61. Diremos que dos funciones f1 (t) = A cos (ωt+ ϕ1) y f2 (t) = A cos (ωt+ ϕ2) están en oposi-
ción de fase si ∆ϕ = ϕ2 − ϕ1 = π + 2πk con k ∈ Z.

Definición 62. Diremos que dos funciones f1 (t) = A cos (ωt+ ϕ1) y f2 (t) = A cos (ωt+ ϕ2) están en cua-
dratura de fase si ∆ϕ = ϕ2 − ϕ1 = π

2 + πk con k ∈ Z.

Observación 34. Consideremos la solución del oscilador libre lineal no amortiguado dada por la proposición 29
en la página anterior. Tenemos:

x (t) = A cos (ωt+ ϕ)

ẋ (t) = ωA cos
(
ωt+ ϕ+

π

2

)
ẍ (t) = ω2A cos (ωt+ ϕ+ π)

Por tanto, podemos ver que x y ẋ están en cuadratura de fase, mientras que x y ẍ están en oposición de fase.
Gráficamente tendríamos:

t

−ω2A

−ωA

−A

A

ωA

ω2A
x(t)
ẋ(t)
ẍ(t)

2.4.1.4. La solución como la parte real de una exponencial compleja

Proposición 30. Cualquier oscilación libre lineal no amortiguada de una magnitud física x puede ser expresada
de la forma:

x (t) = Re
(
Aeiωt

)
con A ∈ C.
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Demostración. Partiendo de la proposición 29 en la página 78, tenemos que:

x (t) = A cos (ωt+ ϕ)

Sea z (t) = Aei(ωt+ϕ), veamos que x (t) = Re (z (t)):

Re (z (t)) = Re
(
Aei(ωt+ϕ)

)
Por la fórmula de Euler (ver proposición 23 en la página 74), tenemos:

Re (z (t)) = Re (A cos (ωt+ ϕ) + i sen (ωt+ ϕ)) = A cos (ωt+ ϕ)

Luego, efectivamente, x (t) = Re
(
Aei(ωt+ϕ)

)
. Ahora:

z (t) = Aei(ωt+ϕ) = Aeiωt+iϕ = Aeiϕeiωt

Tomando B = Aeiϕ, tenemos:

z (t) = Beiωt

tal que x (t) = Re
(
Beiωt

)
donde, claramente B ∈ C pues eiϕ ∈ C. Q.E.D.

Observación 35. Si consideramos la solución del oscilador libre lineal no amortiguado dada por la proposición 30
en la página anterior, tenemos:

x (t) = Re
(
Aeiωt

)
Si llamamos z (t) := Aeiωt, vemos que:

ẋ = Re (ż) = Re
(
iωAeiωt

)
= Re (iωz) = Im

(
−ωAeiωt

)
= Im (−ωz)

ẍ = Re (z̈) = Re
(
−ω2Aeiωt

)
= Re

(
−ω2z

)
Ahora, descomponemos z como:

z := x+ iy

De forma que:

z = ẋ+ iẏ

z̈ = ẍ+ iÿ

De esta forma, obtenemos una representación en el plano complejo.
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z
ż

z̈ x
ẍ

Imaginemos, ahora, que tenemos dos oscilaciones z1 y z2 que difieren en una fase ∆φ0, gráficamente su suma
sería:

z = z1 + z2

z2 z1
φ0

∆φ0

Esto se llama superposición de osciladores.

2.4.2. Solución del oscilador lineal no amortiguado cuya posición de equilibrio no
es nula

Proposición 31. Un oscilador simple lineal no amortiguado con posición de equilibrio no nula admite un

cambio de variable x = y +
C

ω2
⇔ y = x− C

ω2
que lo transforma en un oscilador simple lineal no amortiguado

con posición de equilibrio nula.
ẍ+ ω2x = C −−−−−−−−−→

x = y +
C

ω2

ÿ + ω2y = 0

Demostración. La demostración es trivial al aplicar la proposición 24 en la página 74. Q.E.D.

2.4.3. Conservación de la energía mecánica
Proposición 32. La energía mecánica de un oscilador libre lineal no amortiguado se conserva y es:

Em =
1

2
mA2ω2
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donde m es la masa del cuerpo que oscila, A es la amplitud y ω es la frecuencia angular de la oscilación.

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

t

0.200

0.400

0.600

0.800

1.00

E
Emáx

V
T
Em

Demostración. Vamos a trabajar con la solución de un oscilador armónico dada por la proposición 29 en la
página 78. Así, tenemos:

x (t) = A cos (ωt+ ϕ)

ẋ (t) = Aω sen (ωt+ ϕ)

De forma que la energía cinética y la energía potencial quedan:

V =
1

2
kx (t)

2
=

1

2
kA2 cos2 (ωt+ ϕ)

T =
1

2
mẋ (t)

2
=

1

2
mA2ω2 sen2 (ωt+ ϕ)

Sumando, obtenemos:

Em = T + V =
1

2
kA2 cos2 (ωt+ ϕ) +

1

2
mA2ω2 sen2 (ωt+ ϕ)

Por la proposición 26 en la página 75, sabemos:

ω2 =
k

m
⇔ k = mω2

Sustituyendo en la ecuación anterior, se tiene:

Em =
1

2
mA2ω2 cos2 (ωt+ ϕ) +

1

2
mA2ω2 sen2 (ωt+ ϕ) =
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=
1

2
mA2ω2

(
cos2 (ωt+ ϕ) + sen2 (ωt+ ϕ)

)︸ ︷︷ ︸
=1

Y ese último término es uno por la identidad fundamental de la trigonometría. Q.E.D.

2.4.4. Ejemplos
Ejemplo 15. Tenemos un muelle como el que se ve en la figura:

m

Si llamamos x a lo que se ha alargado el muelle, entonces, por la segunda ley de Newton (ver axioma 1) y
por la ley de Hooke (ver hecho 1) debe cumplirse:

−kx = mẍ⇔ ẍ = − k

m︸︷︷︸
=ω2

x

Alternativamente, si llamamos x a la posición de la partícula y xeq a la posición de equilibrio (donde la
fuerza que actúa es cero), podemos expresar la fuerza que actúa sobre la partícula como:

~F = −mω2 (x− xeq) î
Por la ley de Hooke, debe darse:

x = xeq ⇒ ~F = ~0

Por otra parte, si examinamos la energía potencial:

V = −
ˆ x

x0

~F · d~χ =

[
1

2
kχ2

]x
x0

=
1

2
k (x− x0)

2

Recordando k = mω2
0 , llegamos a:

V =
1

2
mω2 (x− xeq)2

De manera que se cumple:

~F = −dV
dx

î

y la fuerza elástica es conservativa. Por tanto, se conserva la energía: E = cte.

Ejemplo 16. Consideremos esta otra situación, un muelle colgando de un techo:
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m

Llamamos x a la posición de la masa m y l0 la longitud natural del muelle. Entonces la fuerza que actúa
sobre la masa m puede escribirse como:

~F = [mg − k (x− l0)] ĵ = −k
(
−mg

k
+ x− l0

)
ĵ = −k

[
x−

(
l0 +

mg

k

)]
ĵ =

= −mω2
0

[
x−

(
l0 +

mg

k

)]
ĵ

La idea es que siempre que tengamos una fuerza constante o una fuerza lineal con x, vamos a ser capaces
de llegar a una expresión del estilo −mω2

0 (x− xeq) por complicado que sea el término xeq mediante transfor-
maciones matemáticas (como vimos en la proposición 31 en la página 81).

Bien, ahora vamos con la energía potencial:

V =
1

2
k (x− l0)

2 −mgx+ cte =
1

2
k

(
x− kl0 +mg

k

)2

+ cte

De forma similar a lo que ocurría antes, siempre que la fuerza que actúe sobre la partícula sea constante o
lineal con x, podremos expresar el potencial con dos términos: uno será del estilo 1

2k (x− xeq)2 y el otro término
será constante y lo podremos suponer cero para facilitarnos los cálculos.

Ejercicio 5. Tenemos la siguiente situación: un masa unida a dos paredes mediante un dos muelles de constantes
recuperadoras k1 y k2 y con la misma longitud natural para ambas l0.
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m

k1 k2

L

l0l0 ∆x1 ∆x2

x2x1

Solución. Es importante que a la hora de poner las fuerzas elásticas debemos ser consecuentes con el siguiente
criterio: o bien supondremos que todos los muelles se estiran o bien supondremos lo contrario. Si hemos aplicado
el criterio escogido correctamente, el signo del desplazamiento nos dirá si es una contracción o una extensión.
En nuestro caso, supondremos que todos los muelles se estiran.

Sea x := x1 la posición de la masa con referencia en la pared izquierda. Como la masa no cambia de altura,
su energía potencial gravitatoria es constante. De manera que podemos suponer suponer que es cero. Entonces,
la energía potencial queda:

V =
1

2
k1 (∆x1)

2
+

1

2
k2 (∆x2)

2
=

1

2
k1 (x− l0)

2
+

1

2
k2 (L− x− l0)

2

Para el resto del ejercicio, supondremos l0 = 0. Estudiemos la energía potencial:

V =
1

2
k1x

2 +
1

2
k2 (L− x)

2
=

1

2
(k1 + k2)x2 − k2Lx+

1

2
k2L

2 =

=
1

2
(k1 + k2)

(
x− k2

k1 + k2

)2

+
1

2
k2L

2 − k2
2

k1 + k2

L2

2
=

=
1

2
(k1 + k2)︸ ︷︷ ︸

=mω2
0

(
x− k2L

k1 + k2

)2

+
L2

2

k1k2

k1 + k2

Extrayendo factor común hemos hallado la posición de equilibrio. Alternativamente, podríamos haber hallado
dicha posición de equilibrio a partir de la fuerza:

F1 = k1x = F2 = k2 (L− x)⇔

⇔ x =
k2L

k1 + k2

Nótese que lo que nos dice este ejercicio es que tener estos dos muelles es equivalente a tener un único muelle
cuya constante recuperadora asociada es la suma de la constantes keq = k1 + k2:

ω0 =

√
k1 + k2

m
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2.4.5. Muelles en serie y en paralelo
Definición 63. Decimos que dos muelles están en paralelo cuando ambos tienen un extremo en un objeto A
y el otro extremo en un objeto B. Es decir, dos muelles están en paralelo cuando los dibujamos «uno encima
de otro».

Definición 64. Decimos que dos muelles 1 y 2 están en serie cuando un extremo de 1 está unido a un objeto
A, un extremo de 2 está unido a un objeto B y los extremos restantes de 1 y 2 están unidos entre sí. Es decir,
dos muelles están en serie cuando los dibujamos «uno tras otro» en una línea recta.

Proposición 33. Sea S un sistema con n muelles de constantes recuperadoras k1, . . . , kn y con longitudes
naturales l1, . . . , ln dispuestos en paralelo, entonces el sistema S es equivalente a un único muelle de constante

recuperadora keq =

n∑
i=1

ki y de longitud natural leq =

n∑
i=1

kili

n∑
i=1

ki

.

m

l1

ln

∆x1

∆xn

x1

xn

Demostración. Podemos suponer, sin pérdida de generalidad, que los n muelles que tenemos están atados a una
pared en un extremo y a un cuerpo de masa m en el otro extremo. De esta forma, por la segunda ley de Newton
( 1 en la página 8), tenemos:

n∑
i=1

−ki∆xi = mẍ

donde ∆xi = xi − li. Sin embargo, como la posición de la partícula medida desde la pared debe ser la misma
independientemente del muelle es x1 = · · · = xn. Así, tenemos:

n∑
i=1

−ki∆xi =

n∑
i=1

−ki (xi − li) =

n∑
i=1

−ki (x− li) = −x
n∑
i=1

ki +

n∑
i=1

kili
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Nuestra keq será el opuesto del término que acompañe a x, en este caso:

keq =

n∑
i=1

ki

Únicamente nos queda hallar la posición de equilibrio. Sabemos que ésta se produce cuando la fuerza total
es cero.

−x
n∑
i=1

ki +

n∑
i=1

kili = 0⇔ x =

n∑
i=1

kili

n∑
i=1

ki

En consecuencia:

leq =

n∑
i=1

kili

n∑
i=1

ki

Q.E.D.

Corolario 10. Sea S un sistema con n muelles de constantes recuperadoras k1, . . . , kn y con longitudes naturales
nulas dispuestos en paralelo, entonces el sistema S es equivalente a un único muelle de constante recuperadora

keq =

n∑
i=1

ki y de longitud natural nula.

Demostración. Trivial, obvio, evidente, manifiesto. Q.E.D.

Observación 36. En la práctica al resolver ejercicios, supondremos con frecuencia que la longitud natural nula.
Esto se debe a que, como acabamos de probar, las longitudes naturales no aparecen en el cálculo de la keq.

Proposición 34. Sea S un sistema con n muelles de constantes recuperadoras k1, . . . , kn y con longitudes
naturales l1, . . . , ln dispuestos en serie, entonces el sistema S es equivalente a un único muelle de constante

recuperadora keq = 1
n∑
i=1

1

ki

y de longitud natural leq =

n∑
i=1

li.

m

l1 ln∆x1 ∆xn

x1 xn

x
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Demostración. Haremos la demostración por inducción. Primero, veamos que se cumple para n = 2. En este
caso, por la tercera ley de Newton (ver axioma 2 en la página 9), tenemos que la fuerza que ejerce el primer
muelle sobre el segundo debe tener el mismo módulo que la que ejerce el segundo sobre el primero. En otras
palabras:

k1∆x1 = k2∆x2

Análogamente al caso en paralelo, podemos suponer, sin pérdida de generalidad, que el conjunto de muelles
en serie está atado a una pared en un extremo y a un cuerpo de masa m en el otro. Llamemos x a la distancia
entre la pared y la masa m. Claramente:

x = l1 + ∆x1 + l2 + ∆x2 = l1 + x1 − l1 + l2 + x2 − l2 = x1 + x2 ⇔ x2 = x− x1

Si sustituimos x2 en la primera ecuación llegamos a:

k1 (x1 − l1) = k2 (x− x1 − l2)

De la ecuación anterior, podemos obtener la relación entre x1 y x; hallémosla:

k1 (x1 − l1) = k2 (x− x1 − l2)⇔ k1x1 − k1l1 = k2x− k2x1 − k2l2 ⇔

⇔ x1 =
k2x+ k1l1 − k2l2

k1 + k2

Ahora, sustituyendo, tenemos:

F = k1∆x1 = k1 (x1 − l1) = k1
k2x+ k1l1 − k2l2

k1 + k2
− k1l1 =

=
k1k2

k1 + k2
x+

k2
1l1 − k1k2l2
k1 + k2

− k2
1l1 + k1k2l1
k1 + k2

=
k1k2

k1 + k2
x− k1k2

k1 + k2
(l1 + l2)

El término que acompaña a la x será nuestra keq:

keq =
k1k2

k1 + k2
=

1
k1+k2

k1k2

=
1

1
k2

+ 1
k1

Por otra parte, la posición de equilibrio será aquella que anule la fuerza, así:

0 = F = k1∆x1 = keqx− keq (l1 + l2)
keq 6=0⇐==⇒ x = l1 + l2

En consecuencia:
leq = l1 + l2

y, así, el enunciado se cumple para n = 2.
Supongamos que se cumple para n y probemos que es cierto para n + 1. Podemos interpretar la situación

como la combinación en serie de un conjunto de n muelles, por un lado, y otro muelle, por otro lado. Por
hipótesis de inducción, sabemos que los n muelles primeros son equivalentes a un único muelle de constante

keq,n = 1
n∑
i=1

1

ki

y longitud natural leq,n =

n∑
i=1

li. De manera que ahora nuestro problema se ha reducido a la

combinación en serie de dos muelles. Hemos probado antes que la proposición se cumplía para n = 2 y así,
obtenemos que el muelle equivalente a nuestro sistema completo tiene constante recuperadora:

keq,n+1 =
1

1

keq,n
+

1

kn+1

=
1

1
1∑n

i=1
1
ki

+
1

kn+1

=
1

n∑
i=1

1

ki
+

1

kn+1

=
1

n+1∑
i=1

1

ki

y longitud natural:

leq,n+1 = leq,n + ln+1 =

n∑
i=1

li + ln+1 =

n+1∑
i=1

li

Así, hemos probado que si el enunciado se cumple para n, se cumplirá para n + 1 y, en consecuencia, por
inducción, el enunciado es cierto para todo n ∈ N 3 n ≥ 2. Q.E.D.
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Corolario 11. Sea S un sistema con n muelles de constantes recuperadoras k1, . . . , kn y con longitudes naturales
nulas dispuestos en serie, entonces el sistema S es equivalente a un único muelle de constante recuperadora
keq = 1

n∑
i=1

1

ki

y de longitud natural nula.

Demostración. Trivial, obvio, evidente, manifiesto. Q.E.D.

Observación 37. Al igual que en el caso de muelles en paralelo, en la práctica al resolver ejercicios, supondremos
con frecuencia que la longitud natural nula. Esto se debe a que, como acabamos de probar, las longitudes
naturales no aparecen en el cálculo de la keq.

2.4.6. Estudio de las condiciones iniciales
Proposición 35. Si expresamos la solución en la forma dada por la proposición 28 en la página 76 en función
de las condiciones iniciales x (0) = x0 y ẋ (0) = v0, obtenemos:

x (t) = x0 cosωt+
v0

ω
senωt

Demostración. Derivamos la posición para obtener la velocidad:

x (t) = A cosωt+B senωt

ẋ (t) = −Aω senωt+Bω cosωt

De forma que llegamos al sistema de ecuaciones:{
x0 = x (0) = A

v0 = ẋ (0) = Bω ⇔ B = v0

ω

Q.E.D.

Proposición 36. Si expresamos la solución en la forma dada por la proposición 29 en la página 78 en función
de las condiciones iniciales x (0) = x0 y ẋ (0) = v0, obtenemos:

x (t) =

√
x2

0 +
(v0

ω

)2

cos

(
ωt− arctan

(
v0

x0ω

))
Demostración. Derivamos la posición para obtener la velocidad:

x (t) = A cos (ωt+ ϕ)

ẋ (t) = Aω sen (ωt+ ϕ)

De manera que llegamos al sistema de ecuaciones:{
x0 = x (0) = A cosϕ

v0 = ẋ (0) = −Aω senϕ

Dividiendo la segunda ecuación entre la primera, obtenemos:

−Aω senϕ

A cosϕ
=
v0

x0
⇔ −ω tanϕ =

v0

x0
⇔ tanϕ = − v0

ωx0
⇔ ϕ = arctan

(
− v0

ωx0

)
= − arctan

(
v0

ωx0

)
Por otra parte, es fácil ver que la segunda ecuación es equivalente a:

v0

ω
= −A senϕ

Ahora, si cogemos la primera ecuación y la elevamos al cuadrado y le sumamos el cuadrado de la ecuación
anterior, obtenemos:
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x2
0 +

(v0

ω

)2

= A2 cos2 ϕ+A2 sen2 ϕ⇔ A2
(
cos2 ϕ+ sen2 ϕ

)︸ ︷︷ ︸
=1

= x2
0 +

(v0

ω

)2

⇔

⇔ A =

√
x2

0 +
(v0

ω

)2

Q.E.D.

Observación 38. En la práctica nos será más cómodo trabajar con el sistema de ecuaciones:
tanϕ = − v0

ωx0

A2 = x2
0 +

(v0

ω

)2

Ejercicio 6. Tenemos una partícula de masa m = 10 g = 0,01 kg unida a un muelle de constante k = 36N
m .

mk, l0

X

En t = 0, sabemos que la elongación del muelle es x0 = 50 mm = 0, 05 m, y que se mueve a una velocidad
de v0 = 1, 7 m

s . Calcular el periodo, la amplitud, la fase inicial, la energía y la posición en función del tiempo;
escribiendo también la expresión compleja de la misma. ¿Para qué t pasará por el reposo ẋ = 0 por primera
vez?

Solución. Por la proposición 26 en la página 75:

ω =

√
k

m
= 60

rad
s

Y, en consecuencia:

T =
2π

ω
= 104, 7 ms = 0, 1047 s

Sabiendo:

x (t) = a cos (ωt+ ϕ)

ẋ (t) = −aω0 sen (ωt+ ϕ)

x (0) = x0 = a cosϕ
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ẋ (0) = v0 = −ωa senϕ

Aplicando la proposición 36 en la página 89, obtenemos:

a =

√
x2

0 +
v2

0

ω2
0

= 0, 05747 m

tanϕ = − v0

x0ω0
= −0, 56̂⇒ ϕ = −29, 5o = −0, 5155 rad

Llegamos a la siguiente «abominación»:

x (t) = 0, 05747 cos (60t− 0, 5155)

La energía es:

E =
1

2
kA2 =

1

2
mω2A2︸ ︷︷ ︸

=v2
máx

=
1

2
36 · 0,057472 = 0, 059 J

Y la expresión compleja:

z = 0, 05747ei(60t−0,5155)

Para hallar el tiempo transcurrido hasta que la velocidad es nula por primera vez, hacemos:

ẋ = −aω0 sen (ωt+ ϕ)

ẋ = 0⇒ ωt+ ϕ = 0, π ⇔

⇔ ωt =

{
0− ϕ⇔ t = 8,6 ms
π − ϕ⇔ t = 60,9 ms

Por tanto, transcurren 8,6 ms hasta que la partícula alcanza el reposo.

2.4.7. Aproximaciones de un desplazamiento cualquiera a una oscilación armónica
Repasemos lo que sabemos sobre una fuerza como la ley de Hooke (ver hecho 1 en la página 74): sabemos

que su representación gráfica será de la forma:
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xeq
x

Fx

Y la representación de su energía potencial asociada será de la forma:

xeq
x

V

¿Qué sucede si contamos con una fuerza que es no lineal pero que corta al eje x en algún punto? Para
responder esta pregunta tenemos el siguiente teorema:
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Teorema 17. Toda fuerza representada por una función F : I ⊆ R −→ R
x −→ F (x)

de clase C(1) tal que ∃xeq ∈ I
tal que F (xeq) = 0 y dF

dx (xeq) < 0 admite una aproximación lineal mediante Taylor que permite hallar una
solución aproximada de la ecuación diferencial mẍ = F (x) en un entorno de xeq y el error cometido en dicha
aproximación está acotado. La frecuencia angular de la aproximación satisface:

ω2 =
−dFdx (xeq)

m

Demostración. No ofrecemos una demostración del hecho de que el error cometido en la solución de la ecuación
diferencial esté acotado, pues, por desgracia, está fuera del alcance de este curso.

Lo que sí ofrecemos es una demostración de la última afirmación del teorema. Hacemos un desarrollo en
Taylor a primer orden de la fuerza entorno a xeq, obteniendo:

F (x) ≈ F (xeq)︸ ︷︷ ︸
=0

+
dF

dx
(xeq) (x− xeq)

donde F (xeq) = 0 por hipótesis. Así, tenemos:

F (x) ≈ dF

dx
(xeq) (x− xeq)

Por analogía con la ley de Hooke (ver 1 en la página 74) debe ser:

F (x) ≈ dF

dx
(xeq)︸ ︷︷ ︸

=−k

x− dF

dx
(xeq)xeq

Ahora, por la proposición 26 en la página 75, tenemos que:

dF

dx
(xeq) = −k = mω2 ⇔ ω2 = −

dF
dx (xeq)

m

y claramente ω2 > 0 al ser dF
dx (xeq) < 0. Q.E.D.

Corolario 12. Toda fuerza que tenga asociada una energía potencial representada por una función
V : I ⊆ R −→ R

x −→ V (x)
de clase C(2) tal que xeq es un punto de mínimo local de V admite una aproxima-

ción lineal mediante Taylor que permite hallar una solución aproximada de la ecuación diferencial mẍ = F (x)
en un entorno de xeq y el error cometido en dicha aproximación está acotado. La frecuencia angular de la
aproximación satisface:

ω2 =
d2V
dx2 (xeq)

m

Demostración. Por la definición de energía potencial (ver 19 en la página 24), es:

F = −dV
dx

y dicha función es de clase C(1) porque V es de clase C(2). Por otra parte, como xeq es un mínimo local, se da
dV
dx (xeq) = 0 y d2V

dx2 (xeq) > 0. Como F = −dVdx :

F (xeq) = −dV
dx

(xeq) = 0

dF

dx
(xeq) = −d

2V

dx2
< 0

Así, podemos aplicar el teorema anterior y se cumple la primera parte del corolario. Por otro lado por la
última ecuación anterior:
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ω2 =
−

=− d2V
dx2︷ ︸︸ ︷

dF

dx
(xeq)

m
=

d2V
dx2 (xeq)

m

Q.E.D.

Observación 39. El corolario anterior nos garantiza que podemos trabajar con la energía potencial en vez de
con la fuerza y hacer su desarrollo de Taylor hasta orden dos, también centrado en xeq, donde xeq será un punto
de mínimo de la energía potencial, obteniendo:

V (x) ≈ V (xeq) +
dV

dx
(xeq)︸ ︷︷ ︸

=0

(x− xeq) +
1

2

d2V

dx2
(xeq) (x− xeq)2 ⇔

⇔ V (x) ≈ V (xeq) +
1

2

d2V

dx2
(xeq) (x− xeq)2

Por analogía con la ley de Hooke (ver 1 en la página 74) y por la proposición 26 en la página 75, obtenemos:

ω2 =
d2V
dx2 (xeq)

m

que es lo que habíamos obtenido en el corolario.

Ejercicio 7. Sean x, k, c ∈ R tales que x, k, c > 0. Tenemos una fuerza dada por:

F (x) = −kx+
c

x

Obtenemos la posición de equilibrio:

F = 0⇔ x =

√
c

k
=: xeq

Hallamos la derivada:

dF

dx
(xeq) = −k − c

x2
eq

= −k − c

c
k = −2k

Ahora, por 17 en la página anterior, lo anterior debe ser igual a −mω2. De forma que:

ω =

√
2k

m
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xeq
x

F(x)

c
x
−kx
−kx+ c

x

−2k(x− xeq)

Podemos obtener lo mismo con el potencial. Hallémoslo:

V (x)− V (x0) = −
ˆ x

x0

Fdχ⇔

⇔ V (x) = V (x0) +

[
1

2
kχ2 − c lnχ

]x
x0

Suponiendo V (x0) = 0:

V (x) =
1

2
k
(
x2 − x2

0

)
− c ln

x

x0
=

1

2
kx2 − 1

2
kx2

0 − c lnx+ c lnx0 =

=
1

2
kx2 − c lnx− 1

2
kx2

0 + c lnx0

Ahora, si quisiéramos hallar la frecuencia de oscilación, simplemente usaríamos el corolario 12 en la página 93
y obtendríamos:

d2V

dx2
(xeq) = mω2

Licencia: Creative Commons 95

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 2. MOVIMIENTO OSCILATORIO

2.5. OSCILACIONES AMORTIGUADAS

xeq
x

V(x)

−clnx
1
2
kx2

1
2
kx2 − lnx

Taylor

2.5. Oscilaciones amortiguadas

2.5.1. Primeros conceptos
Definición 65. Decimos que una oscilación lineal de una magnitud física x es amortiguada si satisface la
ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x = f (t)

donde γ recibe el nombre de constante de amortiguamiento y ω0 es la frecuencia natural del sistema.
Esta sería la frecuencia de oscilación del sistema si fuese γ = 0 y f (t) = 0.

Claramente, un oscilación lineal libre amortiguada satisfará la ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x = 0

Ejemplo 17 (Un ejemplo introductorio). Supongamos que tenemos un muelle de constante recuperadora k
que une un cuerpo de masa m con la pared. Dicho cuerpo de masa m se introduce en un pistón que ejerce
sobre la masa una fuerza proporcional a su velocidad con constante de proporcionalidad λ y que se opone a su
desplazamiento. Gráficamente, tendríamos:
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m

λẋ

kx

X

k

Aplicando la segunda ley de Newton (ver axioma 1 en la página 8), llegaríamos a la ecuación diferencial:

−kx− λẋ = mẍ

Definiendo:

2γ := λ
m ω2

0 = k
m

llegaríamos a:

ẍ+ 2γẋ+ ω2
0x = 0

donde que es justo la ecuación de un oscilador lineal libre amortiguado.
Nótese que, en este caso, la potencia de la fuerza de amortiguamiento es negativa, por lo que la energía

disminuye con el tiempo:

dE

dt
= P = ~F · ~v = −λẋ2 < 0⇒ E ↓

Ejemplo 18. Las oscilaciones de la carga q en un circuito eléctrico que contiene una inductancia L, una
resistencia R y un condensador C en serie, vienen descritas por la ecuación:

Lq̈ +Rq̇ +
1

C
q = 0

que se corresponde con una oscilación amortiguada libre.

V0

C

R

L
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Proposición 37. Las raíces del polinomio característico asociado a una oscilación lineal libre amortiguada
vienen dadas por la expresión:

s1 = −γ +
√
γ2 − ω2

0 s2 = −γ −
√
γ2 − ω2

0

Demostración. Partimos de la ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x = 0

Cambiando derivadas por potencias, obtenemos el polinomio característico (ver definición 49 en la página 73):

p (s) = s2 + 2γs+ ω2
0

Las raíces del polinomio anterior son:

s =
−2γ ±

√
4γ2 − 4ω2

0

2
= −γ ±

√
4 (γ2 − ω2

0)

2
= −γ ± 2

2

√
γ2 − ω2

0 =

= −γ ±
√
γ2 − ω2

0

Q.E.D.

Observación 40. Nótese que resulta algo difícil dar una solución general de la ecuación diferencial asociada
a un oscilador lineal libre amortiguado, debido a las posibles variantes en la factorización de su polinomio
característico: dos soluciones reales distintas, dos soluciones complejas conjugadas o una solución doble. En
todos estos casos, la expresión general varía ligeramente como puede verse en la proposición 20 en la página 73.
Por ello, vamos a ir estudiando caso por caso.

Definición 66. Llamamos factor de calidad Q de una oscilación lineal libre amortiguada al cociente:

Q :=
ω0

2γ

donde ω0 es la frecuencia natural y γ es la constante de amortiguamiento.

2.5.2. Amortiguamiento débil, amortiguamiento subcrítico o subamortiguamiento
2.5.2.1. Definición y expresión de la solución

Definición 67. Decimos que una oscilación lineal libre de una magnitud física x está sometida a un amorti-
guamiento débil, amortiguamiento subcrítico o subamortiguamiento si satisface la ecuación diferencial
de un oscilador lineal libre amortiguado y además la constante de amortiguamiento es menor que la frecuencia
natural γ < ω0.

Proposición 38. La solución de una oscilador lineal libre sometido a amortiguamiento débil (γ < ω0) puede
expresarse como:

1.
x (t) = e−γt (C senωt+D cosωt)

2.
x (t) = ae−γt cos (ωt+ ϕ)

donde ω =
√
ω2

0 − γ2 y a,C,D ∈ R son constantes.

Demostración. Partiendo de la proposición 37, sabemos que las raíces del polinomio característico de la ecuación
diferencial son:

s = −γ ±
√
γ2 − ω2

0

Si es γ < ω0, entonces necesariamente como γ, ω0 > 0, tenemos γ2 < ω2
0 y, en consecuencia:
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γ2 − ω2
0 < 0

Por tanto las raíces de nuestro polinomio característico son complejas conjugadas:

s = −γ ± i
√
ω2

0 − γ2

Llamaremos ω :=
√
ω2

0 − γ2, de forma que las soluciones quedan:

s = −γ ± iω
Usando la proposición 20 en la página 73, obtenemos que la solución general de nuestra ecuación diferencial

es:

x (t) = Ae(−γ+iω)t +Be(−γ−iω)t

donde A,B ∈ C.
Como la solución tiene que ser real y las exponenciales son linealmente independientes, obtenemos que A = B

y expresando A en forma binómica A := a+ bi con a, b ∈ R, llegamos a:

x (t) = (a+ bi) e(−γ+iω)t + (a− bi) e(−γ−iω)t =

= ae−γteitω + bie−γteitω + ae−γte−itω − bie−γte−itω =

= ae−γt
(
eitω + e−itω

)︸ ︷︷ ︸
=2 cosωt

+bie−γt
(
eitω − e−itω

)︸ ︷︷ ︸
=2i senωt

= 2ae−γt cosωt− 2be−γt senωt

Llamando C := 2a y D := −2b, obtenemos:

x (t) = e−γt (C cosωt+D senωt)

Con esto, hemos probado (1). Por otra parte vemos que (1) no es más que una exponencial que multiplica
a una solución de un oscilador armónico. Por tanto, por la proposición 29 en la página 78, sabemos que existen
E,ϕ ∈ R tales que permiten que el segundo factor pueda expresarse como:

C cosωt+D senωt = E cos (ωt+ ϕ)

Así, sustituyendo, tenemos:

x (t) = Ee−γt cos (ωt+ ϕ)

Q.E.D.

Corolario 13. Una oscilación lineal libre subamortiguada es asintóticamente estable.

Demostración. Simplemente, vemos si se cumple la definición 50 en la página 74 tomando la forma (2) de la
solución.

ĺım
t→∞

x (t) = ĺım
t→∞

a e−γt︸︷︷︸
−−−→
t→∞

0

cos (ωt+ ϕ)︸ ︷︷ ︸
acotado

= 0

donde la exponencial tiende a cero porque γ > 0.
Por tanto, se cumple la definición y cualquier oscilación lineal subamortiguada es asintóticamente estable.

Q.E.D.

Observación 41. El aspecto gráfico de una oscilación lineal libre subamortiguada es el siguiente:
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t

x

donde la posición está representada en azul y las funciones en rojo son las exponenciales decrecientes que
«encierran» la solución.

Definición 68. Llamamos amplitud A de una oscilación lineal libre amortiguada por amortiguamiento débil
al factor que multiplica el coseno en la expresión de la proposición 38 en la página 98.

2.5.2.2. Propiedades

Definición 69. Llamamos tiempo de relajación, vida media o parámetro de extinción τ de una osci-
lación libre lineal subamortiguada a la inversa de la constante de amortiguamiento:

τ =
1

γ

Proposición 39. El tiempo de relajación de una oscilación lineal libre subamortiguada es el tiempo que tiene
que transcurrir desde t = 0 para que la amplitud de la oscilación sea

a

e
.

Demostración. Estudiamos la amplitud:

A (t) = ae−γt = ae−
t
τ

Cuando t = τ , tenemos:

A (τ) = ae−
τ
τ = ae−1 =

a

e

Q.E.D.
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Proposición 40. El factor de calidad Q de una oscilación lineal libre subamortiguada es siempre mayor que
1
2 . En otras palabras, Q > 1

2 .

Demostración. Trivial a partir de la definición de factor de calidad (ver 66 en la página 98) al aplicar γ <
ω0. Q.E.D.

Proposición 41. El número de periodos de una oscilación lineal libre subamortiguada en el intervalo [0, τ ]
expresado en función del factor de calidad viene dado por la expresión:

n =
1

2π

√
4Q2 − 1

Demostración. Nótese que el periodo de la oscilación esta perfectamente definido, pues únicamente depende del
factor del coseno en la solución de la proposición 38 en la página 98, que no es más que una oscilación armónica.
Por tanto, por una regla de tres (proporción) sabemos que debe cumplirse:

T

τ
=

1

n
⇔ n =

τ

T

Como es T = 2π
ω , tenemos:

n =
τ
2π
ω

=
τω

2π

Ahora, sustituyendo ω =
√
ω2

0 − γ2:

n =
τ

2π

√
ω2

0 − γ2

De la definición de factor de calidad (ver definición 66 en la página 98) podemos despejar ω0:

Q =
ω0

2γ
⇔ ω0 = 2Qγ

Sustituyendo en la ecuación anterior, obtenemos:

n =
τ

2π

√
4Q2γ2 − γ2 =

τ

2π

√
γ2 (4Q2 − 1) =

τ

2π
γ
√

4Q2 − 1

Por último, como τ = 1
γ , nos queda:

n =
1

2π

√
4Q2 − 1

Q.E.D.

Corolario 14. El número de periodos de una oscilación lineal libre subamortiguada en el intervalo [0, τ ] ex-
presado en función del factor de calidad cuando este es mucho mayor que la unidad Q� 1, puede aproximarse
como:

n ≈ Q

π
si Q� 1

Demostración. Partimos de la proposición anterior:

n =
1

2π

√
4Q2 − 1

Como Q� 1, será 4Q2 � 1 y, en consecuencia:

n ≈ 1

2π

√
4Q2 =

1

2π
2Q =

Q

π

Q.E.D.
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2.5.2.3. Energía mecánica

Proposición 42. La energía mecánica de un oscilador lineal libre subamortiguado viene dada por la expresión:

E =
1

2
mẋ2 +

1

2
mω2

0x
2 =

=
1

2
ma2e−2γt

[
ω2

0 + γ2 cos (2ωt+ 2ϕ) + 2ωγ sen (2ωt+ 2ϕ)
]

donde ω =
√
ω2

0 − γ2.

Demostración. Podemos suponer, sin pérdida de generalidad, que la oscilación subamortiguada se produce
como consecuencia de dos fuerzas: una fuerza elástica (y, por tanto, conservativa) y una fuerza proporcional a
la velocidad (como en el ejemplo 17 en la página 96). De esta forma, la energía mecánica de mi sistema tendrá
un término de energía potencial proveniente de la fuerza elástica conservativa y un término de energía cinética.
A priori, igual que en el caso del oscilador armónico. La diferencia es que la expresión de la posición y de la
velocidad es bastante distinta en nuestro caso. Así:

E = T + V =
1

2
mẋ2 +

1

2
mω2

0x
2

Ahora, recordando que podemos expresar x según la proposición 38 en la página 98, obtenemos:

x (t) = ae−γt cos (ωt+ ϕ)

ẋ (t) = −aωe−γt sen (ωt+ ϕ)− aγe−γt cos (ωt+ ϕ)

x (t)
2

= a2e−2γt cos2 (ωt+ ϕ)

ẋ (t)
2

= a2ω2e−2γt sen2 (ωt+ ϕ) + a2γ2e−2γt cos2 (ωt+ ϕ) + 2a2e−2γtωγ sen (ωt+ ϕ) cos (ωt+ ϕ) =

= a2e−2γt
[
ω2 sen2 (ωt+ ϕ) + γ2 cos2 (ωt+ ϕ) + 2ωγ sen (2ωt+ 2ϕ)

]
T =

1

2
ma2e−2γt

[
ω2 sen2 (ωt+ ϕ) + γ2 cos2 (ωt+ ϕ) + 2ωγ sen (2ωt+ 2ϕ)

]
V =

1

2
ma2e−2γtω2

0 cos2 (ωt+ ϕ)

Sustituyendo ω2 = ω2
0 − γ2 en la energía cinética (en el término del sen2), obtenemos:

T =
1

2
ma2e−2γt

[
ω2

0 sen2 (ωt+ ϕ) + γ2
[
cos2 (ωt+ ϕ)− sen2 (ωt+ ϕ)

]
+ 2ωγ sen (2ωt+ 2ϕ)

]
=

=
1

2
ma2e−2γt

[
ω2

0 sen2 (ωt+ ϕ) + γ2 cos (2ωt+ 2ϕ) + 2ωγ sen (2ωt+ 2ϕ)
]

Así:

E = T + V =
1

2
ma2e−2γt

[
ω2

0 + γ2 cos (2ωt+ 2ϕ) + 2ωγ sen (2ωt+ 2ϕ)
]

Q.E.D.

Lema 7. El teorema de Taylor-Young aplicado a la función h (x) =
√

1 + x de primer orden cuando x→ 0 nos
dice que:

h (x) = 1 +
1

2
x+ o (x)

cuando x→ 0.
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Corolario 15. La energía mecánica de un oscilador lineal libre subamortiguado que cumple γ � ω0 puede
aproximarse por:

E ≈ 1

2
mω2

0a
2e−2γt

Demostración. Partimos de la proposición anterior y definamos r :=
γ

ω0
⇔ γ = rω0. En términos de r y ω0, la

expresión anterior queda:

E = T + V =
1

2
ma2e−2rω0t

[
ω2

0 + ω2
0r

2 cos (2ωt+ 2ϕ) + 2ωω0r sen (2ωt+ 2ϕ)
]

donde ω =
√
ω2

0 − r2ω2
0 = ω0

√
1− r2. Sustituyendo en los términos de fuera del seno y el coseno, obtenemos:

E =
1

2
ma2e−2rω0t

[
ω2

0 + ω2
0r

2 cos (2ωt+ 2ϕ) + 2ω2
0

√
1− r2r sen (2ωt+ 2ϕ)

]
Inspeccionemos los términos uno a uno y veamos su orden en r:

−2rω0t orden 1
ω2

0 orden 0
ω2

0r
2 orden 2

2ω2
0

√
1− r2r orden ?

Para obtener el orden del último término, podemos usar el lema 7 en la página anterior, podemos hacer un
desarrollo de Taylor cuando r → 0 a primer orden de la raíz y obtenemos:

2ω2
0

√
1− r2r ≈ −2ω2

0r
2r = −2ω2

0r
3 ⇒ orden 3

Despreciando los términos de orden 2 o superior en r, obtenemos:

E =
1

2
ma2e−2rω0tω2

0

Recordando γ = rω0, llegamos a:

E =
1

2
ma2e−2γtω2

0

con lo que queda probado el enunciado. Q.E.D.

Corolario 16. La potencia de un oscilador lineal libre subamortiguado que satisface γ � ω0 puede aproximarse
por la expresión:

P ≈ −2γE

Demostración. Partimos del corolario anterior:

E ≈ 1

2
mω2

0a
2e−2γt

La potencia es:

P = Ė ≈ −2γ
1

2
ω2

0a
2e−2γt︸ ︷︷ ︸

=E

= −2γE

Q.E.D.
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2.5.3. Amortiguamiento fuerte, amortiguamiento supercrítico o sobreamortigua-
miento

Definición 70. Decimos que una oscilación lineal libre de una magnitud física x está sometida a un amor-
tiguamiento fuerte, amortiguamiento supercrítico o sobreamortiguamiento si satisface la ecuación
diferencial de un oscilador lineal libre amortiguado y además la constante de amortiguamiento es mayor que la
frecuencia natural γ > ω0.

Lema 8. Las funciones senhωt y coshωt son linealmente independientes ∀t ∈ R.

Demostración. Las funciones senhωt y coshωt serán linealmente independientes si y sólo si:

α senhωt+ β coshωt = 0⇔ α, β = 0

El sentido ⇐ es trivial. Para el sentido ⇒, supongamos inicialmente α, β 6= 0, entonces llegamos a:

α senhωt+ β coshωt = 0⇔ α senhωt = −β coshωt

Evaluando en t = 0, llegamos a:

0 = −β
Pero β 6= 0 por hipótesis. Por tanto, llegamos a un absurdo y necesariamente debe ser β = 0. Entonces nos

queda:

α senωt = 0 ∀t ∈ R

Y, en consecuencia, debe ser necesariamente α = 0. Q.E.D.

Lema 9. Sean α, β ∈ R, entonces se da:

1.
cosh (α+ β) = coshα coshβ + senhα senhβ

2.
senh (α+ β) = senhα coshβ + coshα senhβ

Proposición 43. La solución de una oscilador lineal libre sometido a amortiguamiento fuerte (γ > ω0) puede
expresarse como:

1.
x (t) = Ae−γ−t +Be−γ+t

2.
x (t) = e−γt (C senhωt+D coshωt)

3.
x (t) = ae−γt cosh (ωt+ ϕ) válida si |ẋ (0) + γx (0)| < ω |x (0)|

4.
x (t) = ae−γt senh (ωt+ ϕ) válida si |ẋ (0) + γx (0)| > ω |x (0)|

donde ω =
√
γ2 − ω2

0, γ− = γ − ω, γ+ = γ + ω y a ∈ R es una constante. Preste el lector especial atención a
cuándo es posible usar las fórmulas (3) y (4).

Demostración. Partiendo de la proposición 37 en la página 98, sabemos que las raíces del polinomio característico
de la ecuación diferencial son:

s = −γ ±
√
γ2 − ω2

0

Si es γ > ω0, entonces necesariamente como γ, ω0 > 0, tenemos γ2 > ω2
0 y, en consecuencia:
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γ2 − ω2
0 > 0

Por tanto las raíces de nuestro polinomio característico son ambas reales:

s = −γ ±
√
γ2 − ω2

0

Llamaremos ω :=
√
γ2 − ω2

0 , de forma que las soluciones quedan:

s = −γ ± ω
Ahora, definimos:

γ− = γ − ω γ+ = γ + ω

de manera que podemos expresar las soluciones como:

s = −γ− s = −γ+

Usando la proposición 20 en la página 73, obtenemos que la solución general de nuestra ecuación diferencial
es:

x (t) = Ae−γt+ωt +Be−γt−ωt = Ae−γ−t +Be−γ+t

donde A,B ∈ R. Así, hemos probado (1).
Para probar (2) vamos a ver que la solución propuesta en (2) es una combinación lineal de los sumandos de

(1):

e−γt (C senhωt+D coshωt) = e−γt
(
C
eωt − e−ωt

2
+D

eωt + e−ωt

2

)
=

=
C

2
e−γteωt − C

2
e−γte−ωt +

D

2
e−γteωt +

D

2
e−γte−ωt =

=

(
C

2
+
D

2

)
e−γteωt +

(
D

2
− C

2

)
e−γte−ωt =

(
C

2
+
D

2

)
︸ ︷︷ ︸

=A

e−γt+ωt +

(
D

2
− C

2

)
︸ ︷︷ ︸

=B

e−γt−ωt

De esta forma, claramente la expresión (2) es combinación lineal de los sumandos de (1) y, por tanto,
es solución de la ecuación diferencial. Ahora, tenemos que ver que ambos sumandos de la expresión 2 son
linealmente independientes:

e−γt (C senhωt+D coshωt) = 0⇔ C senhωt+D coshωt = 0

Pero como el senhωt y coshωt son linealmente independientes por el lema 8 en la página anterior, tenemos
que los dos sumandos que conforman (2) son linealmente independientes. Por consiguiente, (2) es una solución
general de la ecuación diferencial.

Para probar (3) vamos a estudiar en qué condiciones existen ∃!a, ϕ ∈ R tales que:

C senhωt+D coshωt = a cosh (ωt+ ϕ)

Si C = D = 0, entonces claramente es a = 0 y la igualdad se cumple.

Si es a = 0, como senhωt y coshωt son linealmente independientes por el lema 8 en la página anterior,
debe ser C = 0 = D y la igualdad se cumple.

Si es a 6= 0, podemos dividir a ambos lados de la ecuación por a y obtenemos:

C

a
senhωt+

D

a
coshωt = cosh (ωt+ ϕ)
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Supongamos que existe un ϕ tal que C
a = senhϕ y D

a = coshϕ y veamos en qué condiciones están bien
definidos. Entonces, tendríamos: 

C

a
= senhϕ

D

a
= coshϕ

⇒ tanhϕ =
C

D

que está bien definida siempre que −1 < C
D < 1⇔ |C| < |D| 2.

Por otra parte, si elevamos al cuadrado en ambas ecuaciones y restamos, obtenemos:

D2

a2
− C2

a2
= cosh2 ϕ− senh2 ϕ︸ ︷︷ ︸

=1

= 1⇔ D2 − C2 = a2

lo cual sólo está bien definido (es un número real) si |D| ≥ |C|. Obtenemos, de esta forma, que debe
cumplirse |D| > |C| para que tanto ϕ como a estén definidas. A continuación, intentemos convertir
|D| > |C| en una desigualdad sobre las condiciones iniciales. En la solución (2) teníamos:

x (t) = e−γt (C senhωt+D coshωt)

ẋ (t) = e−γtω (C coshωt+D senhωt)− γe−γt (C senhωt+D coshωt)

x (0) = D

ẋ (0) = ωC − γD ⇔ ωC = ẋ (0) + γD ⇔ C =
ẋ (0) + γD

ω

Ahora, veamos cuándo es |C| < |D|: ∣∣∣∣ ẋ (0) + γD

ω

∣∣∣∣ < |D|
Como es ω > 0 y D = x (0), lo anterior es equivalente a:

|ẋ (0) + γx (0)| < ω |x (0)|

Así, hemos probado que siempre que se satisfaga la condición anterior entonces ∃!A,ϕ ∈ R tales que:

x (t) = e−γt (C senhωt+D coshωt) = Ae−γt
(
C

a
senhωt+

D

a
coshωt

)
=

= ae−γt (senhϕ senhωt+ coshϕ coshωt)

Por último, aplicando el lema 9 en la página 104, tenemos que:

x (t) = ae−γt cosh (ωt+ ϕ)

Para probar (4) vamos a proceder análogamente a (3). Primero, estudiaremos en qué condiciones existen ∃!a, ϕ ∈
R tales que:

C senhωt+D coshωt = a senh (ωt+ ϕ)

Si C = D = 0, entonces claramente es a = 0 y la igualdad se cumple.

Si es a = 0, como senhωt y coshωt son linealmente independientes por el lema 8 en la página 104, debe
ser C = 0 = D y la igualdad se cumple.

2Si esto no queda claro, convendría leer algo sobre funciones hiperbólicas en esta página https://en.wikipedia.org/w/index.
php?title=Hyperbolic_function&oldid=877577641.
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Si es a 6= 0, podemos dividir a ambos lados de la ecuación por a y obtenemos:

C

a
senhωt+

D

a
coshωt = senh (ωt+ ϕ)

Supongamos que existe un ϕ tal que C
a = coshϕ y D

a = senhϕ y veamos en qué condiciones están bien
definidos. Entonces, tendríamos: 

C

a
= coshϕ

D

a
= senhϕ

⇒ tanhϕ =
D

C

que está bien definida siempre que −1 < D
C < 1⇔ |D| < |C| 3.

Por otra parte, si elevamos al cuadrado en ambas ecuaciones y restamos, obtenemos:

C2

a2
− D2

a2
= cosh2 ϕ− senh2 ϕ︸ ︷︷ ︸

=1

= 1⇔ C2 −D2 = a2

lo cual sólo está bien definido (es un número real) si |C| ≥ |D|. Obtenemos, de esta forma, que debe
cumplirse |C| > |D| para que tanto ϕ como a estén definidas. A continuación, intentemos convertir
|C| > |D| en una desigualdad sobre las condiciones iniciales. En la solución (2) teníamos:

x (t) = e−γt (C senhωt+D coshωt)

ẋ (t) = e−γtω (C coshωt+D senhωt)− γe−γt (C senhωt+D coshωt)

x (0) = D

ẋ (0) = ωC − γD ⇔ ωC = ẋ (0) + γD ⇔ C =
ẋ (0) + γD

ω

Ahora, veamos cuándo es |C| > |D|: ∣∣∣∣ ẋ (0) + γD

ω

∣∣∣∣ > |D|
Como es ω > 0 y D = x (0), lo anterior es equivalente a:

|ẋ (0) + γx (0)| > ω |x (0)|
Así, hemos probado que siempre que se satisfaga la condición anterior entonces ∃!A,ϕ ∈ R tales que:

x (t) = e−γt (C senhωt+D coshωt) = Ae−γt
(
C

a
senhωt+

D

a
coshωt

)
=

= ae−γt (coshϕ senhωt+ senhϕ coshωt)

Por último, aplicando el lema 9 en la página 104, tenemos que:

x (t) = ae−γt senh (ωt+ ϕ)

Q.E.D.

Corolario 17. Una oscilación lineal libre sobreamortiguada es asintóticamente estable.

Demostración. Simplemente, vemos si se cumple la definición 50 en la página 74 tomando la forma (1) de la
solución.

ĺım
t→∞

x (t) = ĺım
t→∞

A e−γ−t︸ ︷︷ ︸
−−−→
t→∞

0

+B e−γ+t︸ ︷︷ ︸
−−−→
t→∞

0

 = 0

donde ambas exponenciales tienden a cero porque γ+ = γ+ω > 0 pues γ, ω > 0, por una parte, y γ− = γ−ω > 0
pues ω =

√
γ2 − ω2

0 < γ, por otra parte.
Por tanto, se cumple la definición y cualquier oscilación lineal sobreamortiguada es asintóticamente estable.

Q.E.D.
3Si esto no queda claro, convendría leer algo sobre funciones hiperbólicas en esta página https://en.wikipedia.org/w/index.

php?title=Hyperbolic_function&oldid=877577641.
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Definición 71. Llamamos tiempo de relajación, vida media o parámetro de extinción de un oscilador
lineal libre sobreamortiguado a la inversa de γ−. Es decir:

τ :=
1

γ−
=

1

γ − ω =
1

γ −
√
γ2 − ω2

0

Observación 42. El aspecto gráfico de una oscilación lineal libre sobreamortiguada es el siguiente:

t

x

t

x

La gráfica de la izquierda es la solución para las condiciones iniciales x (0) = xmáx y ẋ (0) = 0, mientras que
la gráfica de la derecha es la solución con condiciones iniciales x (0) = 0 y ẋ (0) = vmáx.

Proposición 44. El factor de calidad Q de una oscilación lineal libre sobreamortiguada es siempre menor que
1
2 . En otras palabras, Q < 1

2 .

Demostración. Trivial a partir de la definición de factor de calidad (ver 66 en la página 98) al aplicar γ >
ω0. Q.E.D.

2.5.4. Amortiguamiento crítico
Definición 72. Decimos que una oscilación lineal libre de una magnitud física x está sometida a un amor-
tiguamiento crítico si satisface la ecuación diferencial de un oscilador lineal libre amortiguado y además la
constante de amortiguamiento coincide con la frecuencia natural γ = ω0.

Proposición 45. La solución de un oscilador lineal libre sometido a amortiguamiento crítico (γ = ω0) puede
expresarse como:

x (t) = (A+Bt) e−γt = (A+Bt) e−ω0t

Demostración. Partiendo de la proposición 37 en la página 98, sabemos que las raíces del polinomio característico
de la ecuación diferencial son:

s = −γ ±
√
γ2 − ω2

0

Si es γ = ω0, entonces el término de la raíz se anula y obtenemos una solución doble:

s = −γ
Usando la proposición 20 en la página 73, obtenemos que la solución general de nuestra ecuación diferencial

es:

x (t) = (A+Bt) e−γt = (A+Bt) e−ω0t

Q.E.D.

Corolario 18. Una oscilación lineal libre sometida a amortiguamiento crítico es asintóticamente estable.
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Demostración. Simplemente, vemos si se cumple la definición 50 en la página 74:

ĺım
t→∞

x (t) = ĺım
t→∞

(A+Bt) e−γt = 0

y la expresión anterior tiende a cero porque, por orden de infinitésimos, las exponenciales «dominan» sobre los
polinomios.

Por tanto, se cumple la definición y cualquier oscilación lineal sometida a amortiguamiento crítico es asin-
tóticamente estable. Q.E.D.

Definición 73. Llamamos tiempo de relajación, vida media o parámetro de extinción de un oscilador
lineal críticamente amortiguado a:

τ :=
1

γ
=

1

ω0

Observación 43. El aspecto gráfico de una oscilación linea sometida a amortiguamiento crítico es el siguiente:

t

x

2.5.5. Estudio de las condiciones iniciales
Proposición 46. La solución de un oscilador lineal libre subamortiguado en función de las condiciones iniciales
x (0) = x0 y ẋ (0) = v0 es:

1.
x (t) = e−γt

(
v0 + γx0

ω
senωt+ x0 cosωt

)
2.

x (t) = x0

√
1 +

(
v0

x0ω
+
γ

ω

)2

e−γt cos

(
ωt− arctan

(
v0

x0ω
+
γ

ω

))
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donde ω =
√
ω2

0 − γ2.

Demostración. Partimos de la primera forma de la proposición 38 en la página 98:

x (t) = e−γt (C senωt+D cosωt)

ẋ (t) = e−γtω (C cosωt−D senωt)− γe−γt (C senωt+D cosωt)

x0 = x (0) = D

v0 = ẋ (0) = ωC − γD ⇔ ωC = v0 + γD ⇔ C =
v0 + γD

ω
=
v0 + γx0

ω

De manera que tenemos:

x (t) = e−γt
(
v0 + γx0

ω
senωt+ x0 cosωt

)
Con esto, hemos probado (1). Vamos con (2); de nuevo, partimos de la segunda forma de la proposición 38

en la página 98:

x (t) = ae−γt cos (ωt+ ϕ)

ẋ (t) = −aωe−γt sen (ωt+ ϕ)− aγe−γt cos (ωt+ ϕ)

x0 = x (0) = a cosϕ

v0 = ẋ (0) = −aω senϕ− aγ cosϕ

Dividiendo la segunda ecuación entre la primera, obtenemos:

v0

x0
= −ω tanϕ− γ ⇔ tanϕ = −

v0

x0
+ γ

ω
= − v0

x0ω
− γ

ω
⇔ ϕ = arctan

(
− v0

x0ω
− γ

ω

)
=

= − arctan

(
v0

x0ω
+
γ

ω

)
Ahora, de la primera ecuación sacamos:

x0 = a cosϕ⇔ a =
x0

cosϕ
=

x0

cos arctan
(
− v0

x0ω
− γ

ω

) =
x0

1√
1 +

(
v0

x0ω
+ γ

ω

)2

= x0

√
1 +

(
v0

x0ω
+
γ

ω

)2

donde hemos aplicado que cos arctanx = 1√
1+x2

4. Q.E.D.

Proposición 47. La solución de un oscilador lineal libre sobreamortiguado en función de las condiciones
iniciales x (0) = x0 y ẋ (0) = v0 es:

1.
x (t) =

[(
1 +

γ−
2ω

)
x0 +

v0

2ω

]
e−γ−t − v0 + γ−x0

2ω
e−γ+t

2.
x (t) = e−γt

(
v0 + γx0

ω
senhωt+ x0 cosωt

)
4Este dato puede encontrarse en la página https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&

oldid=876493420#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions.
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3.

x (t) = x0

√
1−

(
v0

x0ω
+
γ

ω

)2

e−γt cosh

(
ωt+ arctanh

(
v0

x0ω
+
γ

ω

))
válida si |v0 + γx0| < ω |x0|.

4.

x (t) =
v0 + x0γ

ω

√√√√1−
(

ω
v0

x0
+ γ

)2

e−γt cosh

(
ωt+ arctanh

(
ω

v0

x0
+ γ

))
válida si |v0 + γx0| > ω |x0|.

donde ω =
√
γ2 − ω2

0, γ− = γ − ω y γ+ = γ + ω.

Demostración. Partimos de la forma (1) de la proposición 43 en la página 104:

x (t) = Ae−γ−t +Be−γ+t

ẋ (t) = −γ−Ae−γ−t − γ+Be
−γ+t

x0 = x (0) = A+B ⇔ A = x0 −B

v0 = ẋ (0) = −γ−A− γ+B

Sustituyendo lo hallado en la primera en la segunda ecuación, obtenemos:

v0 = −γ− (x0 −B)− γ+B = −γ−x0 +Bγ− −Bγ+ = −γ−x0 +B (γ − ω − γ − ω) =

= −γ−x0 − 2Bω ⇔ B = −v0 + γ−x0

2ω

Y así:

A = x0 −B =
(

1 +
γ−
2ω

)
x0 +

v0

2ω

Por tanto:

x (t) =
[(

1 +
γ−
2ω

)
x0 +

v0

2ω

]
e−γ−t − v0 + γ−x0

2ω
e−γ+t

Así, hemos probado (1). Vamos con (2); partimos de la forma (2) de la proposición 43 en la página 104:

x (t) = e−γt (C senhωt+D coshωt)

ẋ (t) = e−γtω (C coshωt+D senhωt)− γe−γt (C senhωt+D coshωt)

x0 = x (0) = D

v0 = ẋ (0) = ωC − γD ⇔ ωC = v0 + γD ⇔ C =
v0 + γD

ω
=
v0 + γx0

ω

Así:

x (t) = e−γt
(
v0 + γx0

ω
senhωt+ x0 cosωt

)
De esta forma, hemos probado (2). Vamos con (3); para ello, partimos de la forma (3) de la proposición 43

en la página 104:
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x (t) = ae−γt cosh (ωt+ ϕ)

ẋ (t) = ae−γtω senh (ωt+ ϕ)− aγe−γt cosh (ωt+ ϕ)

x0 = x (0) = a coshϕ

v0 = ẋ (0) = aω senhϕ− aγ coshϕ

Dividiendo la segunda ecuación entre la primera, obtenemos:

v0

x0
= ω tanhϕ− γ ⇔ ω tanhϕ =

v0

x0
+ γ ⇔ tanhϕ =

v0

x0ω
+
γ

ω
⇔ ϕ = arctanh

(
v0

x0ω
+
γ

ω

)
Por otra parte, de la primera ecuación, obtenemos:

x0 = a coshϕ⇔ a =
x0

coshϕ
=

x0

cosh arctanh
(
v0

x0ω
+ γ

ω

) =
x0

1√
1−

(
v0

x0ω
+ γ

ω

)2

= x0

√
1−

(
v0

x0ω
+
γ

ω

)2

donde hemos usado cosh arctanhx = 1√
1−x2

5.
En consecuencia:

x (t) = x0

√
1−

(
v0

x0ω
+
γ

ω

)2

e−γt cosh

(
ωt+ arctanh

(
v0

x0ω
+
γ

ω

))
De esta forma, hemos probado (3). Vamos con (4); para ello, partimos de la forma (4) de la proposición 43

en la página 104:

x (t) = ae−γt senh (ωt+ ϕ)

ẋ (t) = ae−γtω cosh (ωt+ ϕ)− aγe−γt senh (ωt+ ϕ)

x0 = x (0) = a senhϕ

v0 = ẋ (0) = aω coshϕ− aγ senhϕ

Dividiendo la segunda ecuación entre la primera, obtenemos:

v0

x0
=

ω

tanhϕ
− γ ⇔ ω

tanhϕ
=
v0

x0
+ γ ⇔ tanhϕ =

ω
v0

x0
+ γ
⇔ ϕ = arctanh

(
ω

v0

x0
+ γ

)
Por otra parte, de la primera ecuación, obtenemos:

x0 = a senhϕ⇔ a =
x0

senhϕ
=

x0

senh arctanh

(
ω

v0
x0

+γ

) =
x0
ω

v0
x0

+γ√
1−

(
ω

v0
x0

+γ

)2

=

x0

√
1−

(
ω

v0
x0

+γ

)2

ω
v0
x0

+γ

=

5Esto puede verse en la página https://en.wikipedia.org/w/index.php?title=Inverse_hyperbolic_functions&oldid=
864677722#Composition_of_hyperbolic_and_inverse_hyperbolic_functions.
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=
v0 + x0γ

ω

√√√√1−
(

ω
v0

x0
+ γ

)2

donde hemos usado senh arctanhx = x√
1−x2

6.
En consecuencia:

x (t) =
v0 + x0γ

ω

√√√√1−
(

ω
v0

x0
+ γ

)2

e−γt cosh

(
ωt+ arctanh

(
ω

v0

x0
+ γ

))
Q.E.D.

Proposición 48. La solución de un oscilador lineal libre sometido a amortiguamiento crítico en función de las
condiciones iniciales x (0) = x0 y ẋ (0) = v0 es:

x (t) = [x0 + (v0 + γx0) t] e−ω0t

Demostración. Partimos de la proposición 45 en la página 108:

x (t) = (A+Bt) e−γt

ẋ (t) = Be−γt − γe−γt (A+Bt)

x0 = x (0) = A

v0 = ẋ (0) = B − γA⇔ B = v0 + γA = v0 + γx0

Así:
x (t) = [x0 + (v0 + γx0) t] e−γt = [x0 + (v0 + γx0) t] e−ω0t

Q.E.D.

2.5.6. Comparación entre todo los tipos de amortiguamiento
Vamos a estudiar cuál de todos los amortiguamientos se «extingue» antes. Lo primero es para que el amorti-

guamiento sea más rápido hace falta que el tiempo de relajación sea lo más pequeño posible. En otras palabras,
su inversa 1

τ debe ser lo mayor posible. En la siguiente figura, representamos 1
τ en función de γ (la constante

de amortiguamiento).
6Esto puede verse en la página https://en.wikipedia.org/w/index.php?title=Inverse_hyperbolic_functions&oldid=

864677722#Composition_of_hyperbolic_and_inverse_hyperbolic_functions.
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ω0

γ

máx

1
τ

τ= 1
γ

τ= 1
γ−

débil fuerte

cŕıtico

Para ello hemos tenido en cuenta lo siguiente:

1

τ
=


1
1
γ

= γ si γ ≤ ω0

1
1
γ−

= γ− = γ − ω = γ −
√
γ2 − ω2

0 si γ > ω0

Como podemos ver, claramente la «extinción» más rápida se produce en el amortiguamiento crítico.

2.6. Resumen (oscilaciones libres amortiguadas y no amortiguadas)

ẍ+ 2γẋ+ ω2
0x = 0
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Tipo x (t) ω Q τ

sin amortiguamiento

Aeiωt +Be−iωt

A cosωt+B senωt
A cos (ωt+ ϕ)
Re
(
Aeiωt

) ω0 ∞ 0

amortiguamiento débil
γ < ω0

e−γt (C senωt+D cosωt)
ae−γt cos (ωt+ ϕ)

√
ω2

0 − γ2 > 1
2

1
γ

amortiguamiento crítico
γ = ω0

x = x0 (1 + γt) e−γt 0 = 1
2

1
γ = 1

ω0

amortiguamiento fuerte
γ > ω0

Ae−γ−t +Be−γ+t

e−γt (C senhωt+D coshωt)
ae−γt cosh (ωt+ ϕ) *
ae−γt senh (ωt+ ϕ) **

√
γ2 − ω2

0 < 1
2

1
γ−

donde γ− = γ − ω, γ+ = γ + ω, γ es la constante de amortiguamiento, ω es la frecuencia natural, Q es el
factor de calidad y τ es el tiempo de relajación. * Sólo es válido si |ẋ (0) + γx (0)| ≤ ω |x (0)|. ** Sólo es válido
si |ẋ (0) + γx (0)| ≥ ω |x (0)|.

2.7. Oscilaciones forzadas
Ejemplo 19 (Ejemplo introductorio). Imaginemos que tenemos una masa unida a un muelle y que ejercemos
una fuerza sobre esa masa además de la fuerza que le ejerce el muelle. En este caso, la oscilación de la masa es
forzada.

m

X

k
~F

m

X

k
~F

A

B
~F

Definición 74. Una oscilación de una magnitud física x es lineal amortiguada forzada si satisface la ecuación
diferencial:

ẍ+ 2γẋ+ ω2
0x = f (t)

donde f (t) 6= 0, γ es la constante de amortiguamiento y ω0 es la frecuencia natural del sistema.

Observación 44. En general, supondremos que la magnitud física que oscila es la posición de una partícula de
masa m. En ese caso, nos convendrá reescribir la ecuación diferencial de la definición anterior como:

ẍ+ 2γẋ+ ω2
0x =

F (t)

m
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Observación 45. En el caso de oscilaciones forzadas nos va a ser imposible plantear una solución general de la
ecuación diferencial, porque esta depende de la forma funcional de f (t). A lo más que podemos llegar es a lo
siguiente:

Proposición 49. La solución general de una oscilación lineal amortiguada forzada puede expresarse como:

x (t) = xh (t) + xp (t)

donde xh (t) es la solución general de la oscilación lineal libre amortiguada:

ẍ+ 2γẋ+ ω2
0x = 0

y xp (t) es una solución particular de la ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x = f (t)

y tiene la forma:

xp (t) =

ˆ t

t0

g (t− τ) f (τ) dτ

para un t0 ∈ I cualquiera donde g (t− τ) es la solución del oscilador libre lineal amortiguado asociado con
condiciones iniciales x (0) = 0 y ẋ (0) = 1.

Demostración. Consiste únicamente en aplicar la proposición 21 en la página 73. Q.E.D.

El hecho de que todas las soluciones del oscilador lineal libre amortiguado sean asintóticamente estables (ver
corolarios 13 en la página 99, 17 en la página 107 y 18 en la página 108) motiva la siguiente definición:

Definición 75. Llamaremos respuesta natural o transitoria a la componente xh (t) de la proposición 49 y
denominaremos respuesta estacionaria o permanente a la componente xp (t).

Proposición 50. La solución general de una oscilación lineal amortiguada (con γ > 0) forzada que satisface
la ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x =

F

m
cos (ωf t+ α) = f (t)

puede escribirse, cuando t es lo suficientemente grande, como:

x (t) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f︸ ︷︷ ︸

=a

cos

ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

)
︸ ︷︷ ︸

=δ



donde llamaremos amplitud a y diferencia de fase δ a los términos indicados arriba.

Demostración. Según la proposición 49, lo que tenemos que hacer primero es encontrar una solución particular de
la ecuación diferencial del enunciado de la proposición. Para ello, primero convirtamos el coseno en exponenciales:

f (t) =
F

m
cos (ωf t+ α) =

F

2m

(
eiωf t+iα + e−iωf t−iα

)
donde hemos aplicado la definición de coseno dada en la proposición 23 en la página 74. Nótese que nuestra
función f (t) en el cuerpo de los complejos cumple las condiciones necesarias para aplicar el método de los
coeficientes indeterminados (ver proposición 22 en la página 73). Por tanto, en vez de tener que resolver una
integral, podemos aplicar dicha proposición. Entonces una solución particular será de la forma:

xp (t) = tm1Aeiωf t+iα + tm2Be−iωf t−iα

donde A y B son constantes cuyo valor determinaremos a continuación y m1 y m2 son las multiplicidades de
iωf t+ iα y −iωf t− iα en el polinomio característico, respectivamente. Según la proposición 37 en la página 98,
las raíces del polinomio característico son:
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s = −γ ±
√
γ2 − ω2

0

y éstas en ningún caso pueden ser un número imaginario puro pues es γ 6= 0. Así, m1 = 0 = m2. Y obtenemos
que nuestra solución particular es de la forma:

xp (t) = Aeiωf t+iα +Be−iωf t−iα

Para obtener los valores de A y B, «forzamos» que xp (t) cumpla la ecuación diferencial del enunciado:

ẋp (t) = iωfAe
iωf t+iα − iωfBe−iωf t−iα

ẍp (t) = −ω2
fAe

iωf t+iα − ω2
fBe

−iωf t−iα

ẍp (t) + 2γẋp (t) + ω2
0xp (t) =

= −ω2
fAe

iωf t+iα − ω2
fBe

−iωf t−iα + 2γiωfAe
iωf t+iα − 2γiωfBe

−iωf t−iα + ω2
0Ae

iωf t+iα + ω2
0Be

−iωf t−iα =

=
(
−ω2

f + 2γωf i+ ω2
0

)
Aeiωf t+iα +

(
−ω2

f − 2γωf i+ ω2
0

)
Be−iωf t−iα

Bien, ahora la expresión anterior tiene que ser igual a f (t). Luego, necesariamente:


(
ω2

0 − ω2
f + 2γωf i

)
A =

F

2m(
ω2

0 − ω2
f − 2γωf i

)
B =

F

2m

⇔


A =

F

2m

1

ω2
0 − ω2

f + 2γωf i

B =
F

2m

1

ω2
0 − ω2

f − 2γωf i

Por consiguiente, nuestra solución particular queda:

xp (t) =
F

2m

1

ω2
0 − ω2

f + 2γωf i︸ ︷︷ ︸
=A

eiωf t+iα +
F

2m

1

ω2
0 − ω2

f − 2γωf i︸ ︷︷ ︸
=B

e−iωf t−iα

Como vemos, A = B como ya sabíamos, puesto que xp (t) es real y las exponenciales son linealmente
independientes. Bien, ahora nos interesa transformar la solución al cuerpo de los reales. Para facilitarnos las
cuentas llamaremos a := ReA, b := ImA y u := ωf t+ α. Así, la solución anterior queda:

xp (t) = (a+ bi) eiut + (a− bi) e−iut = a
(
eiut + eiut

)︸ ︷︷ ︸
=2 cosut

+bi
(
eiut − e−iut

)︸ ︷︷ ︸
=2i senut

=

= 2a cosut− 2b senut

Y esto tiene la forma de una oscilación armónica. Luego, por la proposición 29 en la página 78, sabemos que
existen E,ϕ tales que:

2a cosut− 2b senut = E cos (ut+ ϕ)

En la demostración de dicha proposición, obtuvimos que:

E = 2a

√
1 +

4b2

4a2
= 2a

√
1 +

b2

a2
= 2a

√
a2 + b2

a2
= 2

a

a

√
a2 + b2 = 2

√
a2 + b2 = 2

√
AA =

=
√

4AA =

√√√√F 2

m2

1(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

=
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

ϕ = arctan
2b

2a
= arctan

b

a
= argA = arg

(
F

2m

1

ω2
0 − ω2

f + 2γωf i

ω2
0 − ω2

f − 2γωf i

ω2
0 − ω2

f − 2γωf i

)
=
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= arg

 F

2m

ω2
0 − ω2

f − 2γωf i(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

 = arctan

(
−2γωf
ω2

0 − ω2
f

)

De esta forma, recordando que u = ωf t+ α, nuestra solución particular (la respuesta estacionaria) queda:

xp (t) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

cos

(
ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

))

Bien, ahora según la proposición 49 en la página 116 deberíamos encontrar una solución general de la ecuación
diferencial homogénea (la respuesta natural):

ẍ+ 2γẋ+ ω2
0 = 0

que son justo los tres tipos de oscilaciones amortiguadas libres que vimos en el apartado anterior. No obstante,
según los corolarios 13 en la página 99, 17 en la página 107 y 18 en la página 108, los tres tipos de oscilaciones
son asintóticamente estables. En consecuencia, para un tiempo suficientemente grande, la respuesta natural se
hace cero y la solución es únicamente la respuesta estacionaria.

x (t) = xp (t)

Q.E.D.

2.8. Resonancia
Observación 46. A lo largo de toda esta sección supondremos que estamos viendo el sistema cuando el tiem-
po transcurrido es lo suficientemente grande como para que la respuesta natural (la solución de la ecuación
diferencial homogénea) se anule.

Definición 76. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α).
Diremos que el sistema está en resonancia en amplitud cuando la amplitud a correspondiente a la solución
dada por la proposición 50 en la página 116 es máxima.

Definición 77. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α).
Diremos que un sistema está en resonancia en energía cuando la velocidad v := aωf correspondiente a la
solución dada por la proposición 50 en la página 116 es máxima.

2.8.1. Resonancia fijando la frecuencia de la fuerza externa ωf y variando la fre-
cuencia natural del sistema ω0

Proposición 51. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α)
con ωf fijo. La resonancia en amplitud y en energía para ω0 ∈ (0,∞) se da cuando ω0 = ωf =: ω0,r. Además,
la amplitud y velocidad máxima del sistema son:

amáx =
F

2mγωf
vmáx =

F

2mγ

Demostración. Recordemos la solución dada por la proposición 50 en la página 116:

x (t) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f︸ ︷︷ ︸

=a

cos

ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

)
︸ ︷︷ ︸

=δ


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ẋ (t) =
F
mωf√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f︸ ︷︷ ︸

=v

sen

ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

)
︸ ︷︷ ︸

=δ


Nuestro objetivo es hallar el valor de ω0 que maximiza el valor de a y v. Nótese que la fase δ no importa

absolutamente nada para este cálculo. Por otra parte como v = aωf y ωf está fijo, aquel valor que maximice a
maximizará también v. Por tanto, queremos maximizar la función:

a (ω0) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

Claramente, el valor máximo tiene lugar cuando el denominador es mínimo. Variando ω0 el denominador es
mínimo cuando ω0 = ωf =: ω0,r. En ese caso:

amáx = a (ω0,r) = a (ω0 = ωf ) =
F
m√

4γ2ω2
f

=
F

2mγωf

Y, como v = aωf :

vmáx =
F

2mγ

Q.E.D.

Observación 47. Para un ωf fijo, la dependencia de la amplitud con respecto a la frecuencia natural ω0 tiene la
siguiente forma:

ωf

ω0

amáx

vmáx
a
v
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2.8.2. Resonancia fijando la frecuencia natural del sistema ω0 y variando la fre-
cuencia de la fuerza externa ωf

2.8.2.1. Resonancia en amplitud

Proposición 52. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α)
con ωf variable. Si mantenemos fija la frecuencia natural del sistema ω0, la resonancia en amplitud para ωf ∈
[0,∞) se da:

1. en ωf =
√
ω2

0 − 2γ2 =: ωf,r si ω2
0 > 2γ2 y vale:

amáx =
F

2mγ
√
ω2

0 − γ2

2. en ωf = 0 si ω2
0 < 2γ2 y vale:

amáx =
F

mω0

En este caso la fuerza aplicada será constante y no se producirá oscilación.

Nótese que la solución (1) sólo existe si ω2
0 > 2γ2. Es decir, únicamente puede existir en amortiguamientos

subcríticos (γ < ω0) y, aun así, no existirá en todos los de este tipo.

Demostración. Recordemos la solución dada por la proposición 50 en la página 116:

x (t) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f︸ ︷︷ ︸

=a

cos

ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

)
︸ ︷︷ ︸

=δ


Nótese que la fase δ no importa absolutamente nada para este cálculo. Queremos maximizar la función:

a (ωf ) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

La función anterior será máxima cuando el denominador sea mínimo. Por tanto, nuestro problema consiste
en minimizar la función:

g (ωf ) =

√(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

Para ello, hallamos su derivada:

dg

dωf
(ωf ) =

2
(
ω2

0 − ω2
f

)
(−2ωf ) + 8γ2ωf

2

√(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

=
−4ωf

(
ω2

0 − ω2
f + 2γ2ωf

)
2

√(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

dg

dωf
(ωf ) = 0⇔ ωf

(
−4ω2

0 + 4ω2
f + 8γ2

)
= 0⇔

⇔
{−4ω2

0 + 4ω2
f + 8γ2 = 0⇔ ω2

f = ω2
0 − 2γ2

ωf = 0
⇔
{
ωf =

√
ω2

0 − 2γ2 =: ωf,r
ωf = 0

Nótese que el punto crítico ωf,r sólo puede alcanzarse en el caso de un amortiguamiento subcrítico (γ < ω0)
y (aun así, no en todos los de este tipo). Supongamos que existe ωf,r, ahora nos faltaría comprobar que
efectivamente es un mínimo. Como el cero es simple, nos basta con mirar el signo de la derivada en un punto, o
bien entre 0 y ωf,r o bien en un punto mayor que ωf,r. En particular estudiemos el signo de la derivada cuando
ωf →∞:
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ĺım
ωf→∞

dg

dωf
(ωf ) = ĺım

ωf→∞

−4ωf

(
ω2

0 − ω2
f + 2γ2ωf

)
2

√(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

= ĺım
ωf→∞

4ω3
f

2
√
ω4
f

= ĺım
ωf→∞

2
ω3
f

ω2
f

= ĺım
ωf→∞

2ωf =∞

Así, necesariamente ωf =
√
ω2

0 − 2γ2 es un punto de mínimo relativo y su valor es:

g (ωf = ωf,r) =

√
(ω2

0 − ω2
0 + 2γ2)

2
+ 4γ2 (ω2

0 − 2γ2) =
√

4γ4 + 4γ2ω2
0 − 8γ4 =

=
√

4γ2ω2
0 − 4γ4 =

√
4γ2 (ω2

0 − γ2) = 2γ
√
ω2

0 − γ2

Por consiguiente, el valor de la amplitud es máxima (relativamente) en ωf = ωf,r =
√
ω2

0 − 2γ2 y vale:

amáx = a (ωf,r) =
F

2γm
√
ω2

0 − γ2

Nos quedaría comprobar que el máximo relativo encontrado es, a su vez, máximo absoluto, pero esto no es

difícil ya que ĺım
ωf→∞

dg

dωf
(ωf ) =∞ nos implica que ĺım

ωf→∞
g (ωf ) =∞ y, en consecuencia, ĺım

ωf→∞
a (ωf ) = 0 <

a (ωf,r). Por otra parte, como ωf,r es un cero simple, y sabemos que ĺım
ωf→∞

dg

dωf
(ωf ) =∞ > 0, debe ser

da

dωf
(ωf ) < 0 ∀ωf > ωf,r y

da

dωf
> 0 ∀0 < ωf < ωf,r. Por consiguiente, necesariamente a (ωf,r) > a (0) y, así,

ωf,r es un punto de máximo absoluto de a para ωf ∈ (0,∞). Con esto hemos probado (1).
Supongamos, ahora, que no existe ωf,r. Entonces el único punto crítico que tenemos es justo un extremo

del intervalo (el 0) y únicamente tenemos que evaluar la función en el infinito. Antes hemos visto que era
ĺım

ωf→∞
g (ωf ) =∞ > g (0) y, en consecuencia, 0 es un mínimo absoluto de g en [0,∞). Por ende, 0 es un punto

de máximo absoluto de la amplitud en [0,∞) y, así, hemos probado (2). Q.E.D.

Definición 78. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α)
con ωf 6= 0 variable en el que mantenemos fija la frecuencia natural del sistema ω0. Supongamos que se cumple
ω2

0 > 2γ2, entonces llamamos anchura de resonancia al intervalo cerrado entre los dos valores de ωf tales
que a (ωf ) = amáx√

2
.

Proposición 53. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α)
con ωf 6= 0 variable en el que mantenemos fija la frecuencia natural del sistema ω0. Supongamos que se cumple
ω2

0 > 2γ2. Entonces, la anchura de resonancia es el intervalo [ωa, ωb] donde:

ωa =

√
ω2
f,r − 2γ

√
ω2

0 − γ2

ωb =

√
ω2
f,r + 2γ

√
ω2

0 − γ2

Demostración. Recordemos (ver proposición 50 en la página 116) que la amplitud en función de ωf venía dada
por:

a (ωf ) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

Por otra parte, por la proposición 52 en la página anterior, sabemos que la máxima amplitud

amáx =
F

2γm
√
ω2

0 − γ2
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Por tanto queremos resolver la ecuación:

F

2
√

2γm
√
ω2

0 − γ2
=

F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

para ωf . Lo anterior es equivalente a:√(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f = 2γ

√
2
√
ω2

0 − γ2

Elevamos al cuadrado a ambos lados:(
ω2

0 − ω2
f

)2
+ 4γ2ω2

f = 8γ2
(
ω2

0 − γ2
)
⇔

⇔ ω4
0 − 2ω2

0ω
2
f + ω4

f + 4γ2ω2
f − 8γ2

(
ω2

0 − γ2
)

= 0⇔
⇔ ω4

f +
(
4γ2 − 2ω2

0

)
ω2
f + ω4

0 − 8γ2
(
ω2

0 − γ2
)

= 0

La ecuación anterior es una bicuadrada, sus soluciones positivas (ωf > 0) son:

ωf =

√√√√2ω2
0 − 4γ2 ±

√
(2ω2

0 − 4γ2)
2 − 4 (ω4

0 − 8γ2 (ω2
0 − γ2))

2
=

=

√
ω2

0 − 2γ2 ± 1

2

√
4ω4

0 − 16ω2
0γ

2 + 16γ4 − 4ω4
0 + 32γ2ω2

0 − 32γ4 =

=

√
ω2

0 − 2γ2 ± 1

2

√
−16ω2

0γ
2 + 16γ4 + 32γ2ω2

0 − 32γ4 =

√
ω2

0 − 2γ2 ± 1

2

√
16γ2ω2

0 − 16γ4 =

=

√
ω2

0 − 2γ2 ± 1

2

√
16γ2 (ω2

0 − γ2) =

√
ω2

0 − 2γ2 ± 1

2
4γ
√
ω2

0 − γ2 =

=

√
ω2

0 − 2γ2 ± 2γ
√
ω2

0 − γ2

Por la proposición 52 en la página 120 es: ωf,r =
√
ω2

0 − 2γ2 ⇔ ω2
f,r = ω2

0 − 2γ2, de forma que lo anterior
es equivalente a:

ωf =

√
ω2
f,r ± 2γ

√
ω2

0 − γ2

con lo que llegamos al enunciado. Q.E.D.

Corolario 19. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α)
con ωf 6= 0 variable en el que mantenemos fija la frecuencia natural del sistema ω0. Sea, además, γ � ω0 (por
tanto se cumple ω2

0 > 2γ2). Entonces, la anchura de resonancia puede aproximarse por el intervalo [ωa, ωb]
donde:

ωa ≈ ωf,r − γ

ωb ≈ ωf,r + γ

Demostración. Partimos de la proposición anterior:

ωa =

√
ω2
f,r − 2γ

√
ω2

0 − γ2

ωb =

√
ω2
f,r + 2γ

√
ω2

0 − γ2
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Recordemos la expresión dada para ωf,r en la proposición 52 en la página 120:

ωf,r =
√
ω2

0 − 2γ2

Sustituyendo, obtenemos:

ωa =

√
ω2

0 − 2γ2 + 2γ
√
ω2

0 − γ2

ωa =

√
ω2

0 − 2γ2 − 2γ
√
ω2

0 − γ2

Como γ � ω0, será ω2
0 � γ2 y ω2

0 � 2γ2. Por tanto, podemos aproximar las expresiones anteriores por:

ωa ≈
√
ω2

0 − 2γω0 = ω0

√
1− 2γ

ω0

ωb ≈
√
ω2

0 + 2γω0 = ω0

√
1 +

2γ

ω0

Como es γ � ω0, γ
ω0
→ 0 y podemos hacer uso del lema 7 en la página 102 para obtener una aproximación

a primer orden de las expresiones anteriores:

ωa ≈ ω0

(
1− γ

ω0

)
= ω0 − γ

ωb ≈ ω0

(
1 +

γ

ω0

)
= ω0 + γ

Por último, como es γ � ω0 y era ωf,r =
√
ω2

0 − 2γ2, podemos aproximar ω0 ≈ ωf,r de manera que
obtenemos:

ωa ≈ ωf,r − γ

ωb ≈ ωf,r + γ

con lo que llegamos a las expresiones del enunciado. Q.E.D.

Observación 48. Recordemos que el factor de calidad venía definido como 66 en la página 98:

Q =
ω0

2γ

Lo que acabamos de ver le da algo de sentido al nombre de «factor de calidad». En muchas aplicaciones
prácticas nos interesa tener una resonancia estrecha y aguda. Por el corolario anterior sabemos que la longitud
de la anchura de resonancia es aproximadamente 2γ cuando γ � ω0. De manera que cuanto más pequeña sea
la anchura de resonancia, mayor será el factor de calidad.

Observación 49. Podemos ver todo lo mencionado en las proposiciones anteriores en la siguiente gráfica de la
amplitud de una oscilación subamortiguada:
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ωf, r − γ ω0 ωf, r + γ

ωf

amáx√
2

amáx

a

γ= 1
5
ω0

ωf, r

Podemos ver que la aproximación realizada para la anchura de la resonancia es, en realidad, bastante buena
a pesar de que γ es sólo un quinto de ω0.

Sin embargo, en una oscilación sobreamortiguada, el máximo en la amplitud se encuentra cuando ωf = 0:
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ωf

amáx

a

γ= 5ω0

2.8.2.2. Resonancia en energía

Proposición 54. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α)
con ωf 6= 0 variable. Si mantenemos fija la frecuencia natural del sistema ω0, la resonancia en energía para
ωf ∈ (0,∞) se da cuando ωf = ω0. Además, la velocidad máxima del sistema es:

vmáx =
F

2mγ

Demostración. Recordemos que, por la definición 77 en la página 118, la velocidad del sistema es:

v = ωfa

Usando la proposición 50 en la página 116, tenemos que la velocidad es:

v (ωf ) =
F
mωf√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

Para estudiar los puntos críticos de la función anterior, vamos a proceder a derivar:

dv

dωf
(ωf ) =

F

m

√(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f − ωf

2(ω2
0−ω2

f)(−2ωf )+8γ2ωf

2
√

(ω2
0−ω2

f)
2
+4γ2ω2

f(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

=

=

(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f + 2ω2

f

(
ω2

0 − ω2
f

)
− 4γ2ω2

f[(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

] 3
2

=
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=
ω4

0 − 2ω2
0ω

2
f + ω4

f + 2ω2
0ω

2
f − 2ω4

f[(
ω2

0 − ω2
f

)2

+ 4γ2ω2
f

] 3
2

=
−ω4

f + ω4
0[(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

] 3
2

dv

dωf
(ωf ) = 0⇔ −ω4

f + ω4
0 = 0⇔ ω4

f = ω4
0 ⇔ ωf = ω0

ya que ω0, ωf > 0. Para probar que es un máximo relativo aprovecharemos el hecho de que el cero es simple
(aunque no lo parezca es simple, para que fuera cuádruple se tendría que poder factorizar como (ωf − ω0)

4).
Como el cero es simple, simplemente hallando el valor de la velocidad en el supuesto punto de máximo y el valor
de la velocidad en otro punto (por ejemplo en cero), podremos comprobar que es máximo.

v (ω0) =
F

m

ω0√
4γ2ω2

0

=
F

m

ω0

2γω0
=

F

2γm

Por otra parte:

v (0) = 0

Y claramente F
2γm > 0 pues F, γ,m, 2 > 0. Así ωf = ω0 es máximo relativo. Para probar que, además, es

máximo absoluto, únicamente tenemos que estudiar el límite de la velocidad cuando ωf →∞:

ĺım
ωf→∞

v (ωf ) = ĺım
ωf→∞

F
mωf√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

= ĺım
ωf→∞

F

m

ωf√
ω4
f

= ĺım
ωf→∞

F

m

1

ωf
= 0 < v (ω0)

Así ωf = ω0 es un punto de máximo absoluto y dicho máximo vale:

vmáx =
F

2γm

Q.E.D.

Corolario 20. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (ωf t+ α) con
ωf 6= 0 variable. Si mantenemos fija la frecuencia natural del sistema ω0, la máxima transferencia en potencia
al oscilador por parte de la fuerza externa se produce cuando ωf = ω0.

Demostración. Recordemos que era:

P = Fẋ

Por la proposición 50 en la página 116, sabemos que es:

x (t) =
F
m√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f

cos

(
ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

))

ẋ (t) = −
F
mωf√(

ω2
0 − ω2

f

)2

+ 4γ2ω2
f︸ ︷︷ ︸

=v

sen

(
ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

))

Por tanto:

P = F cos (ωf t+ α) v sen

(
ωf t+ α+ arctan

(
−2γωf
ω2

0 − ω2
f

))
Haciendo abstracción de las fases, claramente la expresión anterior será máxima cuando v sea máxima y,

por la proposición anterior, eso sucede cuando ωf = ω0. Q.E.D.

Observación 50. Para un ω0 fijo la velocidad del sistema varía de la siguiente forma:
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ω0

ωf

v

β= 1
5
ω0

β= 2ω0

Como podemos ver, la máxima resonancia en energía se produce tanto para amortiguamientos subcríticos
como supercríticos, de hecho, para cualquier tipo de amortiguamientos. Claramente se ve también que el máximo
se encuentra en ωf = ω0.

2.8.3. La fase en resonancia (*No lo vimos más que con dibujos en clase)
Recordemos que por la proposición 50 en la página 116, la diferencia de fase viene dada por:

δ = arctan

(
−2γωf
ω2

0 − ω2
f

)
Sigamos esta fase mientras variamos ωf , suponiendo γ � ω0. Cuando es ωf � ω0, δ es muy pequeño en

módulo; es decir, mientras ωf � ω0, las oscilaciones están casi en fase con la fuerza externa. A medida que
aumenta ωf y se acerca a ω0, δ disminuye lentamente. En resonancia en energía donde es ωf = ω0, el argumento
de la arcotangente tiende a menos infinito por lo que δ = −π2 ; es decir, las oscilaciones van en cuadratura de
fase con la fuerza externa. Una vez que ωf > ω0, el argumento de la arcotangente es positivo y tiende a cero
conforme ωf aumenta. Por consiguiente, δ disminuye más allá de −π2 y finalmente tiende a −π. En este punto,
las oscilaciones están casi en oposición de fase con la fuerza externa.

A medida que γ se va a acercando más a ω0, las variaciones son menos extremas y cuando γ � ω0, el
crecimiento de δ es rápido al principio pero luego se hace mucho más lento.

Todo esto puede verse gráficamente en:
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ω0

ωf

−π

−4
5
π

− 7
11
π

−1
2
π

−1
3
π

−1
6
π

δ

γ= 4ω0

γ= 0.4ω0

γ= 0.1ω0

γ= 0.01ω0

2.8.4. Ejemplos varios de la vida real
Después de las arduas secciones anteriores, el lector puede estar preguntándose: «Muy bien, pero esto ¿para

qué sirve?». La resonancia es un efecto común en la vida diaria. Por ejemplo, es por resonancia como una radio
es capaz de «aislar» la frecuencia que queremos escuchar de las otras. También, el clásico ejemplo en el que una
cantante es capaz de romper un vaso de cristal con su voz se debe a esto: El sonido es una onda de presión que se
propaga a través de un medio material, en particular, a través de un vaso de cristal. Si la frecuencia de la onda
incidente es justo la frecuencia de resonancia en amplitud del vaso, entonces las oscilaciones tendrán amplitud
máxima y el vaso se romperá. También, la resonancia ha ocasionado tragedias en la ingeniería de puentes (para
más información hágase clic aquí 7.)

2.9. Series de Fourier
Teorema 18 (Descomposición en serie de Fourier). Sea f (t) una función periódica con periodo T en un intervalo
I ⊆ R. Entonces ∃ai con i = 0, 1, . . . ,∞, ∃bi con i = 1, 2, . . . ,∞ tales que:

f (t) =
a0

2
+

∞∑
n=1

[an cos (nωt) + bn sen (nωt)] ∀t ∈ I

donde:

a0 =
1

T

ˆ T
2

−T2
f (t) dt

an =
2

T

ˆ T
2

−T2
f (t) cos (nωt) dt ∀n = 1, 2, . . . ,∞

7http://estructurando.net/2014/06/30/5-cagadas-en-la-ingenieria-de-puentes-por-culpa-de-la-resonancia/
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bn =
2

T

ˆ T
2

−T2
f (t) sen (nωt) dt ∀n = 1, 2, . . . ,∞

y ω = 2π
T .

Observación 51. El teorema anterior nos dice, por tanto, que cualquier fuerza periódica puede descomponer-
se en un combinación lineal (infinita) de senos y cosenos. Eso nos va a permitir trabajar con fuerzas de este estilo:

t

Proposición 55. La solución general de una oscilación lineal amortiguada (con γ > 0) forzada con una fuerza
periódica F (t) de periodo T , cuando t es suficientemente grande, puede expresarse como:

x (t) =
a0

2mω2
0

+

∞∑
n=1

an cos
(
nωf t+ arctan

(
−2γnωf
ω2

0−n2ω2
f

))
+ bn sen

(
nωf t+ arctan

(
−2γnωf
ω2

0−n2ω2
f

))
m

√(
ω2

0 − n2ω2
f

)2

+ 4γ2n2ω2
f

donde ωf = 2π
T y a0, an y bn son los dados en el teorema 18 en la página anterior.

Demostración. Primero, como F (t) es una función periódica, por el teorema 18 en la página anterior sabemos
que existen a0, an, bn con n = 1, 2, . . . ,∞ tales que:

F (t) =
a0

2
+

∞∑
n=1

[an cos (nωf t) + bn sen (nωf t)]

Por tanto, la ecuación diferencial a resolver queda:

ẍ+ 2γẋ+ ω2
0x =

a0

2m
+

1

m

∞∑
n=1

[an cos (nωf t) + bn sen (nωf t)]

Ahora, vamos a aprovechar la linealidad de la ecuación diferencial para decir que la solución estacionaria (la
solución particular de la no homogénea) que estamos buscando es suma de las soluciones particulares de cada
uno de los sumandos que conforman F (t).

Vayamos con el primer sumando; nos quedaría la ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x =

a0

2m

Nótese que a0

2m es constante. Por tanto, por la proposición 24 en la página 74, sabemos que existe un cambio de

variable x = y +
a0
2m

ω2
0

= y + a0

2mω2
0
que la transforma en una ecuación homogénea.

De esta forma, la solución particular correspondiente a este primer sumando sería:
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xp,a0
(t) =

a0

2mω2
0

+ yh (t)

Pero, según los corolarios 13 en la página 99, 17 en la página 107 y 18 en la página 108, como estamos en
tiempos suficientemente grandes yh (t) se anula, porque la ecuación diferencial homogénea es asintóticamente
estable. Así, tenemos que:

xp,a0 (t) =
a0

2mω2
0

Vamos, ahora, con los términos con coseno. Nos queda la ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x = an cos (nωf t)

La solución de la ecuación diferencial anterior para t suficientemente grande viene dada por la proposición 50
en la página 116:

xp,an (t) =
an

m

√(
ω2

0 − n2ω2
f

)2

+ 4γ2n2ω2
f

cos

(
nωf t+ arctan

(
−2γnωf
ω2

0 − n2ω2
f

))

Vamos, ahora, con los términos con seno. Nos queda la ecuación diferencial:

ẍ+ 2γẋ+ ω2
0x = bn sen (nωf t)

Nótese que podemos escribir el seno como un coseno con un desfase de +π
2 .

ẍ+ 2γẋ+ ω2
0x = bn cos

(
nωf t+

π

2

)
La solución de la ecuación diferencial anterior para t suficientemente grande viene dada por la proposición 50

en la página 116:

xp,bn (t) =
bn

m

√(
ω2

0 − n2ω2
f

)2

+ 4γ2n2ω2
f

cos

(
nωf t+

π

2
+ arctan

(
−2γnωf
ω2

0 − n2ω2
f

))

Ahora, podemos volver a escribir el coseno con un desfase de +π
2 como un seno:

xp,bn (t) =
bn

m

√(
ω2

0 − n2ω2
f

)2

+ 4γ2n2ω2
f

sen

(
nωf t+ arctan

(
−2γnωf
ω2

0 − n2ω2
f

))

Así, aplicando linealidad, sabemos que la solución particular (la respuesta estacionaria) que buscamos es:

xp (t) =
a0

2mω2
0

+

∞∑
n=1

an cos
(
nωf t+ arctan

(
−2γnωf
ω2

0−n2ω2
f

))
+ bn sen

(
nωf t+ arctan

(
−2γnωf
ω2

0−n2ω2
f

))
m

√(
ω2

0 − n2ω2
f

)2

+ 4γ2n2ω2
f

Por último, según los corolarios 13 en la página 99, 17 en la página 107 y 18 en la página 108, la respuesta
natural es asintóticamente estable y, en consecuencia, se anula cuando t es lo suficientemente grande. Por tanto,
la solución que buscamos es justo la respuesta estacionaria:

x (t) =��
�*0

xh (t) + xp (t)

Q.E.D.

Observación 52. Imaginemos que queremos estudiar la resonancia en amplitud o en energía de un oscilador
lineal forzado con un fuerza periódica. Aunque su descomposición en serie de Fourier tenga infinitos términos,
para obtener una buena aproximación del valor de la amplitud en resonancia o el valor de la velocidad basta que
consideremos los términos de la serie de Fourier cuya frecuencia nωf se acerque a la frecuencia de resonancia
ωf,r de nuestro sistema.
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2.10. Oscilaciones tridimensionales. Oscilador armónico isótropo

2.10.1. Definición y primeras propiedades
Ejemplo 20 (Ejemplo introductorio). Consideremos un muelle tridimensional:

O

m

~r

Como la oscilación ya no es unidimensional, necesitamos unas nuevas ecuaciones matemáticas que nos des-
criban el movimiento de la masa m.

Definición 79. Decimos que una magnitud física ~r = (x, y, z) sufre una oscilación armónica tridimensional
si satisface la ecuación diferencial:

~̈r +
(
ω2
xx, ω

2
yy, ω

2
zz
)

= 0

Definición 80. Decimos que una magnitud física ~r sufre una oscilación armónica tridimensional isótropa
si ωx = ωy = ωz =: ω.

Diremos que la oscilación es anisótropa cuando no se de la condición anterior.

Corolario 21. Una oscilación armónica isótropa satisface la ecuación diferencial:

~̈r + ω2~r = 0⇔

ẍ+ ω2x = 0
ÿ + ω2y = 0
z̈ + ω2z = 0

Demostración. Es trivial a partir de la definición. Q.E.D.

Proposición 56. Una partícula de masa m en un espacio tridimensional sometida a una fuerza ~F = −k~r =
−krr̂ sufre una oscilación armónica isótropa con ω2 = k

m .

Demostración. Por la segunda ley de Newton (ver axioma 1 en la página 8), tenemos:

m~̈r = −k~r ⇔ ~̈r +
k

m
~r = 0

que claramente tiene la forma dada en el corolario 21. Q.E.D.

2.10.2. Solución del oscilador armónico isótropo
Proposición 57. La solución de una oscilación armónica isótropa puede expresarse como:

~r (t) = ~c cosωt+ ~d senωt

donde ~c = ~r0 y ~d =
~v0

ω
. Además, la velocidad viene dada por:
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~̇r (t) = −~cω senωt+ ~dω cosωt

Demostración. Partimos de la ecuación diferencial del corolario 21 en la página anterior:

~̈r + ω2~r = 0⇔

ẍ+ ω2x = 0
ÿ + ω2y = 0
z̈ + ω2z = 0

Como, vemos, al expresar el sistema de ecuaciones por componentes, vemos que cada ecuación es inde-
pendiente de las otras. En consecuencia, resolver el sistema anterior es equivalente a resolver tres osciladores
armónicos. Por la proposición 28 en la página 76, sabemos que existen cx, dx, cy, dy, cz, dz ∈ R tales que la
solución de las ecuaciones diferenciales anteriores puede expresarse como:x (t) = cx cosωt+ dx senωt

y (t) = cy cosωt+ dy senωt
z (t) = cz cosωt+ dz senωt

Equivalentemente, si definimos ~c := (cx, cy, cz) y ~d := (dx, dy, dz) podemos expresar las soluciones anteriores
como:

~r (t) = ~c cosωt+ ~d senωt

Por la proposición 35 en la página 89, sabemos que:

cx = x0 dx =
vx,0
ω

cy = y0 dy =
vy,0
ω

cz = z0 dz =
vz,0
ω

Y, claramente ~r0 = (x0, y0, z0) y ~v0 = (vx,0, vy,0, vz,0). Por tanto, tenemos que:

~c = ~r0
~d =

~v0

ω

Por último, para obtener la velocidad, simplemente derivamos:

ẋ (t) = −~cω senωt+ ~dω cosωt

Q.E.D.

2.10.3. Un oscilador armónico isótropo es central y conservativo

Proposición 58. La fuerza ~F de la proposición 56 en la página anterior es central respecto al origen de
coordenadas y conservativa. El momento angular y la energía son constantes del movimiento y vienen dadas
por las expresiones:

~LO = mω~c× ~d

E =
1

2
mω2

(
c2 + d2

)
Demostración. Por la definición 12 en la página 20, tenemos que el momento angular respecto al origen de
coordenadas O es:

~LO = m~r × ~̇r = m
[
~c cosωt+ ~d senωt

]
× ω

[
−~c senωt+ ~d cosωt

]
=

mω

−~c× ~c︸ ︷︷ ︸
=~0

cosωt senωt− ~d× ~c︸ ︷︷ ︸
=−~c×~d

sen2 ωt+ ~c× ~d cos2 ωt+ ~d× ~d︸ ︷︷ ︸
=~0

senωt cosωt

 =

= mω
[
~c× ~d

] [
sen2 ωt+ cos2 ωt

]︸ ︷︷ ︸
=1

= mω~c× ~d
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Así, como el momento angular no depende de t, éste se conserva. Y, por la proposición 7 en la página 22, la
fuerza es central.

Ahora, veamos que la fuerza ~F es conservativa. Si definimos la función V (~r) := 1
2k~r

2, claramente se cumple:
~F = −~∇V , pues −~∇V = −dVd~r = − 1

22k~r = −k~r. Así, como la fuerza únicamente depende de la posición, por la
definición 5 en la página 14, ~F es conservativa. Por tanto, tiene una función energía potencial asociada (que es
la V que hemos definido antes) y la energía mecánica:

E =
1

2
m~̇r 2 +

1

2
k~r 2

debe ser constante. En consecuencia, para obtener su valor, podemos calculara en el punto que nos sea más
cómodo. Por ejemplo en t = 0:

E =
1

2
mv2

0 +
1

2
kr2

0

Por la proposición 57 en la página 131, sabemos que ~c = ~r0 y ~d =
~v0

ω
⇔ ~v0 = ω~d. Sustituyendo, tenemos:

E =
1

2
mω2d2 +

1

2
kc2

Por la proposición 56 en la página 131, sabemos que es ω2 =
k

m
. Así:

E =
1

2
kd2 +

1

2
kc2 =

1

2
k
(
c2 + d2

)
=

1

2
mω2

(
c2 + d2

)
Q.E.D.

Corolario 22. El movimiento de un oscilador armónico isótropo está restringido al plano que forman los
vectores ~c y ~d si ~c ∦ ~d y sigue la dirección de ~c si ~c ‖ ~d. En este último caso, el movimiento es unidimensional.

Demostración. Supongamos, ~c ∦ ~d. Según la proposición anterior:

m~r × ~̇r = ~LO = mω~c× ~d 6= ~0

Luego ~LO es perpendicular al plano formado por los vectores ~r × ~̇r. Pero, de hecho, ~LO es constante, luego,
necesariamente ~r y ~̇r siempre van a estar en el mismo plano. Como ~LO también es perpendicular a los vectores
~c y ~d, el plano formado por ~r × ~̇r y el formado por ~c y ~d debe ser, necesariamente, el mismo.

Si ~c ‖ ~d, el momento angular ~LO es nulo. Según la proposición 57 en la página 131:

~r (t) = ~c cosωt+ ~d senωt

Como ~c ‖ ~d, necesariamente ~r ‖ ~c y así, la oscilación se produce únicamente en la dirección de ~c. Q.E.D.

Observación 53. El primer caso de este último corolario podría haberse probado también partiendo de la forma
de la solución dada por la proposición 57 en la página 131:

~r (t) = ~c cosωt+ ~d senωt

Si ~c ∦ ~d, ~c y ~d son linealmente independientes y, para cualquier t, ~r va a ser combinación lineal de ~c y ~d. Por
tanto, ~r estará en el plano que forman ~c y ~d.

Lema 10. Sean α, β ∈ R, entonces se cumple:

1.
cos (α+ β) = cosα cosβ − senα senβ

2.
sen (α+ β) = senα cosβ + cosα senβ
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2.10.4. Forma de la trayectoria

Proposición 59. La trayectoria descrita por una partícula sometida a una fuerza ~F como la de la proposición 56
en la página 131 es una elipse siempre que ~c ∦ ~d. Además, la posición de la partícula puede expresarse como:

~r = ~a cos (ωt+ θ) +~b sen (ωt+ θ)

donde ~a,~b ∈ R3 son los semiejes mayor y menor de la elipse (y, por tanto, ~a ⊥ ~b) y θ ∈
[
−π4 , π4

]
. No necesaria-

mente es ~a el semieje mayor de la elipse y ~b el semieje menor, puede ser al revés. Dichos ~a,~b y θ son únicos y
están relacionados con ~c y ~d de la siguiente forma:

θ =
1

2
arctan

(
2~c · ~d
d2 − c2

)
si d 6= c θ =

π

4
si ~d = ~c θ = −π

4
si ~d = −~c

~a = ~c cos θ − ~d sen θ

~b = ~c sen θ + ~d cos θ

~r0 ≡ ~c

~v0

~d

−~c −~d

~a

~b

Demostración. Partimos de lo que queremos probar y vamos a ver que es equivalente a la expresión que ya
teníamos para la posición en la proposición 57 en la página 131.

Por el lema 10 en la página anterior, podemos expresar la fórmula del enunciado como:

~r = ~a (cosωt cos θ − senωt sen θ) +~b (senωt cos θ + cosωt sen θ)

Ahora, supongamos ~a = ~c cos θ − ~d sen θ y ~b = ~c sen θ + ~d cos θ (como viene en el enunciado) y veamos que
llegamos justamente a la expresión de la proposición 57 en la página 131.

~r =
(
~c cos θ − ~d sen θ

)
(cosωt cos θ − senωt sen θ) +

(
~c sen θ + ~d cos θ

)
(senωt cos θ + cosωt sen θ) =

= ~c cosωt cos2 θ − ~c senωt sen θ cos θ − ~d cosωt sen θ cos θ + ~d senωt sen2 θ+

+~c senωt sen θ cos θ + ~c cosωt sen2 θ + ~d senωt cos2 θ + ~d cosωt sen θ cos θ =

= ~c cosωt
(
cos2 θ + sen2 θ

)︸ ︷︷ ︸
=1

+~d senωt
(
sen2 θ + cos2 θ

)︸ ︷︷ ︸
=1

= ~c cosωt+ ~d senωt
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Por tanto, existen θ ∈ R;~a,~b ∈ R3 (no necesariamente únicos [de hecho, no lo son]) tales que podemos
expresar la posición de la partícula como:

~r = ~a cos (ωt+ θ) +~b sen (ωt+ θ)

Examinando las expresiones de ~a y de ~b:

~a = ~c cos θ − ~d sen θ

~b = ~c sen θ + ~d cos θ

podemos ver que si ~c ‖ ~d, ~a ‖ ~c y ~b ‖ ~c, luego ~a ‖ ~b. En este caso, el movimiento es unidimensional como ya
hemos probado en el corolario 22 en la página 133. Así que supondremos ~c ∦ ~d.

Bien, ahora veamos qué condiciones tiene que cumplir θ para que sea ~a ⊥ ~b:(
~c cos θ − ~d sen θ

)
·
(
~c sen θ + ~d cos θ

)
= 0⇔

⇔ c2 sen θ cos θ − ~c · ~d sen2 θ + ~c · ~d cos2 θ − d2 sen θ cos θ = 0⇔

⇔ c2 sen θ cos θ − d2 sen θ cos θ + ~c · ~d
(
cos2 θ − sen2 θ

)
= 0⇔

⇔
(
c2 − d2

) sen 2θ

2
+ ~c · ~d cos 2θ = 0

Si suponemos cos 2θ = 0, necesariamente sen 2θ = ±1⇔ 2θ = π
2 + nπ ∀n ∈ Z⇔ θ = π

4 + nπ ∀n ∈ Z y:

±1

2

(
c2 − d2

)
= 0⇔ c2 = d2 ⇔ c = d

Suponiendo cos 2θ 6= 0, dividimos a ambos lados de la ecuación por 1
2 cos 2θ, obteniendo:

(
c2 − d2

)
tan 2θ + 2~c · ~d = 0⇔ tan 2θ =

2~c · ~d
d2 − c2 ⇔ 2θ = arctan

(
2~c · ~d
d2 − c2

)
⇔

⇔ θ =
1

2
arctan

(
2~c · ~d
d2 − c2

)

nótese que tenemos garantizado que c 6= d porque cos 2θ 6= 0, así que
2~c · ~d
d2 − c2 está bien definido.

Ahora, démonos cuenta de que si θ ∈ R, θ no es único. Notemos arctanx ∈
(
−π2 , π2

)
∀x ∈ R, de esta forma,

en el caso c 6= d si restringimos θ al intervalo
(
−π4 , π4

)
su valor será único, pues si c 6= d, la arcotangente es

inyectiva. En el caso c = d, el valor de θ vendrá dada por una fórmula límite. Claramente, en la expresión:

θ =
1

2
arctan

(
2~c · ~d
d2 − c2

)

θ
~c·~d>0−−−−−−→

d2−c2→0

1

2

π

2
=
π

4
θ

~c·~d<0−−−−−−→
d2−c2→0

−1

2

π

2
= −π

4

De manera que acabamos de probar que siempre hay un θ único en
[
−π4 , π4

]
tal que ~a y~b son perpendiculares.

A partir de ahora, supondremos que θ es tal que ~a y ~b son perpendiculares (ya sabemos que existe así que no
hay ningún problema en hacer esta suposición). Entonces, podemos establecer los ejes coordenados X y Y

coincidentes con las direcciones de ~a y ~b. De forma que la descomposición de ~r (t) en los ejes X e Y queda:

x (t) = a cos (ωt+ θ)⇔ x (t)

a
= cos (ωt+ θ)
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y (t) = b sen (ωt+ θ)⇔ y (t)

b
= sen (ωt+ θ)

Elevando al cuadrado y sumando ambas ecuaciones, obtenemos:

x (t)
2

a2
+
y (t)

2

b2
= cos2 (ωt+ θ) + sen2 (ωt+ θ) = 1

que es justo la ecuación cartesiana de una elipse. Nótese que ~a no tiene que ser necesariamente el semieje mayor
de la elipse (podría serlo ~b perfectamente). Q.E.D.

Proposición 60. El momento angular y la energía del movimiento de una partícula sometida a una fuerza ~F
como la de la proposición 56 en la página 131 en función de los parámetros ~a y ~b de la proposición 59 en la
página 134 queda:

E =
1

2
k
(
a2 + b2

)
=

1

2
mω2

(
a2 + b2

)
~LO = mω~a×~b

Demostración. Partimos de la expresión de la posición dada en la proposición 59 en la página 134 y derivamos
para hallar la velocidad:

~r = ~a cos (ωt+ θ) +~b sen (ωt+ θ)

~̇r = −~aω sen (ωt+ θ) + ω~b cos (ωt+ θ)

Como tanto la energía como el momento son constantes, puedo calcularlos en el instante en el que me sea
más sencillo. Por tanto, escojo un t tal que ~r = ~a. Este t claramente existe puesto que el seno que acompaña a
~b se hace cero para algún t. Entonces, será: ~̇r = ω~b y, así, el cálculo queda muy sencillo:

~LO = m~r × ~̇r = m~a×
(
ω~b
)

= mω~a×~b

E =
1

2
kr2 +

1

2
mṙ2 =

1

2
ka2 +

1

2
mω2b2

Por la proposición 56 en la página 131, sabemos que es ω2 =
k

m
. Por consiguiente:

E =
1

2
ka2 +

1

2
kb2 =

1

2
k
(
a2 + b2

)
=

1

2
mω2

(
a2 + b2

)
Q.E.D.

2.10.5. Métodos de cálculo para |~a| y
∣∣∣~b∣∣∣

Proposición 61. Supongamos que tenemos una partícula sometida a una fuerza ~F como la de la proposición 56
en la página 131. Además conocemos el valor de las constantes ~c y ~d, entonces, |~a| = a y

∣∣∣~b∣∣∣ = b son las dos
únicas soluciones positivas de la ecuación bicuadrada en u:

u4 −
(
c2 + d2

)
u2 + c2d2 sen2 α = 0

donde α es el ángulo que forman c y d.

Demostración. Primero, veamos que efectivamente, tanto a como b son soluciones de la ecuación. Por las pro-
posiciones 58 en la página 132 y 60, tenemos:

mω~c× ~d = ~LO = mω~a×~b⇔ ~a×~b = ~c× ~d

1

2
k
(
c2 + d2

)
= E =

1

2
k
(
a2 + b2

)
⇔ a2 + b2 = c2 + d2 (2.10.1)

Licencia: Creative Commons 136

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 2. MOVIMIENTO OSCILATORIO

2.10. OSCILACIONES TRIDIMENSIONALES. OSCILADOR ARMÓNICO ISÓTROPO

Como es ~a ⊥ ~b, llamando α al ángulo que forman ~c y ~d, de la primera ecuación se deduce:

ab = cd senα⇒ a2b2 = c2d2 sen2 α (2.10.2)

Despejando a2 de la ecuación 2.10.1 en la página anterior y sustituyendo en 2.10.2, obtenemos:

a2 = c2 + d2 − b2

(
c2 + d2 − b2

)
b2 = c2d2 sen2 α⇔ b2

(
c2 + d2

)
− b4 − c2d2 sen2 α = 0⇔

⇔ b4 −
(
c2 + d2

)
b2 + c2d2 sen2 α = 0

Luego b, claramente, satisface la ecuación del enunciado. Ahora, despejando b2 de la ecuación 2.10.1 en la página
anterior y sustituyendo en 2.10.2, obtenemos:

b2 = c2 + d2 − a2

a2
(
c2 + d2 − a2

)
= c2d2 sen2 α⇔ a2

(
c2 + d2

)
− a4 − c2d2 sen2 α = 0⇔

⇔ a4 −
(
c2 + d2

)
a2 + c2d2 sen2 α = 0

Luego a también satisface la ecuación del enunciado.
Ahora probemos que son las únicas dos soluciones positivas. Como la ecuación del enunciado es una bi-

cuadrada, si tenemos una solución λ ∈ R 3 λ > 0, entonces, necesariamente −λ será también solución. Esto
se debe al cambio de variable t = u2 ⇔ u = ±

√
t que se emplea para resolver las ecuaciones bicuadradas.

Es decir, si λ es real y es solución de la ecuación bicuadrada, t = λ2 será solución de la ecuación de segundo
grado correspondiente al cambio de variable. Pero como hemos dicho antes, u = ±

√
t = ±λ, luego −λ también

es solución. Bien, volviendo a nuestro caso particular, como a, b > 0 son soluciones de la ecuación bicuadrada
del enunciado y son reales, −a y −b también serán soluciones. Y, claramente −a,−b < 0. Como una ecuación
de cuarto grado puede tener como mucho cuatro soluciones y ya hemos agotado todas, a y b son las únicas
soluciones positivas. Q.E.D.

Proposición 62. Supongamos que tenemos una partícula de masa m sometida a una fuerza ~F como la de la
proposición 56 en la página 131. Además conocemos el valor de las constantes del movimiento LO y E, entonces,
|~a| = a y

∣∣∣~b∣∣∣ = b son las dos únicas soluciones positivas de la ecuación bicuadrada en u:

u4 − 2E

mω2
u2 +

L2
O

m2ω2
= 0

Demostración. Partimos de la proposición 61 en la página anterior y vamos a expresarla en función del momento
angular y de la energía:

u4 −
(
c2 + d2

)
u2 + c2d2 sen2 α = 0

Por la proposición 58 en la página 132, tenemos:

~LO = mω~c× ~d

E =
1

2
mω2

(
c2 + d2

)
⇔ c2 + d2 =

2E

mω2

Luego:

LO = mωcd senα⇔ cd senα =
LO
mω
⇒ c2d2 sen2 α =

L2
O

m2ω2

donde α es el ángulo que forman ~c y ~d.
Ahora, simplemente sustituyendo en la ecuación bicuadrada en u, tenemos:

u4 − 2E

mω2
u2 +

L2
O

m2ω2
= 0

con lo que queda probado el enunciado. Q.E.D.
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2.10.6. Ejemplos
Ejercicio 8. Tenemos una partícula de masa m cuya posición describe una oscilación armónica isótropa con

condiciones iniciales
{
~r0 = 2̂i+ ĵ

~v0 = 4̂i− 8ĵ
. Calcular su órbita y analizar el efecto de ω en ella. Obtener, también, la

energía y el momento angular.

Solución.
Por la proposición 57 en la página 131, sabemos:

~c = ~r0

ω~d = ~v0

Ahora, queremos hallar el valor de ~a y ~b. Por la proposición 59 en la página 134, tenemos que es:

tan 2θ =
2~c · ~d
d2 − c2 = 0⇔ 2θ = 0, π, 2π, 3π ⇔ θ = 0,

π

2
, π,

3π

2

Nótese que estamos suponiendo que θ ∈ [0, 2π), mientras que en la proposición en cuestión nos restringíamos
a θ ∈

[
−π4 , π4

]
. Como consecuencia, los vectores ~a y~b no serán únicos, pero la trayectoria trazada por la partícula

sí lo será, como veremos más adelante.
Obtenemos:

c2 = 22 + 1 = 5 d2 =
42

ω2
+

82

ω2
=

24 + 26

ω2
=

24
(
1 + 24

)
ω2

=
16 · 5
ω2

Si hacemos ω = 4, obtenemos c = d y tenemos una circunferencia. Si hacemos ω < 4, entonces d > c,
mientras que si ω > 4 entonces c > d. En estos dos casos, obtenemos una elipse.

~d

~c

donde la trayectoria negra es la circunferencia negra que se correspondería con ω = 4, la elipse roja se
correspondería con ω > 4 y la elipse marrón se correspondería con ω < 4.

Estudiemos ahora todos los posibles valores de θ. Recordemos que por la proposición 59 en la página 134,
es:

~a = ~c cos θ − ~d sen θ

~b = ~c sen θ + ~d cos θ

Si θ = 0:
~a = ~c

~b = ~d
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Si θ = π
2 :

~a = −~d
~b = ~c

Si θ = π:
~a = −~c
~b = −~d

Si θ = 3π
2 :

~a = ~d

~b = −~c

Como vemos, en todos estos casos la elipse que se forma es la misma y únicamente cambia qué tomamos como
semieje mayor y qué tomamos como semieje menor.

Ahora, calculamos la energía. Aplicando la proposición 60 en la página 136, tenemos:

E =
1

2
k
(
a2 + b2

)
=

1

2
mω2

(
5 +

80

ω2

)
Para obtener el momento angular, utilizamos la proposición 58 en la página 132:

~LO = m~r0 × ~v0 = −20mk̂

Ejercicio 9. Tenemos una partícula sometida a una fuerza ~F = −kr̂ a distancia r0 del centro de fuerzas.
¿Qué condiciones debe cumplir ~v0 para que la trayectoria sea circular? Suponiendo que la partícula describe
una órbita circular, le realizamos un impulso radial ~I = m∆~v. Estudiar cómo varían la energía y el momento
angular.

~r0

~v0 ~v′0

~I = m∆~v

Solución. Tomando ~c = ~r0, para que la órbita sea circular debe ser c = d y además ~c ⊥ ~d. Por tanto,
c = d⇔ r0 = v0

ω ⇔ v0 = r0ω. Por tanto, deben ser ~r0 ⊥ ~v0 y v0 = ωr0.
Sabemos que la energía tras el impulso E′, será:

E′ =
1

2
m

(
v2

0 +

(
I

m

)2
)

+
1

2
kr2

0 =
1

2
mv2

0 +
1

2
kr2

0︸ ︷︷ ︸
=E

+
1

2
m

(
I

m

)2

=
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=
1

2
m

(
I

m

)2

︸ ︷︷ ︸
>0

+E ⇒ E′ > E

Nótese que el nuevo impulso se hace a lo largo de la dirección radial y que, por tanto, la velocidad inicial
radial (antes de aplicar el impulso) es nula.

Como el impulso es instantáneo:

r′0 = r0

El módulo de la velocidad también aumentará:

v′0 > v0

Sin embargo, el momento angular permanecerá constante, puesto que para su cálculo únicamente interviene
la componente de la velocidad perpendicular a la dirección radial:

L′O = m~r ×
(
~v0 +

~I

m

)
= m~r × ~v0︸ ︷︷ ︸

=LO

+m ~r × ~I︸ ︷︷ ︸
~r‖~I⇒=~0

= LO
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Capítulo 3

Fuerzas centrales conservativas

3.1. Leyes de conservación
Recomendamos repasar todas las secciones del tema uno entre la sección 1.3 en la página 12 y la sección 1.5.3

en la página 21, ambas inclusive. En especial, las definiciones 4 en la página 12, 5 en la página 14, 12 en la
página 20, 14 en la página 21; el teorema 5 en la página 21; las proposiciones 4 en la página 13, 7 en la
página 22, 8 en la página 22; así como el corolario 2 en la página 22.

3.1.1. Momento angular en coordendas polares y relaciones con la velocidad
Recordemos que en coordenadas polares teníamos:

vr = ṙ vθ = rθ̇

Proposición 63. El momento angular en coordenadas polares viene dado por la expresión:

~LO = mr2θ̇k̂

donde k̂ = r̂ × θ̂.
Demostración. Nótese que:

~̇r = ṙr̂ + rθ̇θ̂

Así, aplicando la definición de momento angular de una partícula (ver definición 12 en la página 20), tenemos:

~LO = m~r × ~̇r = m~r ×
(
ṙr̂ + rθ̇θ̂

)
= mṙ ~r × r̂︸ ︷︷ ︸

=~0

+mrθ̇ ~r × θ̂︸ ︷︷ ︸
=k̂

= mr2θ̇k̂

Q.E.D.

Corolario 23. La proposición anterior nos permite expresar θ̇ y la velocidad vθ en el eje θ̂ (el perpendicular al
radial) en función del momento angular:

θ̇ =
LO
mr2

vθ =
LO
mr

Demostración. Partimos de la proposición anterior:

LO = mr2θ̇ ⇔ θ̇ =
LO
mr2

Por otra parte:
mr2θ̇ = mrvθ

Así que:

mrvθ = LO ⇔ vθ =
LO
mr

Q.E.D.
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Observación 54. En general, θ̇ y vθ no serán constantes. Sólo serán constantes en el caso en el que r = cte, es
decir, cuando la trayectoria sea una circunferencia.

Observación 55. A partir de este momento usaremos ~L en vez de ~LO para referirnos al momento angular ya
que sobreentederemos que es el momento angular con respecto al centro de fuerzas.

3.1.2. Parámetros del movimiento debido a una fuerza central conservativa
Proposición 64. El movimiento de una partícula de masa m sometida a una fuerza central conservativa ~F tiene
asociadas dos constantes, la energía mecánica y el momento angular. En coordenadas polares dichas constantes
nos dan las ecuaciones:

E =
1

2
m
(
ṙ2 + r2θ̇2

)
+ V (r)

L = mr2θ̇

donde V (r) es la función energía potencial asociada a ~F .

Demostración. Como ~F es una fuerza central, por la proposición 7 en la página 22, su momento angular se
conserva. Además, como ~F es una fuerza conservativa, por el teorema 7 en la página 25, la energía se conserva.
Por la proposición 8 en la página 22, el potencial asociado a ~F sólo puede depender de r. La energía mecánica
E en un punto a distancia r del centro de fuerzas viene dada por:

E =
1

2
m~̇r 2 + V (r)

Como ~̇r = ṙr̂ + rθ̇θ̂, tenemos:

E =
1

2
m
(
ṙ2 + r2θ̇2

)
+ V (r)

Por otra parte, por la proposicón 63 en la página anterior en coordenadas polares el momento angular puede
expresarse como:

L = mr2θ̇

Q.E.D.

Proposición 65 (Ecuación radial de la energía). Sea un partícula de masa m sometida a una fuerza central
conservativa ~F . Entonces se cumple:

1

2
mṙ2 +

L2

2mr2
+ V (r) = E

donde el término
L2

2mr2
es la energía potencial de una fuerza centrífuga ~Fc =

L2

mr3
r̂ = mθ̇2~r que es central y con-

servativa. Dicha fuerza centrífuga se corresponde con aquella fuerza inercial que aparecería para un observador
que girara con el ángulo θ.

Demostración. Partimos de la proposición 64:

E =
1

2
m
(
ṙ2 + r2θ̇2

)
+ V (r)

L = mr2θ̇ ⇔ θ̇ =
L

mr2

Despejando θ̇ de la segunda ecuación y sustituyendo en la primera, obtenemos:

E =
1

2
mṙ2 +

1

2
mr2 L2

m2r4
+ V (r) =

1

2
mṙ2 +

L2

2mr2
+ V (r)

Por la proposición 8 en la página 22, trivialmente, el término
L2

2mr2
es la energía potencial asociada a una

fuerza que es central y conservativa. Dicha fuerza es:
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~Fc = −∂V
∂r

r̂ = −
(
−2

L2

2mr3

)
r̂ =

L2

mr3
r̂

Por otra parte, sustituyendo L por el valor dado en la proposición 64 en la página anterior, obtenemos:

~Fc =
m2r4θ̇2

mr3
r̂ = mrθ̇2r̂ = mθ̇2~r

Sólo nos quedaría probar que ~Fc se corresponde con aquella fuerza inercial que aparecería para un observador
que girara con el ángulo θ. Esto no lo vamos a probar ahora, lo haremos en el capítulo sexto. Q.E.D.

Corolario 24. Sea un partícula de masa m sometida a una fuerza central conservativa ~F . Entonces su distancia
al centro de fuerzas satisface la ecuación diferencial:

r̈ − L2

m2r3
− F (r)

m
= 0

Demostración. Partimos de la proposición anterior y derivamos con respecto al tiempo:

1

2
m2ṙr̈ +

L2

2m

(
− 2

r3
ṙ

)
+
dV

dt
=
dE

dt
= 0⇔

mṙr̈ − L

mr3
ṙ +

∂V

∂r
(r)

dr

dt︸︷︷︸
=ṙ

= 0⇔

⇔ mṙr̈ − L

mr3
ṙ +

∂V

∂r
(r) ṙ = 0

ya que la energía es una constante del movimiento por la proposición 64 en la página anterior. Usando
∂V

∂r
(r) = −F (r), llegamos a:

mṙr̈ − L2

mr3
ṙ − F (r) ṙ = 0

Dividiendo por mṙ, obtenemos:

r̈ − L2

m2r3
− F (r)

m
= 0

Q.E.D.

Definición 81. Llamaremos energía potencial efectiva Veff a los términos no cinéticos que aparecen en la
ecuación radial de la energía (ver proposición 65 en la página anterior):

Veff (r) :=
L2

2mr2
+ V (r)

Observación 56. Muchas veces podremos hacer un análisis cualitativo del movimiento de una partícula en un
campo central conservativo simplemente mirando la gráfica de la energía potencial efectiva y teniendo en cuenta
la energía de la partícula.

Definición 82. Sea un partícula de masa m sometida a una fuerza central ~F . Llamamos velocidad aerolar
al área barrida por el vector posición de la partícula con respecto al centro de fuerzas por unidad de tiempo.

Teorema 19 (2ª ley de Kepler). Sea un partícula de masa m sometida a una fuerza central ~F . Entonces el
vector posición de la partícula barre áreas iguales en tiempos iguales y la velocidad aerolar es:

dA

dt
=

L

2m

Demostración. Consideremos el área encerrada entre el vector posición en un instante t0 y el vector posición en
t = t0 + dt. En ese dt, el extremo del vector posición se habrá desplazado una distancia rdθ. Como rdθ es muy
pequeño en comparación con r, podemos considerar que la figura es un triángulo rectángulo de base r y altura
rdθ. Por tanto su área será:

dA =
1

2
rrdθ =

1

2
r2dθ
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θ
r

rdθ
O

Dividiendo por dt, obtenemos:
dA

dt
=

1

2
r2 dθ

dt
=

1

2
r2θ̇

Como la fuerza es central, por la proposición 7 en la página 22, su momento angular es constante. Usando
el corolario 23 en la página 141, podemos poner θ̇ en función de L:

θ̇ =
L

mr2

y sustituyendo, tenemos:

dA

dt
=

1

2
r2 L

mr2
=

L

2m

Como la velocidad aerolar es constante, el vector posición de la partícula barre áreas iguales en tiempos
iguales. Q.E.D.

Observación 57. Nótese que el resultado anterior es válido para cualquier fuerza central ~F , no sólo para la
fuerza gravitatoria.

3.1.3. Caso del oscilador armónico isótropo
3.1.3.1. Análisis cualitativo de la energía potencial efectiva Veff

Estudiemos la gráfica del potencial efectivo Veff para el caso del oscilador armónico isótropo. Recordemos
que, en este caso, la energía potencial V (r) venía dada por:

V (r) =
1

2
kr2

De manera que el potencial efectivo queda:

Veff (r) =
L2

2mr2
+

1

2
kr2

La gráfica queda:
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b ′ a= b a ′
r

E

E ′

Veff

Veff
1
2
kr2

L 2

2mr2

Vemos claramente cómo el potencial efectivo Veff tiene un mínimo. Si conocemos la energía con la que
cuenta nuestra partícula (supongamos que tiene energía E′), entonces viendo la gráfica ya sabemos que r va a
oscilar entre b′ y a′ y que en dichos puntos será ṙ = 0, porque toda la energía con la que cuenta la partícula será
energía potencial efectiva (su cinética será nula). Por la proposición 59 en la página 134, de hecho, sabemos que
la trayectoria de la partícula es una elipse y que a y b son sus semiejes mayor y menor. En este caso, el centro
de fuerzas está en el centro de la elipse.

Si nuestra partícula contara con una energía E, entonces obtendríamos que es a = b y siempre es ṙ = 0. En
este caso, en el mínimo de energía, la trayectoria sería una circunferencia.

Por último, nótese que nuestra partícula no puede tener menos energía potencial efectiva que E. Pues, por el
simple hecho de encontrarse a cierta distancia r ya tiene energía potencial efectiva y hemos visto que el mínimo
de la función vale E. Si esta reflexión no ayuda, ver de nuevo la expresión matemática de Veff puede que ayude
a asentar la idea.

Observación 58. Recordamos que los puntos a y b vienen dados por la proposición 62 en la página 137.

Observación 59. Imaginemos una función energía potencial con esta forma:
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E2

E1

VeffV

r

Para una energía E1 tendríamos una circunferencia y para una energía E2 tendríamos o bien una circunfe-
rencia o bien una elipse dependiendo de las condiciones iniciales.

Proposición 66. Sea una partícula de masa m sometida a una oscilación armónica isótropa. El valor de r que
hace que la trayectoria sea circular es:

r0 =
4

√
L2

mk

Además el valor mínimo de la energía potencial efectiva se alcanza en r0 y vale:

Veff,mín = L

√
k

m

Por otra parte, cuando r = r0 (una órbita circular) la energía cinética y potencial son iguales ∀t y su valor
coincide con la mitad de la energía mecánica:

T = V =
E

2
=
L

2

√
k

m

Demostración. Utilizando la proposición 62 en la página 137 y la proposición 56 en la página 131, sabemos que
a, b son las soluciones positivas de la ecuación bicuadrada en u:

u4 − 2E

k
u2 +

L2

mk
= 0

Hallamos las raíces:

u =

√√√√ 2E
k ±

√
4E2

k2 − 4L2

mk

2

Para que la solución sea única, debe ser:

4E2

k2
− 4L2

mk
= 0⇔ E2

k
=
L2

m
⇔ E√

k
=

L√
m
⇔ E = L

√
k

m

Expresando E en función de r, tenemos:

1

2
mṙ2 +

L2

2mr2
+

1

2
kr2 = L

√
k

m
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Si la trayectoria es circular, debe ser ṙ = 0, así, la expresión anterior queda:

L2

2mr2
+

1

2
kr2 = L

√
k

m

Multiplicando a ambos lados por r2, tenemos:

L2

2m
+

1

2
kr4 = L

√
k

m
r2

Multiplicando por 2
k , obtenemos:

L2

mk
+ r4 =

2L

k

√
k

m
r2 ⇔ r4 − 2L√

mk
r2 +

L2

mk
= 0

Como r > 0, tenemos:

r =

√√√√ 2L√
mk
−
√

4L2

mk − 4L2

mk

2
=

√
2L√
mk

2
=

√
L√
mk

=
4

√
L2

mk

En el caso del oscilador armónico isótropo, la energía potencial efectiva es:

Veff (r) =
L2

2mr2
+

1

2
kr2

Hallemos sus puntos críticos:

dVeff
dr

(r) = −2
L2

2mr3
+

1

2
k2r = − L2

mr3
+ kr

dVeff
dr

(r) = 0⇔ kr =
L2

mr3
⇔ mkr4 = L2 ⇔ r4 =

L2

mk
⇔ r =

4

√
L2

mk

Así que efectivamente r0 = 4

√
L2

mk es un punto crítico de Veff . Sustituyendo en Veff , obtenemos que el valor del
punto crítico es:

Veff (r) =
L2

2m L√
mk

+
1

2
k

L√
mk

=
L

2

√
k

m
+
L

2

√
k

m
= L

√
k

m

Como r0 es el único punto crítico, para ver que es mínimo absoluto basta con que estudiemos el comportamiento
de Veff en los extremos del intervalo de estudio [0,∞):

ĺım
r→0

Veff (r) = ĺım
r→0

(
L2

2mr2
+

1

2
kr2

)
=∞

ĺım
r→∞

Veff (r) = ĺım
r→∞

(
L2

2mr2
+

1

2
kr2

)
=∞

Así, necesariamente r0 es un mínimo absoluto de Veff .
Ahora, calculamos la energía potencial V y la energía cinética cuando r = r0:

V =
1

2
kr2

0 T =
1

2
m

(
ṙ2︸︷︷︸
=0

+r2θ̇2

)
=

1

2
mr2θ̇2

Por el corolario 23 en la página 141, sabemos:

θ̇ =
L

mr2
0

⇒ θ̇2 =
L2

m2r4
0
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y como es r4
0 =

L2

mk
, sustituyendo, obtenemos:

θ̇ =
L2

m2 L2

mk

=
k

m

Sustituyendo en la expresión de la energía cinética, obtenemos:

T =
1

2
mr2θ̇2 =

1

2
mr2 k

m
=

1

2
kr2

Y así T = V . Y como la energía mecánica es E = T + V :

T + V︸︷︷︸
=T

= E ⇔ 2T = E ⇔ V = T =
E

2

Como es ṙ = 0, según la ecuación radial de la energía (ver proposición 65 en la página 142), la energía
potencial efectiva es igual a la energía total. Por tanto:

V = T =
E

2
=
Veff,mín

2

Q.E.D.

3.1.3.2. Cambio de órbitas, caso particular: oscilador armónico isótropo en órbita circular

Tenemos una partícula sometida de masa m, cuya posición sufre una oscilación armónica isótropa. Partimos
de un movimiento circular de radio R con una energía Ei y momento angular Li.

Impulso radial: Ahora, le damos un impulso radial hacia fuera con una velocidad vr.

R

Rθ̇

vr = I
m

Nos preguntamos cuál es la energía y el momento angular final. Como vimos en el ejercicio 9 en la página 139,
Lf = Li pues un momento radial no genera momento angular y, en consecuencia, el momento angular no cambia.
Así, al ser v2 = R2θ̇2 + v2

r , Ef es de la forma:

Ef =
1

2
mv2 +

1

2
kR2 =

1

2
m

R2θ̇2 + v2
r︸︷︷︸

=( Im )
2

+
1

2
kR2 =

1

2
mR2θ̇2 +

1

2
kr2︸ ︷︷ ︸

=Ei

+
1

2
m

(
I

m

)2

=

=
1

2
m

(
I

m

)2

+ Ei

donde I
m = vr.
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Impulso tangencial 1: Ahora, aplicamos un impulso tangencial tal que vf =
vi
2
.

R

vi

vf = vi
2

En consecuencia:

Lf = mRvf =

=Li︷ ︸︸ ︷
mRvi

1

2
=
Li
2

Ef =
1

2
mv2

f +
1

2
kR2 =

1

2
m
(vi

2

)2

+
1

2
kR2 =

1

4

1

2
mv2

i︸ ︷︷ ︸
=Ti

+
1

2
kR2︸ ︷︷ ︸
Vi

=
Ti
4

+ Vi < Ei

Veamos la situación gráficamente:
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b R= a

R

Ef

Ei

E

1
2
kR 2

L 2
i

2mR 2

L 2
f

2mR 2

Veff, i
Veff, f
1
2
m( Im)2

Podemos fácilmente localizar la nueva energía cualitativamente en la gráfica, porque la partícula se sigue
encontrando a distancia R.

Impulso tangencial 2: Ahora, aplicamos un impulso tangencial tal que vf = 2vi.
En consecuencia:

Lf = mRvf =

=Li︷ ︸︸ ︷
mRvi 2 = 2Li

Ef =
1

2
mv2

f +
1

2
kR2 =

1

2
m (2vi)

2
+

1

2
kR2 = 4

1

2
mv2

i︸ ︷︷ ︸
=Ti

+
1

2
kR2︸ ︷︷ ︸
Vi

= 4Ti + Vi > Ei

De nuevo, veamos la situación gráficamente:
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R= b a

R

Ei

Ef

E

1
2
kR 2

L 2
i

2mR 2

L 2
f

2mR 2

Veff, i
Veff, f
1
2
m( Im)2

3.2. Cónicas
Agradecimientos 3. Esta sección se debe en su totalidad a Juan Guerrero Marcos.

Para las curvas cónicas se cumple:

r

[
e cos (θ − θ0)− k

|k|

]
= l

Donde r es la distancia desde el foco de la cónica hasta el punto situado en un ángulo θ, θ0 es la inclinación de
la curva respecto al ángulo cero del eje de coordenadas, k es la parte de la fuerza independiente de la posición
(aunque únicamente está presente para indicar la naturaleza atractiva o repulsiva de la fuerza central que crea
la trayectoria), e es la excentricidad de la curva y l es el semi latus rectum.

En función del valor de e, pueden distinguirse tres tipos de curvas cónicas: elipse, hipérbola y parábola.

3.2.1. Elipse
Tiene lugar si el valor de la excentricidad está comprendido en el intervalo [0, 1).
Para una elipse, las longitudes de los semiejes mayor y menor serán a y b, respectivamente y la distancia de

uno de los focos al centro, c.
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A B

D

C

O

a

b

c

l

F1 F2

X

3.2.1.1. Relaciones

Se cumplen las siguientes relaciones:

a2 = b2 + c2 (3.2.1)

l =
b2

a
(3.2.2)

F1X + F2X = 2a, ∀X (3.2.3)

3.2.1.2. Circunferencia

Un caso particular se da si e = 0, por lo que r será constante y la curva se llamará circunferencia.
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O

X

r

Entonces a = b, por lo que l = b = r.

3.2.2. Hipérbola
Si la excentricidad de la cónica es superior a la unidad (e > 1), entonces aparecen dos ramas que tienden

asintóticamente a dos rectas que se intersectan en el origen O.
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O F2F1
ac

b
c

Θ

3.2.2.1. Relaciones

Se cumplen las siguientes relaciones:

c2 = a2 + b2 (3.2.4)

l =
b2

a
(3.2.5)

|F1X − F2X| = 2a, ∀X (3.2.6)

3.2.3. Parábola
Cuando la excentricidad de la curva es de valor unidad (e = 1), la cónica descrita es una parábola.
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F

X

V

P

lx lP

l

l

|XF |

|Xlx|

3.2.3.1. Relaciones

Entonces se cumplen:

l = 2FV (3.2.7)

FX = Xlx, ∀X (3.2.8)

3.3. Ley cuadrática inversa
Vamos a considerar fuerzas del tipo:

~F =
k

r2
r̂

Notemos que la fuerza dada arriba es central conservativa pues ∃V : R3 −→ R diferenciable tal que

F = −∂V
∂r

r̂ (hemos usado la proposición 8 en la página 22). Dicha función V (r) es:

V (r) =
k

r

De manera que el potencial efectivo queda:

Veff =
L2

2mr2
+
k

r

Diremos que la fuerza es repulsiva si k > 0 y diremos que la fuerza es atractiva si k < 0.

Definición 83. Diremos que la trayectoria de una partícula es abierta o no acotada cuando o bien proviene
del infinito, o bien llega hasta el infinito o ambas.

Análogamente, diremos que la trayectoria de una partícula es cerrada o acotada cuando la partícula ni
proviene del infinito ni llega al infinito.
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Definición 84. Sea una partícula sobre la que actúa una fuerza ~F . Llamamos parámetro de impacto b con
respecto al centro de fuerzas de ~F a la mínima distancia entre el centro de fuerzas y la trayectoria de la partícula
si fuese ~F = ~0.

Alternativamente, en el contexto de teoría de colisiones puede definirse el parámetro de impacto como la
distancia perpendicular desde la trayectoria de entrada en línea recta del proyectil hasta un eje paralelo que
pasa por el centro del blanco.

r

O

b

~v∞
m

3.3.1. Caso k > 0

Proposición 67. La trayectoria de una partícula sometida a una fuerza el tipo:

~F =
k

r2
r̂

con k > 0 siempre es abierta. La energía potencial efectiva de la partícula no tiene mínimo. La mínima distancia
entre la partícula y el centro de fuerzas se alcanza en:

r =
k

2E
+

√
k2

4E2
+ b2 := rmín

donde b es el parámetro de impacto y E es la energía de la partícula (que sabemos que es una constante del
movimiento).
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r

E

L

2mr2

k
r
Veff

Demostración. El potencial efectivo de la partícula es:

Veff =
L2

2mr2
+
k

r

Derivamos para buscar los puntos críticos:

dVeff
dr

=
L2

2m
(−2)

1

r3
+ k (−1)

1

r2
=
−L2

mr3
− k

r2
< 0

pues L,m, r, k > 0.
Por tanto, la expresión no anterior no se anula nunca y, en consecuencia, el potencial efectivo no tiene puntos

críticos en nuestro intervalo de interés. Únicamente queda considerar el comportamiento de la función en el cero
y en el infinito:

L2

2mr2
+
k

r
−−−→
r→0

∞

L2

2mr2
+
k

r
−−−→
r→∞

0

De forma que la función tiene ínfimo (0) pero no mínimo.
Como hemos visto antes, la derivada es siempre estrictamente negativa, luego nuestra función es estrictamente

decreciente en (0,∞). Para que la trayectoria sea cerrada, debería haber al menos dos valores del potencial
efectivo que se correspondieran con el mismo valor de r. Pero esto es imposible, pues como la función es
estrictamente decreciente y continua en (0,∞) es inyectiva y, si es inyectiva, a cada valor de r le corresponde
un único valor de Veff . Por consiguiente, las trayectorias son siempre abiertas.

Para probar la última parte, vamos a aplicar que sabemos calcular el valor de la energía en el límite del
infinito:
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E = ĺım
r→∞

(
1

2
mv2 +

k

r

)
=

1

2
mv2
∞

Para calcular el momento angular en el infinito vamos a aplicar un truco bastante elaborado y puede que algo
difícil de comprender. En el infinito, como hemos visto antes, la energía potencial se hace cero, luego es como
si no hubiera fuerzas. Si no tenemos fuerzas, el momento angular desde cualquier punto O debe conservarse
por el teorema 5 en la página 21. Tomemos O como el centro de fuerzas de nuestra fuerza ~F . En ausencia de
fuerzas, sabemos que la distancia mínima entre la trayectoria y nuestro punto O es b por la definición 84 en
la página 156. Como la distancia mínima siempre es en perpendicular, sabemos que ~b ⊥ ~̇r. Luego, el momento
angular en el punto de mínima distancia (en el caso de ausencia de fuerzas) es:

L = mbv∞

dado que la velocidad en ausencia de fuerzas es constante por la primera ley de Newton (ver teorema 1 en la
página 8). Pero, como el momento angular se conserva en ausencia de fuerzas, el momento angular en el infinito
también será L = mbv∞ y así (volviendo a nuestro caso inicial con ~F ), como en el infinito es como si no hubiera
fuerzas, el momento angular de nuestra partícula sometida a la fuerza ~F en el infinito también es L = mbv∞.
Por último, como ~F es central, su momento angular es constante y así el momento angular de nuestra partícula
es siempre:

L = mbv∞

Como Veff es estrictamente decreciente, sabemos que dado un nivel de energía fijo E, la menor distancia va
a darse cuando sea E = Veff (r). Así, tenemos:

1

2
mv2
∞ = E =

=L2︷ ︸︸ ︷
m2b2v2

∞
2mr2

mín
+

k

rmín

Dividiendo por 1
2mv

2
∞ a ambos lados, tenemos:

1 =
b2

r2
mín

+
k

1

2
mv2
∞︸ ︷︷ ︸

=E

rmín

=
b2

r2
mín

+
k

Ermín
⇔

⇔ r2
mín = b2 +

k

E
rmín ⇔ r2

mín −
k

E
rmín − b2 = 0⇔

⇔ rmín =

k
E ±

√
k2

E2 + 4b2

2
=

k

2E
±
√

k2

4E2
+ b2

donde descartamos la solución negativa pues
k2

4E2
+ b2 ≥ k2

4E2
y, por tanto, la solución con el − siempre es

negativa o cero (y sólo es cero si es b2 = 0) y r ≥ 0. Q.E.D.

La proposición anterior podría aplicarse en el siguiente ejemplo:

Ejemplo 21. Una partícula de carga q se mueve en el campo creado por q′ (qq′ > 0), fija en O. Inicialmente q
se encuentra muy lejos de O con v cuya dirección dista b de 0.

Licencia: Creative Commons 158

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 3. FUERZAS CENTRALES CONSERVATIVAS

3.3. LEY CUADRÁTICA INVERSA

~v

q′
b

q

rmı́n
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rmı́n = a+ c

q

~v

a

c

q′ O

X

Y

3.3.2. Caso k < 0

Definición 85. Llamamos semi latus rectum l a:

l :=
L2

m |k|

Dimos una definición más gráfica de este concepto en la sección 3.2 en la página 151.

Proposición 68. La trayectoria de una partícula sometida a una fuerza el tipo:

~F =
k

r2
r̂

con k < 0 puede ser tanto abierta como cerrada. Existe el mínimo de la energía potencial efectiva, se alcanza

en r = l y vale Veff,mín = −|k|
2l

=
V (l)

2
. Tenemos la siguiente casuística:

Si la energía potencial efectiva es mínima E = Veff,mín, entonces el movimiento es circular de radio r = l.
Además, se da:

E =
V (l)

2
= −T
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y la velocidad del movimiento circular viene dada por la expresión:

v =

√
|k|
ml

Si Veff,mín < E < 0, entonces tendremos una órbita cerrada cuya distancia mínima y máxima son las dos
soluciones de la ecuación en r:

r2 − k

E
r +

kl

2E
= 0

Si E = 0, entonces la trayectoria es abierta y la distancia mínima es:

rmín =
l

2

Además, la velocidad de la partícula es nula en el infinito v∞ = 0.

Si E > 0, entonces la trayectoria es abierta y la distancia mínima es la única solución positiva de la
ecuación en r:

r2 +
|k|
E
r − |k| l

2E
= 0

Además, el módulo de la velocidad en el infinito es mayor que cero v∞ > 0.

r

E

L

2mr2

−|k|r
Veff

Demostración. En este caso, utilizando la definición 85 en la página anterior, la energía potencial efectiva viene
dada por:

Veff =
L2

2mr2
− |k|

r
= |k|

(
l

2r2
− 1

r

)

Licencia: Creative Commons 161

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 3. FUERZAS CENTRALES CONSERVATIVAS

3.3. LEY CUADRÁTICA INVERSA

Hallemos sus puntos críticos:

dVeff
dr

= |k|
(
l

2
(−2)

1

r3
− (−1)

1

r2

)
= |k|

(
− l

r3
+

1

r2

)
dVeff
dr

= 0
k 6=0⇐=⇒ − l

r3
+

1

r2
= 0⇔ l

r3
=

1

r2
⇔ l = r

Bien, ahora hallemos el valor de Veff en el mínimo:

Veff,mín = Veff (r = l) = |k|
(

l

2l2
− 1

l

)
=
|k|
l

(
1

2
− 1

)
= −|k|

2l
=
V (l)

2
< 0

Para ver que es un mínimo absoluto tenemos que estudiar la función Veff en el infinito y en el cero:

Veff = |k|
(

l

2r2
− 1

r

)
= |k|

(
l − 2r

2r2

)

ĺım
r→0

Veff = |k| ĺım
r→0

(
l

r2

)
=∞

ĺım
r→∞

Veff = |k| ĺım
r→∞

(
− r

r2

)
= − |k| ĺım

r→∞

(
1

r

)
= 0

En consecuencia, efectivamente r = l es un punto de mínimo absoluto.

Si E = Veff,mín entonces r es una constante del movimiento y en consecuencia ṙ = 0 y la trayectoria es
circular de radio r = l. Además, por lo visto antes, tenemos:

E = Veff,mín =
V (l)

2

Por tanto, como es E = T + V , será:

V (l)

2
= T + V (l)⇔ T = −V (l)

2
⇔ 1

2
mv2 = −V (l)

2
=
|k|
2l
⇔

⇔ v2 =
|k|
ml
⇔ v =

√
|k|
ml

Si es Veff,mín < E < 0, entonces, por la ecuación radial de la energía (ver proposición 65 en la página 142):

0 > E =
1

2
mṙ2 + Veff (r) =

1

2
mṙ2 + |k|

(
l

2r2
− 1

r

)
Como el único punto crítico de Veff es un mínimo relativo que se da en r = l, sabemos que para todo r < l
la función Veff es estrictamente decreciente y para todo r > l la función Veff es estrictamente creciente.
Por tanto, los valores máximos y mínimos de r se darán cuando E = Veff (r) ⇔ ṙ = 0. Así, tenemos la
ecuación:

E = |k|
(

l

2r2
− 1

r

)
= |k|

(
l − 2r

2r2

)
⇔ E2r2 = |k| (l − 2r)⇔

⇔ 2Er2 + 2 |k| r − |k| l = 0⇔ r2 +
2 |k|
2E

r − |k| l
2E

= 0

Como es E < 0, podemos expresar la ecuación de arriba como:

r2 − |k||E|r +
|k| l
2 |E| = 0⇔ r2 − k

E
r +

kl

2E
= 0⇔

⇔ r =

k
E ±

√
k2

E2 − 4kl
2E

2
=

k
E ±

√
k2−2klE

E2

2
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Como es E > Veff,mín, debe ser E > −|k|
2l

=
k

2l
. Así:

E >
k

2l
⇔ 2klE <

2k2

2
= k2

porque es k < 0. Por tanto:
k2 − 2klE > 0

En consecuencia, sabemos que las raíces de la ecuación son reales. Por otra parte, como −2klE < 0:

k2 − 2klE

E2
<
k2

E2

Y, por lo tanto:

r ≥
k
E −

√
k2

E2 − 4kl
2E

2
>

k
E −

√
k2

E2

2
=

k
E − k

E

2
= 0

Así, es las dos soluciones de la ecuación anterior son siempre positivas. Y como siempre tenemos garantizado
que existen dos soluciones reales y positivas, es decir, que hay una distancia máxima y otra mínima, la
órbita es cerrada.

Si es E = 0, por el mismo argumento que antes, los valores máximos y mínimos de r se darán cuando
E = Veff (r)⇔ ṙ = 0. Así, tenemos la ecuación:

0 = E = |k|
(

l

2r2
− 1

r

)
= |k|

(
l − 2r

2r2

)
⇔ l − 2r = 0⇔ r =

l

2

Como la solución es única, necesariamente debe corresponderse con la distancia mínima. Por tanto, la
trayectoria es abierta, ya que no hay una distancia máxima.
Por último cuando r →∞, tenemos:

0 = E = T + V =
1

2
mv2
∞ −

|k|
r︸︷︷︸
→0

⇔ 1

2
mv2
∞ = 0⇔ v∞ = 0

Si es E > 0, por el mismo razonamiento hecho en el segundo apartado, llegamos a la ecuación:

r2 +
2 |k|
2E

r − |k| l
2E

= 0

Como es E > 0, podemos reescribir la ecuación anterior como:

r2 +
|k|
E
r − |k| l

2E
= 0⇔

⇔ r =
− |k|E ±

√
k2

E2 + 4|k|l
2E

2
=
− |k|E ±

√
k2+2|k|lE

E2

2

Claramente las dos soluciones son reales pues:

k2 + 2 |k| lE
E2

> 0

Por otra parte, vemos cómo una solución es negativa. Probemos que la solución correspondiente al + es
positiva. Tenemos:

k2 + 2 |k| lE
E2

>
k2

E2

porque |k| , l, E, 2 > 0. Luego:

−|k|
E

+

√
k2 + 2 |k| lE

E2
> −|k|

E
+

√
k2

E2
= −|k|

E
+
|k|
E

= 0
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En consecuencia, tenemos una solución positiva que necesariamente se corresponderá con la mínima dis-
tancia y una solución negativa que no tiene significado físico. Por ende, la órbita será abierta.
Por último cuando r →∞, tenemos:

0 < E = T + V =
1

2
mv2
∞ −

|k|
r︸︷︷︸
→0

⇔ 1

2
mv2
∞ > 0⇔ |v∞| > 0

Q.E.D.

Ejercicio 10. Tenemos una partícula de masa m sometida a una fuerza del estilo F =
k

r2
r̂ con k < 0 que

describe una órbita circular y la partícula sufre un impulso tangencial tal que v′ =
v

2
.

r1

R = r2

~v

~v′ = ~v
2

Solución. Como la órbita es circular, por la proposición 68 en la página 160 tenemos que el radio de la
circunferencia es el semi latus rectum r = l. Por otra parte, sabemos que la energía es:

E = −|k|
2l

El nuevo momento angular es:

L′ = mlv′ = ml
v

2
=

=L︷︸︸︷
mlv

1

2
=
L

2
Y la energía es:

E′ =
1

2
mv′ 2 +

k

l
=

1

2
m
(v

2

)2

+
k

l
=

1

4

1

2
mv2︸ ︷︷ ︸
=T

+
k

l
=

1

4
T +

k

l
< E

3.4. Órbitas

3.4.1. Resultados generales

Proposición 69. Sea un partícula de masa m sometida a una fuerza central conservativa ~F . Entonces, siempre

que sea
du

dθ
6= 0 en coordenadas polares se cumple:(

du

dθ

)2

+ u2 =
2m

L2

[
E − V

(
1

u

)]
d2u

dθ2
+ u = −m

L2

F
(

1
u

)
u2

donde u =
1

r
y V es la función energía potencial asociada a ~F .
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Demostración. Partimos de la ecuación radial de la energía (ver proposición 65 en la página 142):

1

2
mṙ2 +

L2

2mr2
+ V (r) = E

Por otra parte, por la proposición 63 en la página 141, sabemos que el momento angular en coordenadas polares
puede expresarse como:

L = mr2θ̇

Nuestro objetivo es hallar r (θ). Para ello vamos a reescribir ṙ como sigue:

ṙ =
dr

dt
=
dr

dθ

dθ

dt
=
dr

dθ
θ̇

Por el corolario 23 en la página 141, tenemos:

ṙ =
L

mr2

dr

dθ

Ahora, hacemos el cambio de variable u =
1

r
⇔ r =

1

u
y en consecuencia, por la regla de la cadena, tenemos:

dr

dθ
=
dr

du

du

dθ
= − 1

u2

du

dθ

Por consiguiente, nos queda:

ṙ =
L

m
u2

(
− 1

u2

)
du

dθ
= − L

m

du

dθ

Así, sustituyendo en la ecuación radial de la energía, tenemos:

1

2
m
L2

m2

(
du

dθ

)2

+
L2

2m
u2 + V

(
1

u

)
= E ⇔

⇔ L2

2m

[(
du

dθ

)2

+ u2

]
+ V

(
1

u

)
= E ⇔

⇔ L2

2m

[(
du

dθ

)2

+ u2

]
= E − V

(
1

u

)
⇔

⇔
(
du

dθ

)2

+ u2 =
2m

L2

[
E − V

(
1

u

)]
A continuación, vamos a derivar la ecuación anterior con respecto a θ:

2
du

dθ

d2u

dθ2
+ 2u

du

dθ
=

2m

L2

 dEdθ︸︷︷︸
=0

− dV

dr

dr

dθ︸ ︷︷ ︸
= dV
dθ


dado que E es una constante del movimiento por la proposición 64 en la página 142. Así, lo anterior es equivalente
a:

du

dθ

d2u

dθ2
+ u

du

dθ
= −m

L2

dV

dr

dr

dθ

Como −dV
dr

= F (r) = F

(
1

u

)
, tenemos:

du

dθ

d2u

dθ2
+ u

du

dθ
=
m

L2
F

(
1

u

)
dr

dθ
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Recordando que hemos hallado anteriormente
dr

dθ
= − 1

u2

du

dθ
, llegamos a:

du

dθ

d2u

dθ2
+ u

du

dθ
=
m

L2
F

(
1

u

)(
− 1

u2

)
du

dθ

Como, por hipótesis era
du

dθ
6= 0, podemos dividir por

du

dθ
, obteniendo:

d2u

dθ2
+ u = −m

L2

F
(

1
u

)
u2

Q.E.D.

Observación 60. A través de la proposición 69 en la página 164, podemos hallar la trayectoria de la partícula
si conocemos la fuerza y viceversa.

3.4.2. Órbitas y trayectorias para la ley cuadrática inversa
3.4.2.1. Ecuación de la trayectoria en coordenadas polares

Proposición 70. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. Entonces en coorde-

nadas polares se cumple: (
du

dθ

)2

+ u2 =
2m

L2
[E − ku]

d2u

dθ2
+ u = −mk

L2

donde u =
1

r
.

Demostración. Trivial. Se parte de la proposición 69 en la página 164 y se sustituye:

V (r) =
k

r
⇔ V

(
1

u

)
= ku

F (r) =
k

r2
⇔ F

(
1

u

)
= ku2

Q.E.D.

Proposición 71. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. Entonces, la trayectoria

de la partícula de masa m es una cónica y la ecuación de la trayectoria viene dada por:

r [e cos (θ − θ0)− 1] = l si k > 0

r [e cos (θ − θ0) + 1] = l si k < 0

donde:

e =

√
2lE

|k| + 1

recibe el nombre de excentricidad.
Además, el origen de las coordenadas polares se encuentra en uno de los focos de la cónica.

Demostración. Partimos de la proposición 70, de manera que tenemos:

d2u

dθ2
+ u = −mk

L2
⇔ d2u

dθ2
+ u+

mk

L2
= 0
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Multiplicando por l a ambos lados, obtenemos:

l
d2u

dθ2
+ lu+

lmk

L2
= 0

Como la derivada es lineal y como por la definición 85 en la página 160 es l =
L2

m |k| y l no depende de θ (porque

L no depende de θ), tenemos:

d2 (lu)

dθ2
+ lu+

L2

m |k|
mk

L2
= 0⇔ d2 (lu)

dθ2
+ lu+

k

|k| = 0

Tomando el cambio de variable z = lu+
k

|k| , llegamos a:

d2z

dθ2
+ z = 0

que es una ecuación diferencial lineal como la de un oscilador armónico con ω = 1 y con variable independiente
θ en lugar de t. Por la proposición 29 en la página 78 tenemos que la solución de la ecuación diferencial anterior
puede expresarse como:

z = a cos (θ − θ0)

donde a, θ0 ∈ R. Por otra parte, de nuevo, por la proposición 70 en la página anterior llegamos a:(
du

dθ

)2

+ u2 =
2m

L2
[E − ku]

Multiplicando por l2, obtenemos:

l2
(
du

dθ

)2

+ l2u2 =
2ml2

L2
[E − ku]

Como la derivada es lineal y como por la definición 85 en la página 160 es l =
L2

m |k| , tenemos:

(
d (lu)

dθ

)2

+ (lu)
2

=
2m

L2

L4

m2k2
[E − ku] =

2L2

mk2
[E − ku] =

2l

|k| [E − ku]

Sumando 2lu
k

|k| + 1 a ambos lados, obtenemos:

(
d (lu)

dθ

)2

+ (lu)
2

+ 2lu
k

|k| + 1 =
2l

|k| [E − ku] + 2lu
k

|k| + 1⇔

⇔
(
d (lu)

dθ

)2

+

(
lu+

k

|k|

)2

=
2l

|k| [E − ku+ ku] + 1 =
2lE

|k| + 1

Llamando e2 :=
2lE

|k| + 1, nos queda:

(
d (lu)

dθ

)2

+

(
lu+

k

|k|

)2

= e2

Tomando el cambio de variable z = lu+
k

|k| , llegamos a:

(
dz

dθ

)2

+ z2 = e2

Recordando que hemos hallado antes que:
z = a cos (θ − θ0)
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dz

dθ
= −a sen (θ − θ0)

y sustituyendo en la ecuación anterior, obtenemos:

[−a sen (θ − θ0)]
2

+ [a cos (θ − θ0)]
2

= e2 ⇔ a2 sen2 (θ − θ0) + a2 cos2 (θ − θ0) = e2 ⇔

⇔ a2
[
sen2 (θ − θ0) + cos2 (θ − θ0)

]︸ ︷︷ ︸
=1

= e2 a,e>0⇐==⇒ a = e

En consecuencia, llegamos a:

z = e cos (θ − θ0)

Por otra parte, recordemos que:

z = lu+
k

|k| =
l

r
+

k

|k|
Así:

e cos (θ − θ0) =
l

r
+

k

|k| ⇔ e cos (θ − θ0)− k

|k| =
l

r
⇔

⇔ r

[
e cos (θ − θ0)− k

|k|

]
= l

Si k > 0, entonces la ecuación anterior queda:

r [e cos (θ − θ0)− 1] = l

Mientras que si k < 0, entonces:
r [e cos (θ − θ0) + 1] = l

Cualquiera de las dos ecuaciones anteriores se corresponde con una cónica expresada en coordenadas polares
tomando el origen de coordenadas en uno de los focos, como puede verse en la sección 3.2 en la página 151.

Q.E.D.

Proposición 72. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. Si restringimos θ a

[0, 2π), la mínima distancia entre la partícula y el centro de fuerzas se alcanza en θ = θ0 y viene dada por:

rmín =
l

e− 1
si k > 0

rmín =
l

e+ 1
si k < 0

La mayor distancia entre la partícula y el centro de fuerzas cuando k < 0 y 0 ≤ e < 1 se alcanza en θ = θ0+π
y viene dada por la expresión:

rmáx =
l

−e+ 1

y no existe en caso contrario (es infinita).

Demostración. Partiendo de la proposición 71 en la página 166, sabemos que la trayectoria de la partícula de
masa m cuando k > 0 viene dada por la ecuación:

r [e cos (θ − θ0)− 1] = l

Despejando, tenemos:

r =
l

e cos (θ − θ0)− 1

El valor de r será mínimo cuando el numerador sea máximo. Eso ocurrirá cuando:

cos (θ − θ0) = 1⇔ θ − θ0 = 0⇔ θ = θ0
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En ese caso, r vale:

rmín =
l

e− 1

Recíprocamente, el mayor valor de r se alcanzaría cuando el denominador fuese mínimo, pero como e ≥ 0, el
valor que hace el denominador mínimo, también lo hace negativo y r no puede ser negativo. Por tanto, no existe
rmáx cuando k > 0.

De nuevo, partiendo de la proposición 71 en la página 166, sabemos que la trayectoria de la partícula de
masa m cuando k < 0 viene dada por la ecuación:

r [e cos (θ − θ0) + 1] = l

Despejando, tenemos:

r =
l

e cos (θ − θ0) + 1

El valor de r será mínimo cuando el numerador sea máximo. Eso ocurrirá cuando:

cos (θ − θ0) = 1⇔ θ − θ0 = 0

En ese caso, r vale:

rmín =
l

e+ 1

Recíprocamente, el mayor valor de r se alcanza cuando el denominador es mínimo. Esto tiene lugar cuando:

cos (θ − θ0) = −1⇔ θ − θ0 = π ⇔ θ = θ0 + π

El mínimo del denominador será positivo cuando siempre que sea 0 ≤ e < 1. En ese caso:

rmáx =
l

−e+ 1

Q.E.D.

Corolario 25. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. Si restringimos θ a

[0, 2π), θ0 es el ángulo que forma el punto más cercano al origen de coordenadas con la horizontal.

Demostración. Trivial tras leer el enunciado de la proposición anterior. Q.E.D.

Proposición 73. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. Restringimos θ a

[0, 2π).

Si k > 0, se da siempre E > 0 y la trayectoria se corresponde con la «rama derecha» (cos (θ − θ0) > 0) de

una hipérbola (e > 1), cuyas asíntotas forman los ángulos arc cos

(
1

e

)
y arc cos

(
−1

e

)
con la dirección

asociada a θ0.

Si k < 0 y además:

• E = Veff,mín = −|k|
2l

, entonces la trayectoria es una circunferencia (e = 0).

• Veff,mín < E < 0, entonces la trayectoria es una elipse (0 < e < 1).

• E = 0, entonces la trayectoria es una parábola (e = 1).

• E > 0, entonces la trayectoria se corresponde con la «rama izquierda» (cos (θ − θ0) < 0) de una

hipérbola (e > 1), cuyas asíntotas forman los ángulos arc cos

(
1

e

)
y arc cos

(
−1

e

)
con la dirección

asociada a θ0.
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θ0θ0 + π

l

r2 = l
−e+1

r1 = l
e+1

O
rmı́n = l

2
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O

Rama atractiva

Rama repulsiva

cos θ − θ0 < 0 cos θ − θ0 > 0

θ − θ0

θ − θ0
π − θ + θ0

π − θ + θ0

Demostración. Partimos de la expresión dada para la excentricidad e en la proposición 71 en la página 166:

e =

√
2lE

|k| + 1

Si es k > 0, entonces la energía en cualquier punto viene dada por:

E =
1

2
mv2︸ ︷︷ ︸
>0

+
k

r︸︷︷︸
>0

> 0

Así, siempre es E > 0. Por tanto:
2lE

|k| > 0

En consecuencia:
2lE

|k| + 1 > 1⇔
√

2lE

|k| + 1 > 1⇔ e > 1

De esta forma, la trayectoria es una hipérbola.
Por la proposición 71 en la página 166, tenemos que la trayectoria en este caso viene descrita por la
ecuación:

r [e cos (θ − θ0)− 1] = l

Para hallar las asíntotas, vamos a hacer el límite cuando r →∞ en la expresión anterior. Nótese que como
l ∈ R, necesariamente cuando r →∞:

e cos (θ − θ0)− 1→ 0⇔ e cos (θ − θ0)→ 1⇔ cos (θ − θ0)→ 1

e
> 0

Por tanto, cuando r →∞, cos (θ − θ0) > 0 y nos encontramos en la rama derecha de la hipérbola.
Despejando (θ − θ0) de la ecuación anterior, obtenemos:

⇔ (θ − θ0)→ ± arc cos

(
1

e

)
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donde recordamos que Im arc cos = [0, π]. Por tanto, hay dos ángulos en [0, 2π) que cumplen que cos (θ − θ0) =
1
e (y, así, hay dos asíntotas).
Únicamente queda probar que la trayectoria se corresponde con la rama derecha de la hipérbola; ésta es
la rama más alejada del centro de fuerzas. Por la proposición 72 en la página 168, sabemos que la mínima
distancia entre el centro de fuerzas y la rama de la hipérbola viene dada por:

rmín =
l

e− 1
si k > 0

rmín =
l

e+ 1
si k < 0

Nótese que:

e− 1 < e+ 1⇔ l

e− 1
>

l

e+ 1

Luego, claramente, de las dos distancias a cada una de las ramas, la distancia mínima en el caso k > 0 se
corresponde con la mayor de las dos posibles. En consecuencia, la trayectoria se corresponde con la rama
derecha de la parábola.

Si es k < 0 y además:

• E = Veff,mín = −|k|
2l

, por la proposición 68 en la página 160, la trayectoria es circular y, en conse-
cuencia, e = 0.

• Veff,mín < E < 0, entonces:
2lE

|k| < 0

En consecuencia:
2lE

|k| + 1 < 1⇔
√

2lE

|k| + 1 < 1⇔ e < 1

Por otra parte, como es:

E > Veff,mín = −|k|
2l

tenemos:
2lE

|k| >
2l

|k|

(
−|k|

2l

)
= −1

Por consiguiente:
2lE

|k| + 1 > 0⇔
√

2lE

|k| + 1 > 0⇔ e > 0

Por ende, es 0 < e < 1 y la trayectoria de la partícula es una elipse.

• E = 0, entonces:

e =

√√√√√2lE

|k|︸︷︷︸
=0

+1 =
√

1 = 1

y la trayectoria es una parábola.

• E > 0, entonces:
2lE

|k| > 0

En consecuencia:
2lE

|k| + 1 > 1⇔
√

2lE

|k| + 1 > 1⇔ e > 1
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De esta forma, la trayectoria es una hipérbola.
Por la proposición 71 en la página 166, tenemos que la trayectoria en este caso viene descrita por la
ecuación:

r [e cos (θ − θ0) + 1] = l

Para hallar las asíntotas, vamos a hacer el límite cuando r →∞ en la expresión anterior. Nótese que
como l ∈ R, necesariamente cuando r →∞:

e cos (θ − θ0) + 1→ 0⇔ e cos (θ − θ0)→ −1⇔ cos (θ − θ0)→ −1

e
< 0

Por tanto, cuando r →∞, cos (θ − θ0) < 0 y nos encontramos en la rama izquierda de la hipérbola.
Despejando (θ − θ0) de la ecuación anterior, obtenemos:

(θ − θ0)→ ± arc cos

(
−1

e

)
donde recordamos que Im arc cos = [0, π]. Por tanto, hay dos ángulos en [0, 2π) que cumplen que
cos (θ − θ0) = − 1

e (y, así, hay dos asíntotas). Ahora, recordemos que arc cosx = − arc cos (−x) ∀x ∈
[−1, 1]. Así, lo anterior es equivalente a:

(θ − θ0)→ ∓ arc cos

(
1

e

)
Únicamente queda probar que la trayectoria se corresponde con la rama izquierda de la hipérbola;
ésta es la rama más cercana al centro de fuerzas. Por la proposición 72 en la página 168, sabemos
que la mínima distancia entre el centro de fuerzas y la rama de la hipérbola viene dada por:

rmín =
l

e− 1
si k > 0

rmín =
l

e+ 1
si k < 0

Nótese que:

e− 1 < e+ 1⇔ l

e− 1
>

l

e+ 1

Luego, claramente, de las dos distancias a cada una de las ramas, la distancia mínima en el caso
k < 0 se corresponde con la menor de las dos posibles. En consecuencia, la trayectoria se corresponde
con la rama izquierda de la parábola.

Q.E.D.

3.4.2.2. Resumen

k E e tipo de cónica rmín rmáx

k > 0 > 0 > 1 hipérbola (rama derecha)
l

e− 1
∞

k < 0

= −|k|
2l

= 0 circunferencia
l

e+ 1

l

−e+ 1E < 0

E > −|k|
2l

e > 0
e < 1

elipse

= 0 = 1 parábola ∞
> 0 > 1 hipérbola (rama izquierda)

donde k es la constante que define la fuerza ~F =
k

r2
, E es la energía del movimiento, e es la excentricidad de

la órbita rmín es la distancia mínima de la trayectoria de la partícula al centro de fuerzas, rmáx es la distancia

máxima de la trayectoria de la partícula al centro de fuerzas y l =
L2

m |k| .

Las asíntotas de las hipérbolas forman un ángulo de ± arc cos

(
1

e

)
con la horizontal.
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3.4.2.3. Ejemplos

Ejemplo 22. Supongamos que tenemos una partícula de masa m sometida a una fuerza central conservativa
~F cuyo potencial asociado viene dado por:

V =
k

r2
= ku2 ⇔ F (r) = F

(
1

u

)
= −dV

dr
=

2k

r3
= 2ku3

Nuestro objetivo es deducir las ecuaciones que rigen la trayectoria de la partícula.
Partimos de la proposición 69 en la página 164:

d2u

dθ2
+ u = −mF

(
1
u

)
L2u2

y sustituimos por el valor que tenemos de la fuerza F :

d2u

dθ2
+ u = −m

L2

2ku3

u2
⇔ d2u

dθ2
+

(
1 +

m2k

L2

)
︸ ︷︷ ︸

=:k′

u = 0

donde llamamos k′ al paréntesis anterior.
Ahora, llegamos a varios casos dependiendo del signo de k′. Cada caso requiere resolver una ecuación dife-

rencial (que se deja como ejercicio para el lector).

1. Si k′ > 0, tenemos que la solución de la ecuación diferencial anterior es:

u = a cos
(√

k′θ − θ0

)
du

dθ
= −
√
k′a sen

(√
k′θ − θ0

)
Sustituyendo en la otra expresión dada por la proposición 69 en la página 164:(

du

dθ

)2

+ u2 =
2m

L2

[
E − V

(
1

u

)]
obtenemos (

du

dθ

)2

+ u2 =
2mE

L2
− 2m

L2
ku2 ⇔

⇔
(
du

dθ

)2

+ u2

(
1 +

2mk

L2

)
︸ ︷︷ ︸

=k′

=
2mE

L2
⇔

⇔ k′a2 sen2
(√

k′θ − θ0

)
+ k′a2 cos2

(√
k′θ − θ0

)
=

2mE

L2
⇔

⇔ a2k′ =
2mE

L2
⇔ a =

√
2mE

k′L2

2. Si k′ < 0:
u = a cosh

(√
k′θ − θ0

)
3. Si k′ = 0:

u = aθ − θ0

Ejemplo 23 (Velocidad de escape de la superficie de la Tierra). Recordemos que la velocidad escape de un
cuerpo celeste es aquella velocidad inicial que permite que un cuerpo cualquiera de masa m que parte de la
superficie de dicho cuerpo celeste llegue al infinito con velocidad nula. Por la proposición 68 en la página 160,
estamos en el caso E = 0. Por tanto, como la energía se conserva tenemos que:
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Ei =
1

2
mv2 − GMm

R
= 0⇔ v =

√
2GM

R
=
√

2gR

donde g = GM
R2 . En el caso de la Tierra, con los datos R = 6370 km y g = 9,81 m

s2 , obtenemos:

ve = 11, 2
km
s

Nótese que el módulo de la velocidad de escape (en condiciones ideales, es decir, suponiendo que no hay
atmósfera, etc.) no depende del ángulo de lanzamiento.

Ejemplo 24. ¿A qué distancia llegará un objecto lanzado con la mitad de la velocidad de escape? Es decir, un
objeto con velocidad:

v′ =
ve
2

=
1

2

√
2GM

R
=

√
GM

2R

R
~v′

θ

M

Hallemos E′:

E′ =
1

2
mv′ 2 − GMm

R
=

1

2
m
(ve

2

)2

− GMm

R
=

1

4

1

2
mv2

e =
1

4
m
GM

R
− GMm

R
= −3

4

GMm

R

Por la proposición 68 en la página 160, sabemos que los puntos de máxima y mínima distancia son las
soluciones de la ecuación:

r2 − k

E′
r +

kl

2E′
= 0

Sustituyendo en nuestro caso, obtenemos:

r2 − GMm
3
4
GMm
R

r +
GMm
3
2
GMm
R

L2

GMm2
= 0⇔

⇔ r2 − 4

3
Rr +

2

3

RL2

GMm2
= 0

Ahora, haciendo:

L = mRv′ senα = mR

√
GM

2R
senα = m

√
GMR

2
senα

llegamos a:

r2 − 4

3
Rr +

2

3

R

GMm2
m2GMR

2
sen2 α = 0⇔

⇔ r2 − 4

3
Rr +

1

3
R2 sen2 α = 0

La solución de la ecuación anterior es:
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r =

4
3R±

√
42

32R2 − 4
3R

2 sen2 α

2
=

2

3
R±

√
22

32
R2 − 1

3
R2 sen2 α =

=
2

3
R±

√
4

9

(
R2 − 3

4
R2 sen2 α

)
=

=
2

3
R

[
1±

√
1− 3

4
sen2 α

]
La solución positiva se corresponde a rmáx y la negativa se corresponde a rmín. La mayor altura medida

desde la superficie de la Tierra queda:

hmáx = rmáx −R =
R

3

[
−1 +

√
4− 3 sen2 α

]
Como Veff,mín < E < 0, por la proposición 71 en la página 166, sabemos que la trayectoria de la partícula

viene dada por la expresión:

l = r [e cos (θ − θ0) + 1]

donde:

l =
L2

m |k| = m2GMR

2
sen2 α

1

GMm2
=
R

2
sen2 α

y:

e2 =
2El

|k| + 1 =
2
(
− 3

4
GMm
R

)
R
2 sen2 α

GMm
+ 1 = −3

4
sen2 α+ 1 =

= 1− 3

4
sen2 α

También podríamos hallar e y l a través de las ecuaciones dadas en la proposición 72 en la página 168:

rmín =
l

1 + e
rmáx =

l

1− e

R

rmı́n

rmáx

X

Y

~v

θ1

θ2

θ0

π − θ1 + θ0

π − θ2 + θ0

α
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Nuestro objetivo ahora es hallar el valor de α para el cual se produce el máximo alcance, es decir, la mayor
distancia medida sobre la superficie de la tierra que recorre el objeto antes de impactar de nuevo con la Tierra.

Tenemos dos formas de calcular dicho alcance, una es:

(θ2 − θ1)R

que se correspondería con la distancia más corta en el dibujo. La otra es:

(θ1 + 2π − θ2)R = (θ1 − θ2)R

Muy bien, ahora ¿cómo obtenemos los valores de θ1 y θ2? Pues de la siguiente manera. Por la proposición 71
en la página 166, sabemos que la trayectoria de nuestro objeto está descrita por la ecuación:

l = r [e cos (θ − θ0) + 1]

A continuación, resolvemos para r = R, obteniendo:

l = R [e cos (θ − θ0) + 1]⇔ l

R
= e cos (θ − θ0) + 1⇔

cos (θ − θ0) =

[
l

R
− 1

]
1

e
=

1
2 sen2 α− 1√
1− 3

4 sen2 α

Como θ1 − θ0 = − (θ2 − θ0) por simetría, debe ser:

alcance = (θ2 − θ1)R = [(θ2 − θ0)− (θ1 − θ0)]R = 2 (θ2 − θ0)R

Ahora, obtengamos el alcance máximo. Para ello, primero tenemos que ver para qué ángulo α ocurre el
alcance máximo. Con tal propósito, derivamos:

d

dα
[cos (θ − θ0)] =

senα cosα
√

1− 3
4 sen2 α−

(
1
2 sen2 α− 1

) − 3
2 senα cosα

2
√

1− 3
4 sen2 α

1− 3
4 sen2 α

=

=
senα cosα

(
1− 3

4 sen2 α
)

+ 3
4 senα cosα

(
1
2 sen2 α− 1

)[
1− 3

4 sen2 α
] 3

2

=

=
senα cosα

(
1− 3

4 + 3
8 sen2 α− 3

4 sen2 α
)[

1− 3
4 sen2 α

] 3
2

=
senα cosα

(
1
4 − 3

8 sen2 α
)[

1− 3
4 sen2 α

] 3
2

=

=
senα cosα

(
2− 3 sen2 α

)
8
[
1− 3

4 sen2 α
] 3

2

0 =
d

dα
[cos (θi − θ0)]⇔ 2− 3 sen2 α = 0⇔ sen2 α =

2

3
⇔ α = 54, 7o

donde descartamos las soluciones α = 0 y α = π
2 , puesto que no son soluciones físicas reales.

Sustituyendo, llegamos a:

cos (θ − θ0) =
1
2 sen2 α− 1√
1− 3

4 sen2 α
=

1
2

2
3 − 1√
1− 3

4
2
3

=
1
3 − 1√
1− 1

2

=
− 2

3√
1
2

= −2
√

2

3
⇔

⇔ θ − θ0 = ±160, 5o ⇔
{
θ1 − θ0 = −160,5o = 199, 47o

θ2 − θ0 = 160,5o

De manera que el alcance máximo es:

alcance = (199,47o − 160,5o)
π

180
R = 0,68R

O, alternativamente, podemos dar el alcance como 2π menos el valor anterior:

alcance = (2π − 0,68)R
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3.4.2.4. Obtención de la ecuación en cartesianas

Proposición 74. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. En coordenadas

cartesianas con el eje horizontal en la dirección de θ0, la trayectoria de la partícula m viene descrita por:

Si e = 0:
x2 + y2 = l2

Si e = 1:
y2 = −2l

(
x− l

2

)
Si 0 < e < 1:

(x+ ea)
2

a2
+
y2

b2
= 1

donde a =
l

1− e2
y b =

l√
1− e2

.

Si e > 1:
(x− ea)

2

a2
− y2

b2
= 1

donde a =
l

e2 − 1
y b =

l√
e2 − 1

.

Demostración. A lo largo de toda la demostración, llamaremos β := θ− θ0. Como tomamos los ejes cartesianos
tales que el eje horizontal tiene la dirección de θ0 la relación entre las coordenadas cartesianas y polares queda:

x = r cos (θ − θ0) = r cosβ

y = r sen (θ − θ0) = r senβ

x2 + y2 = r2

Si e = 0, por la proposición 73 en la página 169 la trayectoria es una circunferencia. Recordemos la
relación:

r2 = x2 + y2

También, por la proposición 71 en la página 166 sabemos que en el caso de la circunferencia se cumple:

r = l⇔ r2 = l2

Sutituyendo, obtenemos:
x2 + y2 = r2 = l2

de manera que llegamos a la ecuación del enunciado.

Si e = 1, por la proposición 73 en la página 169, la trayectoria es una parábola y por la proposición 71 en
la página 166, tenemos:

r [cosβ + 1] = l⇔ r cosβ + r = l

Sustituyendo r =
√
x2 + y2 y r cosβ = x, llegamos a:

x+
√
x2 + y2 = l⇔ x− l = −

√
x2 + y2 ⇔

⇔ x2 − 2lx+ l2 = x2 + y2 ⇔ y2 = −2lx+ l2 = −2l

(
x− l

2

)
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Si 0 < e < 1, por la proposición 73 en la página 169, la trayectoria es una elipse y por la proposición 71
en la página 166, tenemos:

r [e cosβ + 1] = l⇔ er cosβ + r = l

Sustituyendo x = r cosβ, obtenemos:

ex+ r = l⇔ ex− l = −r ⇒ (ex− l)2
= (−r)2

= x2 + y2 ⇔

⇔ e2x2 − 2exl + l2 = x2 + y2 ⇔
(
1− e2

)
x2 + 2exl + y2 = l2

Multiplicando por
(
1− e2

)
a ambos lados, obtenemos:[(

1− e2
)
x2 + 2exl + y2

] (
1− e2

)
= l2

(
1− e2

)
⇔

⇔
(
1− e2

)2
x2 + 2elx

(
1− e2

)
+ y2

(
1− e2

)
= l2

(
1− e2

)
Completamos cuadrados: [(

1− e2
)
x+ el

]2 − e2l2 + y2
(
1− e2

)
= l2

(
1− e2

)
⇔[(

1− e2
)
x+ el

]2
+ y2

(
1− e2

)
− e2l2 = l2 − e2l2 ⇔[(

1− e2
)
x+ el

]2
+ y2

(
1− e2

)
= l2

Dividiendo a ambos lados por l2, tenemos:[(
1− e2

)
x+ el

]2
l2

+
1− e2

l2
y2 = 1⇔

[(
1− e2

)
x+ el

l

]2

+
y2

l2

1−e2
= 1

⇔
[

x
l

1−e2
+ e

]2

+
y2

l2

1−e2
= 1⇔

[
x+ e l

1−e2
l

1−e2

]2

+
y2

l2

1−e2
= 1

que ya tiene la forma canónica de una elipse no centrada en el origen:

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1

Así, obtenemos:

a2 =
l2

(1− e2)
2 ⇔ a =

l

1− e2

b2 =
l2

1− e2
⇔ b =

l√
1− e2

Nótese que e
l

1− e2
= ea. En consecuencia, podemos expresar la ecuación de la trayectoria como:

(x+ ea)
2

a2
+
y2

b2
= 1

Si e > 1 y k < 0, por la proposición 73 en la página 169, la trayectoria es una hipérbola y por la
proposición 71 en la página 166, tenemos:

r [e cosβ + 1] = l

La deducción es la misma que en el caso de la elipse hasta que llegamos a:[(
1− e2

)
x+ el

]2
l2

+
1− e2

l2
y2 = 1
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Nótese que 1− e2 < 0 al ser e > 1. Por tanto, nos interesa reescribir la ecuación anterior como:[
−
(
e2 − 1

)
x+ el

]2
l2

− e2 − 1

l2
y2 = 1

Como z2 = (−z)2, lo anterior es equivalente a:[(
e2 − 1

)
x− el

]2
l2

− e2 − 1

l2
y2 = 1⇔

⇔
[(
e2 − 1

)
x− el

l

]2

− y2

l2

e2−1

= 1⇔
[(
e2 − 1

)
x

l
− e
]2

− y2

l2

e2−1

= 1⇔

⇔
[

x
l

e2−1

− e
]2

− y2

l2

e2−1

= 1⇔
[
x− e l

e2−1
l

e2−1

]2

− y2

l2

e2−1

= 1⇔

⇔

[
x− e l

e2−1

]2
l2

(e2−1)2

− y2

l2

e2−1

= 1

que ya tiene la forma canónica de una hipérbola no centrada en el origen:

(x− x0)
2

a2
− (y − y0)

2

b2
= 1

Así, obtenemos:

a2 =
l2

(e2 − 1)
2 ⇔ a =

l

e2 − 1

b2 =
l2

e2 − 1
⇔ b =

l√
e2 − 1

Nótese que e
l

e2 − 1
= ea. En consecuencia, podemos expresar la ecuación de la trayectoria como:

(x− ea)
2

a2
− y2

b2
= 1

Si e > 1 y k > 0, por la proposición 73 en la página 169, la trayectoria es una hipérbola y por la
proposición 71 en la página 166, tenemos:

r [e cosβ − 1] = l⇔ er cosβ − r = l

Sustituyendo x = r cosβ, obtenemos:

ex− r = l⇔ ex− l = r ⇒ (ex− l)2
= r2 = x2 + y2

Y con esto, ya estamos en el mismo caso que para e > 1 y k < 0, por lo que llegamos a la misma ecuación.

Q.E.D.

Observación 61. Nótese que la ecuación de la parábola dada en la proposición 74 en la página 178 se corresponde
con una parábola tumbada.

Es más, en todos los casos anteriores, el eje x tiene la dirección del eje real o mayor (en su caso) de la cónica.
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3.4.2.5. Relación de los parámetros de las órbitas con la energía y el momento angular

Proposición 75. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. Los parámetros a y b

de la cónica están relacionados con la energía y el momento angular de la siguiente forma:

a =
|k|

2 |E| b2 = al =
L2

2m |E|

Además, se cumplen las siguientes relaciones:

Si 0 < e < 1:
rmín + rmáx = 2a E =

k

2a
c = ae

Si e > 1:
E =

|k|
2a

c = ae rmín,k>0 + rmín,k<0 = 2c rmín,k>0 − rmín,k<0 = 2a

2c

a

a a
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b

c

a

O

rmı́n
rmáx

Demostración. Cuando 0 < e < 1, por la proposición 74 en la página 178, sabemos que a y b cumplen:

a =
l

1− e2
b =

l√
1− e2

Y, por la definición 85 en la página 160 y por la proposición 71 en la página 166, sabemos que l y e vienen
dadas por las expresiones:

l =
L2

m |k| e2 =
2lE

|k| + 1

Sustituyendo en a, obtenemos:

a =
l

1− 2lE
|k| − 1

= − l
2lE
|k|

= − |k|
2E

=
k

2E
=
|k|

2 |E|

pues k < 0 y E < 0. Por otra parte:

b2 =
l2

1− e2
= l

l

1− e2︸ ︷︷ ︸
=a

= al =
|k|

2 |E|
L2

m |k| =
L2

2m |E|

Por el contrario, si es e > 1, por la proposición 74 en la página 178, sabemos que a y b cumplen:

a =
l

e2 − 1
b =

l√
e2 − 1

De nuevo, por la definición 85 en la página 160 y por la proposición 71 en la página 166, sabemos que ly e
vienen dadas por las expresiones:

l =
L2

m |k| e2 =
2lE

|k| + 1

Sustituyendo en a, obtenemos:

a =
l

2lE
|k| + 1− 1

=
l

2lE
|k|

=
|k|
2E

=
|k|

2 |E|

pues E > 0. Por otra parte:

b2 =
l2

e2 − 1
= l

l

e2 − 1︸ ︷︷ ︸
=a

= al =
|k|

2 |E|
L2

m |k| =
L2

2m |E|
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Si 0 < e < 1, por la proposición 72 en la página 168, tenemos:

rmín =
l

e+ 1
rmáx =

l

−e+ 1

rmín + rmáx =
l

1 + e
+

l

1− e = l
1− e+ 1 + e

1− e2
=

2l

1− e2
= 2

l

1− e2︸ ︷︷ ︸
=a

= 2a

donde sabemos que lo puesto entre llaves es a por la proposición 74 en la página 178.
Hemos probado antes que era cierto:

a =
|k|

2 |E|
En nuestro caso son k < 0 y E < 0, de manera que lo anterior es equivalente a:

a =
k

2E
⇔ E =

k

2a

Por último, por lo visto en la sección 3.2.1 en la página 151 sabemos que en una elipse se cumple a2 =
b2 + c2 ⇔ c2 = a2 − b2. De esta forma, obtenemos:

c2 = a2 − b2 = a2 − al = a (a− l)

A partir de la proposición 71 en la página 166, podemos expresar l en función de e:

e2 =
2lE

|k| + 1⇔ e2 − 1 =
2lE

|k| ⇔
|k|
2E

(
e2 − 1

)
= l⇔ − |k|

2E

(
1− e2

)
= l

como es k < 0, lo anterior es equivalente a:

l =
k

2E

(
1− e2

)
=
|k|

2 |E|︸ ︷︷ ︸
=a

(
1− e2

)

y, por lo que hemos visto antes, lo indicado entre corchetes es a y así, obtenemos:

l = a
(
1− e2

)
Sustituyendo en la expresión para c2, obtenemos:

c2 = a2 + b2 = a
[
a− a

(
1− e2

)]
= a2

(
1− 1 + e2

)
= a2e2 ⇔ c = ae

Si e > 1, por lo probado antes, tenemos:

a =
|k|

2 |E|
En nuestro caso, es E > 0, luego podemos expresar lo anterior como:

a =
|k|
2E
⇔ E =

|k|
2a

Ahora, por lo visto en la sección 3.2.2 en la página 153 sabemos que en una hipérbola se cumple c2 = a2+b2.
De esta forma, obtenemos:

c2 = a2 + b2 = a2 + al = a (a+ l)

A partir de la proposición 71 en la página 166, podemos expresar l en función de e:

e2 =
2lE

|k| + 1⇔ e2 − 1 =
2lE

|k| ⇔
|k|
2E

(
e2 − 1

)
= l

como es E > 0, lo anterior es equivalente a:

l =
|k|

2 |E|︸ ︷︷ ︸
=a

(
e2 − 1

)
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y, por lo que hemos visto antes, lo indicado entre corchetes es a y así, obtenemos:

l = a
(
e2 − 1

)
Sustituyendo en la expresión para c2, obtenemos:

c2 = a2 + b2 = a
[
a+ a

(
e2 − 1

)]
= a2

(
1 + e2 − 1

)
= a2e2 ⇔ c = ae

A continuación, por la proposición 72 en la página 168, tenemos que:

rmín,k>0 =
l

e− 1
rmín,k<0 =

l

e+ 1

Así:
rmín,k>0 + rmín,k<0 =

l

e− 1
+

l

e+ 1
= l

(
1

e− 1
+

1

e+ 1

)
= l

e+ 1 + e− 1

e2 − 1
=

2le

e2 − 1
=

= 2e
l

e2 − 1︸ ︷︷ ︸
=a

= 2 ea︸︷︷︸
=c

= 2c

Por otra parte:

rmín,k>0 − rmín,k<0 =
l

e− 1
− l

e+ 1
= l

(
1

e− 1
− 1

e+ 1

)
= l

e+ 1− e+ 1

e2 − 1
=

= 2
l

e2 − 1︸ ︷︷ ︸
=a

= 2a

Q.E.D.

Corolario 26. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂. Para un valor de k dado,

órbitas que tengan el mismo valor del semieje mayor a tendrán, necesariamente, la misma energía en valor
absoluto.

Demostración. Trivial, pues es a =
|k|

2 |E| ⇔ |E| =
|k|
2a

. Q.E.D.

Observación 62. En el dibujo de la elipse de la proposición 75 en la página 181, nótese que el centro de fuerzas
está en un foco de la elipse y que el centro de la elipse queda a la izquierda. Es decir, la disposición es justo al
revés que en el caso de la hipérbola.

3.4.2.6. Ángulo de dispersión en trayectorias hiperbólicas

Definición 86. Sea una partícula que se mueve en una dirección fija (dirección de entrada) y tras un suceso
cualquiera, termina desplazándose en otra dirección fija (dirección de salida). Llamamos ángulo de dispersión
al ángulo que hay entre la dirección de entrada y la de salida. Es decir el ángulo de dispersión es el que forman
entre sí el vector velocidad de la partícula a la entrada y el vector velocidad de la partícula a la salida.

Proposición 76. Sea un partícula de masa m que inicialmente se encuentra muy alejada de un centro de

fuerzas que ejerce una fuerza del estilo ~F =
k

r2
r̂ con k > 0. Sea bimp el parámetro de impacto de la partícula

de masa m con respecto al centro de fuerzas. Es decir, bimp es la mínima distancia entre la trayectoria de la
partícula y el centro de fuerzas si fuese ~F = ~0. Entonces, la partícula de masa m describe una órbita hiperbólica
con b = bimp y, visto desde una distancia lo suficientemente alejada, el ángulo de dispersión Θ está relacionado
con el parámetro de impacto de la siguiente forma:

b = bimp =
|k|
mv2∞

cot
Θ

2

donde v∞ es el módulo de la velocidad de la partícula de masa m cuando se encuentra muy alejada del centro
de fuerzas.
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c a

b

Θ

a

α

Demostración. Vamos a realizar un razonamiento similar al hecho en la demostración de la proposición 67 en
la página 156. Como inicialmente la partícula se encuentra muy alejada del centro de fuerzas, podemos suponer
que r →∞ y, en consecuencia, la partícula en el infinito únicamente tendrá energía cinética:

E =
1

2
mv2
∞

Nuestro siguiente objetivo es calcular el momento angular de la trayectoria. Como es constante, nos interesa
calcularlo cuando la partícula está muy alejada del centro de fuerzas (en el infinito), sin embargo, nos interesaría
poder expresarlo en función de bimp. Para ello, vamos a usar el siguiente argumento: Cuando la partícula está
muy lejos del centro de fuerzas, como hemos dicho en el párrafo anterior, podemos suponer que sobre ella
no actúan fuerzas. Si no tenemos fuerzas, el momento angular desde cualquier punto debe conservarse por el
teorema 5 en la página 21. Tomemos nuestro centro de fuerzas como punto de referencia para el cálculo del
momento angular. Si fuese ~F = ~0, sabemos que la mínima distancia entre la trayectoria y el centro de fuerzas
sería b por la definición 84 en la página 156. Como la distancia mínima siempre es en perpendicular, sabemos
que ~bimp ⊥ ~̇r. De esta forma, el momento angular en el punto de mínima distancia (cuando ~F = ~0) viene dado
por:

L = mbimpv∞

dado que la velocidad en ausencia de fuerzas es constante por la primera ley de Newton (ver teorema 1 en la
página 8). Pero, como el momento angular se conserva en ausencia de fuerzas, el momento angular cuando la
partícula está muy alejada del centro de fuerzas también será L = mbimpv∞ y así (volviendo a nuestro caso
inicial con ~F = k

r2 r̂), el momento angular de nuestra partícula cuando está muy alejada del centro de fuerzas
también es L = mbimpv∞. Por último, como ~F es central, el momento angular es constante y así el momento
angular de nuestra partícula es siempre:

L = mbimpv∞

En resumen, hemos conseguido obtener las dos constantes del movimiento:

L = mbimpv∞ E =
1

2
mv2
∞ > 0
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Por la proposición 73 en la página 169, sabemos que la trayectoria seguida por nuestra partícula será una
hipérbola. Ahora, por la proposición 75 en la página 181, sabemos que el parámetro b de nuestra hipérbola está
relacionad con la energía y el momento angular como sigue:

b2 =
L2

2m |E|

Sustituyendo, obtenemos:

b2 =
m2b2impv

2
∞

2m 1
2mv

2∞
= b2imp

b,bimp>0⇐====⇒ b = bimp

De manera que el parámetro b de nuestra hipérbola coincide con el parámetro de impacto.
A continuación, notemos que la hipérbola tiene dos asíntotas, una se corresponderá con la dirección de entrada

de nuestra partícula y la otra con la dirección de salida. Esto es así, porque cuando nos encontramos muy lejos del
centro de fuerzas, la hipérbola es imperceptible y parece que tengamos una línea recta. Bien, recordamos por la

proposición 73 en la página 169 que las asíntotas de la hipérbola formaban ángulos arc cos

(
1

e

)
y arc cos

(
−1

e

)
con la dirección de θ0. Llamemos α := arc cos

(
1

e

)
. Calculemos tanα; para ello, usamos que:

tan arc cosx =

√
1− x2

x

(lo anterior se ha extraído de aquí1) de manera que obtenemos:

tanα =

√
1− 1

e2

1
e

= e

√
e2 − 1

e2
=
√
e2 − 1

Ahora, por la proposición 75 en la página 181, sabemos que es:

c = ae⇔ e =
c

a

Sustituyendo, obtenemos:

tanα =

√
c2

a2
− 1

Recordando lo visto en la sección 3.2.2 en la página 153, sabemos que en una hipérbola se cumple c2 = a2 + b2,
sustituyendo, llegamos a:

tanα =

√
a2 + b2

a2
− 1 =

√
a2 + b2 − a2

a2
=

√
b2

a2
=
b

a

Estudiando la definición 86 en la página 184, vemos que el ángulo de dispersión Θ es el que forman entre sí
ambas asíntotas, es decir, es:

Θ = π − 2α⇔ 2α = π −Θ⇔ α =
π −Θ

2

Usando la expresión que hemos hallado anteriormente para la tangente, obtenemos:

tanα = tan

(
π −Θ

2

)
=
b

a

Usando la proposición 75 en la página 181, podemos expresar a en función de la energía como sigue:

a =
|k|
2E

=
|k|

2 1
2mv

2∞
=
|k|
mv2∞

1https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&oldid=876493420#Relationships_
between_trigonometric_functions_and_inverse_trigonometric_functions
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Sustituyendo, llegamos a:

tan

(
π −Θ

2

)
=

b
|k|
mv2
∞

⇔ b =
|k|
mv2∞

tan

(
π

2
− Θ

2

)
Por último usamos que la tangente del complementario es la cotagente2:

tan
(π

2
− x
)

= cotx

De manera que obtenemos:

b =
|k|
mv2∞

cot
Θ

2

Q.E.D.

3.4.2.7. Periodo de la órbita elíptica

Observación 63. Notemos que la trayectoria de una partícula de masa m sometida a una fuerza del estilo
~F =

k

r2
r̂ satisface la segunda ley de Kepler (ver teorema 19 en la página 143) por ser central.

Teorema 20 (Tercera ley de Kepler). Sea un partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂

con k < 0 tal que su energía es negativa E < 0, entonces se da:

T 2

4π2
=
ma3

|k|

donde T es el periodo de la órbita y a es el semieje mayor de la elipse que describe la partícula m.

Demostración. Como ~F es central, por la segunda ley de Kepler (ver teorema 19 en la página 143), se satisface:

dA

dt
=

L

2m

Además, como es k < 0 y E < 0, por la proposición 68 en la página 160, sabemos que la trayectoria de la
partícula será cerrada y, por la forma de la expresión matemática de la proposición 71 en la página 166, será
periódica. Llamemos T a dicho periodo. Por la proposición 73 en la página 169, conocemos, además, que la
órbita será una elipse o una circunferencia (que no es más que un caso particular de elipse con a = b). Como el
área de la elipse es πab, por lo dicho anteriormente, debe satisfacerse:

πab

T =
dA

dt
=

L

2m
⇔ π2a2b2

T 2
=

L2

4m2

Nótese que lo anterior tiene todo el sentido pues dA
dt no es una magnitud diferencial. Por la proposición 75 en

la página 181, sabemos que b2 = al = a
L2

m |k| . Sustituyendo, obtenemos:

π2a2a L2

m|k|
T 2

=
L2

4m2
⇔ π2a3

T 2 |k| =
1

4m
⇔ ma3

|k| =
T 2

4π2

Q.E.D.

Corolario 27. Sea un partícula de masa m sometida a una fuerza del estilo ~F =
−GMm

r2
r̂ tal que su energía

es negativa E < 0, entonces se da:
T 2

4π2
=

a3

GM

donde T es el periodo de la órbita, a es el semieje mayor de la cónica que describe la partícula m, G es la
constante de gravitación universal y M es la masa generadora del campo.

2Esto puede verse en la página https://en.wikipedia.org/w/index.php?title=Trigonometric_functions&oldid=868696055#
Right-angled_triangle_definitions.
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Demostración. Trivial. Simplemente se sustituye en el teorema 20 en la página anterior k = −GMm. Q.E.D.

Definición 87. Sea una partícula de masa m sometida a una fuerza del estilo ~F =
k

r2
r̂ con k < 0 tal que su

energía es negativa E < 0. Se llama pericentro al punto de la órbita que realiza la mínima distancia al centro
de fuerzas y se llama apocentro al punto de la órbita que realiza la máxima distancia al centro de fuerzas.

En astronomía, es decir, cuando ~F =
−GMm

r2
r̂, el pericentro recibe el nombre de periastro y el apocentro

recibe el nombre de apoastro. Es más, si la masa generadora del campo gravitatorio es el Sol, entonces el
periastro recibe el nombre de perihelio y el apoastro recibe el nombre de afelio. Análogamente, si la masa
generadora del campo gravitatoria es la Tierra, el periastro recibe el nombre de perigeo y el apoastro recibe el
nombre de apogeo.

O
P2 P1

apocentro
apoastro

pericentro
periastro

Ejemplo 25. Fijémonos en el dibujo siguiente. Supongamos que es la órbita de la Tierra alrededor del Sol, que
tiene una excentricidad e = 0,0167. Calculemos cuántos días más le cuesta recorrer el área morada que el área
verde.
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O
P2 P1

A1 = πab
2 + bc

A2 = πab
2 − bc

r

r

c

b

a

Primero, obtengamos dichas áreas. No resultan difíciles del calcular pues pueden obtenerse a partir del área
de media elipse y del área del triangulo cuyos lados son a, c y r. Así, obtenemos:

Amorado =
πab

2
+ 2

bc

2
=
πab

2
+ bc

Averde =
πab

2
− 2

bc

2
=
πab

2
− bc

De manera que la diferencia de áreas es:

∆A = Amorado −Averde = 2bc

Por la proposición 75 en la página 181, podemos expresar c en función de la excentricidad e y el semieje mayor
a, obteniendo:

∆A = 2bc = 2b ea︸︷︷︸
=c

= 2abe

Por la segunda ley de Kepler aplicada al caso gravitatorio (ver teorema 19 en la página 143), tenemos:

dA

dt
= cte

Por tanto, si llamamos ∆t al tiempo que le cuesta la tierra recorrer ∆A, debe cumplirse:
A

T =
∆A

∆t

donde A es el área de la órbita de la Tierra y T es su periodo. Dicho área sabemos que es:

A = πab

Sustituyendo, obtenemos:
πab

T =
2abe

∆t
⇔ π

T =
2e

∆t
⇔ ∆t =

2e

π
T ≈ 3, 88 días
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3.4.2.8. Ejemplos

Ejemplo 26. Tenemos una partícula de masa m sometida a la fuerza gravitatoria generada por un cuerpo de
masa M inmóvil en torno al cual nuestra partícula de masa m describe órbita circular de radio R. Posterior-
mente, le damos un impulso radial hacia dentro produciéndole un cambio de velocidad en la dirección radial de
exactamente la velocidad del movimiento circular. ¿Qué tipo de órbita describirá el objeto tras el impulso?

R

M

m

vc

O

vc
Impulso radial

Por la proposición 68 en la página 160, sabemos lo siguiente:

vc =

√
GM

R
E = −GMm

2R

V = −GMm

R
T =

GMm

2R
= −V

2

y además que l = R. En estas condiciones, el momento angular antes del impulso puede ser descrito como:

L = mR

√
GM

R

Ahora, le damos un impulso radial hacia dentro de velocidad vr = vc. Tras aplicarle el impulso radial, sabemos
que se conservará el momento angular porque los momentos lineales radiales no hacen momento angular (por
definición de momento angular [ver definición 12 en la página 20]). En consecuencia, también se conservará l
(por definición de l [ver definición 85 en la página 160]). Así:

L′ = L l′ = l

Calculemos la nueva energía de la órbita:

E′ = E +
1

2
mv2

c︸ ︷︷ ︸
=T

pues T =
1

2
mv2

c es justo la energía cinética con la que contaba la partícula de masa m antes de aplicarle el
impulso. Ahora, como además E = T + V , obtenemos:

E′ = T + V + T = 2T + V

pero recordemos que en una órbita circular T = −V
2
, de forma que, sustituyendo llegamos a:

E′ = 2

(
−V

2

)
+ V = −V + V = 0
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En consecuencia, por la proposición 73 en la página 169, la nueva órbita es una parábola y la excentricidad
de dicha órbita es e = 1. Además, la distancia mínima entre la nueva trayectoria y el centro de fuerzas será (por
la proposición 72 en la página 168):

rmín =
l

2
=
R

2

porque en la órbita circular es R = l.

Ejemplo 27. Tenemos una partícula de masa m sometida a la fuerza gravitatoria generada por un cuerpo de
masa M inmóvil en torno al cual nuestra partícula de masa m describe órbita circular de radio R. Posterior-
mente, le damos un impulso radial hacia dentro produciéndole un cambio de velocidad en la dirección radial de
vr =

vc
2

donde vc es la velocidad del movimiento circular. ¿Qué tipo de órbita describirá el objeto tras el impulso?

Todas las deducciones de la órbita circular son las mismas que en el ejemplo 26 en la página anterior.
Ahora, le damos un impulso radial hacia dentro de velocidad vr =

vc
2
. Tras aplicarle el impulso radial,

sabemos que se conservará el momento angular porque los momentos lineales radiales no hacen momento angular
(por definición de momento angular [ver definición 12 en la página 20]). En consecuencia, también se conservará
l (por definición de l [ver definición 85 en la página 160]). Así:

L′ = L l′ = l

Calculemos la nueva energía de la órbita:

E′ = E +
1

2
m
(vc

2

)2

= E +
1

4

1

2
mv2

c︸ ︷︷ ︸
=T

= E +
T

4

Como E = T + V , obtenemos:

E′ = T + V +
T

4
= V +

5T

4

Como en una órbita circular T = −V
2
:

E′ = V − 5

4

V

2
= V − 5

8
V =

3

8
V = −3

8

GMm

R
< 0

De esta forma, sabemos que la nueva trayectoria será una elipse. Mediante la proposición 75 en la página 181,
podemos obtener el valor de los parámetros a y b de la nueva órbita.

E = −GMm

2a
⇔ −3

8

GMm

R
= −GMm

2a
⇔ 3

4

1

R
=

1

a
⇔ a =

4

3
R

b2 = al =
4

3
R2

dado que l = R.
A continuación, vamos a hallar la excentricidad a través de c. Sabemos por la sección 3.2.1 en la página 151

que en una elipse se cumple:

a2 = b2 + c2

podemos obtener c como sigue:

c2 = a2 − b2 =
42

32
R2 − 4

3
R2 =

4

3
R2

(
4

3
− 1

)
=

4

9
R2 ⇔ c =

2

3
R

En consecuencia:

e =
c

a
=

2
3R
4
3R

=
1

2

Licencia: Creative Commons 191

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 3. FUERZAS CENTRALES CONSERVATIVAS

3.4. ÓRBITAS

Ejemplo 28. Tenemos una partícula de masa m sometida a la fuerza gravitatoria generada por un cuerpo de
masa M inmóvil en torno al cual nuestra partícula de masa m describe órbita circular de radio R. Posterior-
mente, le damos un impulso radial hacia dentro produciéndole un cambio de velocidad en la dirección radial
de vr = 2vc donde vc es la velocidad del movimiento circular. ¿Qué tipo de órbita describirá el objeto tras el
impulso?

Todas las deducciones de la órbita circular son las mismas que en el ejemplo 26 en la página 190.
Ahora, le damos un impulso radial hacia dentro de velocidad vr = 2vc. Tras aplicarle el impulso radial,

sabemos que se conservará el momento angular porque los momentos lineales radiales no hacen momento angular
(por definición de momento angular [ver definición 12 en la página 20]). En consecuencia, también se conservará
l (por definición de l [ver definición 85 en la página 160]). Así:

L′ = L l′ = l

Calculemos la nueva energía de la órbita:

E′ = E +
1

2
m (2vc)

2
= E + 4

1

2
mv2

c︸ ︷︷ ︸
=T

= E + 4T

Como E = T + V , obtenemos:
E′ = T + V + 4T = V + 5T

Como en una órbita circular T = −V
2
:

E′ = V − 5
V

2
= V − 5

2
V = −3

2
V =

3

2

GMm

R
> 0

De esta forma, sabemos que la nueva trayectoria será una hipérbola. Mediante la proposición 75 en la
página 181, podemos obtener el valor de los parámetros a y b de la nueva órbita.

E =
GMm

2a
⇔ 3

2

GMm

R
=
GMm

2a
⇔ 3

1

R
=

1

a
⇔ a =

R

3

b2 = al =
R2

3

dado que l = R.
A continuación, vamos a hallar la excentricidad a través de c. Sabemos por la sección 3.2.2 en la página 153

que en una hipérbola se cumple:

c2 = a2 + b2

podemos obtener c como sigue:

c2 = a2 + b2 =
R2

9
+
R2

3
=
R2

3

(
1

3
+ 1

)
=

4

9
R2 ⇔ c =

2

3
R

Y, en consecuencia:

e =
c

a
=

2
3R
1
3R

= 2

Ejemplo 29. Supongamos que la órbita de la Tierra alrededor del Sol es circular de radio R. Además de por la
Tierra, el Sol es orbitado por un cometa de cuya órbita sabemos que la distancia más corta entre ella y el Sol es

rmín =
R

2
y que, además, la velocidad del cometa en el punto en el que se realiza la mínima distancia es dos veces

la velocidad de la órbita circular de la Tierra. ¿Qué tipo de órbita describe el cometa? ¿Qué velocidad posee
el cometa cuando intersecta la órbita de la Tierra? ¿Qué ángulo forman el vector velocidad de la Tierra con
el vector velocidad del cometa en los puntos de intersección? ¿Durante cuánto tiempo permanecerá el cometa
dentro de la órbita de la Tierra?
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rmı́n

R

T

S

β

α

Primero, obtenemos la velocidad de la órbita circular de la Tierra mediante la proposición 68 en la página 160:

vc =

√
GM

R

donde M es la masa del Sol.
A continuación, deseamos obtener el tipo de órbita del cometa. Para ello, hallemos la energía. Como la

energía es una constante del movimiento, podemos hallarla allí donde nos sea más fácil. En este caso, nos
resulta más sencillo en el punto de distancia mínima, pues conocemos tanto el valor de la distancia mínima
como la velocidad en ese punto. Llamando m a la masa del cometa, tenemos:

E = −GMm
R
2

+
1

2
m (2vc)

2
= −2

GMm

R
+ 4

1

2
mv2

c =

= −2
GMm

R
+ 2m

GM

R︸ ︷︷ ︸
=vc

= 0

Luego tenemos una parábola. Además, según la proposición 72 en la página 168, sabemos que para el caso
de una parábola la distancia mínima cumple:

rmín =
l

2

Como en nuestro caso era rmín =
R

2
, tenemos l = R.
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Ahora, obtengamos la velocidad que tiene el cometa cuando intersecta la órbita de la Tierra. Lo hacemos
por energías. En el punto de intersección con la órbita de la Tierra, la distancia del cometa al Sol será R, pues
la órbita de la Tierra es circular.

0 = E = T + V =
1

2
mv2 − GMm

R
⇔ 1

2
mv2 =

GMm

R
⇔ v =

√
2GM

R

Ahora, calculemos el ángulo α que forma el vector velocidad con la trayectoria de la órbita de la Tierra.
Para ello, vamos a aplicar la conservación del momento angular. No obstante, primero tenemos que calcular el
momento angular. Podemos hallarlo en el punto r = rmín donde sabemos que es ṙ = 0 (pues la distancia mínima
es siempre en perpendicular) y, en consecuencia, r y v son perpendiculares:

L = m
R

2
2vc = mRvc = mR

√
GM

R
= m
√
GMR

Como el momento angular se conserva, el momento angular en el punto de intersección debe ser el momento
angular inicial. Como ya conocemos el módulo de la velocidad en el punto de intersección (donde es r = R),
simplemente:

m
√
GMR = mR

√
2GM

R
senβ ⇔ 1 =

√
2 senβ ⇔ senβ =

1√
2
⇔ β =

π

4

restringiendo β a
[
0,
π

2

]
donde β es el ángulo que forma el vector velocidad del cometa con el vector posición

con respecto del Sol (la dirección radial), no el ángulo que forma el vector velocidad del cometa con el vector
velocidad de la Tierra (que es perpendicular a la dirección radial), dicho ángulo es al que hemos llamado α.
Pero, hecho esto, calcular α es muy sencillo, ya que β y α son complementarios.

α =
π

2
− α =

π

4

Nótese que en este caso sí que es α = β, porque era β =
π

4
; pero, en general, esto no será cierto.

Para calcular el tiempo que permanece el cometa dentro de la órbita terrestre vamos a usar la segunda ley
de Kepler (ver teorema 19 en la página 143), que dice que:

dA

dt
=

L

2m

como conocemos el momento angular de la órbita, el reto consiste en hallar el área encerrada entre los vectores
posición en los puntos de intersección contenida en la parábola. Como el área es simétrica, nos basta con hallar
una mitad. Vamos a obtener dicho área matemáticamente usando las formas funcionales de la recta (el vector
posición) y la parábola presentes e integrando. Nótese que en este caso, como la órbita es una parábola y el Sol
debe ser el foco de la parábola; en el dibujo del principio de este ejercicio, los vectores posición de los puntos
de intersección tiene dirección vertical. Si giramos dicho dibujo

π

2
en sentido horario, obtenemos:
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R R

R
2

R
2

R

Directriz y = −R
2

V ≡ O

F ≡ S β

α

X

Y

Nuestro objetivo es hallar el área entre la línea horizontal azul y la parábola roja. Vamos a hacer esto
integrando. Para ello, necesitamos obtener las ecuaciones matemáticas que describen estos objetos. La línea
recta horizontal viene descrita por:

f (x) =
R

2

Recordemos que la ecuación general de una parábola cuyo eje es paralelo al eje Y es:

g (x) = Ax2 +Bx+ C

g′ (x) = 2Ax+B

Para hallar la ecuación de la parábola vamos a usar que sabemos que el mínimo se da en x = 0 y que vale 0.
Además, debe cortar a la función f (x) en x = R. Matemáticamente, podemos escribir lo anterior como:

g (0) = 0 g′ (0) = 0 g (R) =
R

2

De las primeras dos ecuaciones obtenemos fácilmente que:

B = C = 0

Apliquemos la última ecuación:
R

2
= g (R) = AR2 ⇔ A =

1

2R

Bien, ahora estamos en disposición de hallar el área objetivo:

A = 2

ˆ R

0

[
R

2
− x2

2R

]
dx = 2

[
R

2
x− x3

6R

]R
0

= 2

(
R2

2
− R2

6

)
= R2 − R2

3
=

2

3
R2

Ahora, por la segunda ley de Kepler, tenemos:

A

t
=

L

2m
⇔

2
3R

2

t
=

L

2m
⇔ t =

4
3mR

2

L
=

4mR2

3L
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Anteriormente, habíamos obtenido que:
L = m

√
GMR

Sustituyendo, tenemos:

t =
4mR2

3m
√
GMR

=
4

3

R
3
2√

GM

3.5. Dispersión de partículas
Recomendamos repasar las definiciones 84 en la página 156 y 86 en la página 184 antes de proseguir con la

lectura de esta sección.

3.5.1. Colisión entre una partícula móvil y una esfera fija de radio R

Proposición 77. Sea una partícula puntual que lanzamos con un parámetro de impacto b hacia una esfera
fija de radio R con rapidez v. Si el choque es elástico, la fuerza de interacción (la fuerza de choque) es central
conservativa; por tanto, se conserva la energía y el momento angular antes y después del choque. Además, tras
el choque la partícula seguirá llevando rapidez v y el parámetro de impacto b y el ángulo de dispersión θ están
relacionados por la expresión:

b = R cos
θ

2

~v

O

α

α θ = π − 2α

b

α

Z
R

Demostración. Como el choque es elástico, la energía cinética antes del choque será la misma que después del
choque. En consecuencia, el módulo de la velocidad (la rapidez) se conserva.

Durante la colisión actúa sobre la partícula una fuerza desconocida. Sin embargo, como el choque es elástico
y no hay otras fuerzas aparte de la fuerza de choque, la energía mecánica debe ser igual a la cinética tanto
antes como después del choque y como esta última se conserva, pues la energía mecánica se conservará también.
Por tanto, la fuerza del choque será conservativa. Además, como la fuerza de choque será perpendicular a la
superficie de la esfera, desde el centro de la esfera la fuerza de choque es central. Así, la fuerza de choque es
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central conservativa. Como es central, el momento angular desde O debe conservarse. Así si llamamos α1 al
ángulo que forma la trayectoria de entrada con la perpendicular a la superficie de la esfera en el punto de choque
y α2 al ángulo que forma la trayectoria de salida con la perpendicular a la superficie de la esfera en el punto de
choque, obtenemos:

Rv senα1 = Rv senα2 ⇔ senα1 = senα2

y como α1 y α2 están restringidos a
[
0,
π

2

]
, debe ser α1 = α2 := α. Nótese que necesariamente α1 y α2 están

en el intervalo descrito anteriormente porque si fuera α >
π

2
entonces la partícula incidente tendría que venir

desde dentro de la esfera y esto es absurdo.
Ahora, por trigonometría obtenemos fácilmente que:

b = R senα

θ = π − 2α⇔ 2α = π − θ ⇔ α =
π

2
− θ

2

Sustituyendo la segunda ecuación en la primera, obtenemos:

b = R sen

(
π

2
− θ

2

)
= R cos

θ

2

Q.E.D.

Observación 64. Nótese que en este caso el momento lineal no se conserva.

3.5.2. Colisión entre un conjunto de proyectiles móviles y una lámina de blancos
fijos

3.5.2.1. Sin tener en cuenta la dirección tras la dispersión

En el caso anterior medir el parámetro de impacto b era relativamente sencillo. Sin embargo, si el proyectil
que lanzamos es, por ejemplo, un protón y lo lanzamos contra un núcleo de nitrógeno, normalmente como mucho
podremos medir el ángulo de dispersión θ en una cámara de niebla. Sin embargo, medir el parámetro de impacto
b (que en nuestro ejemplo sería de escala nanométrica) mirando estelas de grosor de escala milimétrica no es
posible. Por tanto, para este tipo de experimentos nos interesa lanzar una gran cantidad de proyectiles y contra
una gran cantidad de blancos. Del mismo modo, normalmente no podremos conocer el valor del radio R de los
blancos (aun suponiendo el mismo para todos), por tanto, nos interesa trabajar con otra magnitud física que
nos indique el tamaño del blanco; dicha magnitud física será la sección eficaz.

Definición 88. Llamamos sección eficaz σ de un blanco al área efectiva que muestra al interactuar con un
proyectil.

Teorema 21. Lanzamos un haz de Ninc partículas de la misma masa y con la misma velocidad contra una
lámina de partículas estáticas de sección eficaz σ. Supondremos que la sección del haz incidente A está contenida
en el área sobre la cual se extienden los blancos (que no es el área ocupada por los blancos; el área ocupada por
los blancos será menor que el área sobre la que se extienden; dicho de otra forma, hay huecos entre los blancos).
Entonces, el número de partículas que colisiona contra los blancos (y que supondremos, se dispersa) Ndisp viene
dado por la expresión:

Ndisp = Nincnblσ

donde nbl es el número de blancos por unidad de área, visto desde la dirección incidente. Es decir, si yo hiciera
una foto desde la perspectiva de uno de los proyectiles lanzados, hiciera una división de la foto según una
cuadrícula y tomara uno de esos cuadrados como unidad de referencia, nbl sería el número de blancos que
habría en cada cuadrado. En nuestro modelo, supondremos que los blancos están distribuidos uniformemente.

Demostración. La probabilidad de que uno de los proyectiles del haz incidente colisione con los blancos viene
dada por la expresión:

Pcolisión =
área ocupada por los blancos
sección del haz incidente

Llamemos A a la sección del haz incidente. Por otra parte, el área ocupada por los blancos será el número de
blancos por su sección eficaz. En un área del tamaño de la sección del haz incidente habrá Nbl = nblA blancos.
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De forma que el área ocupada por los blancos viene dada por Abl = nblAσ. Así, la probabilidad de colisión
queda:

Pcolisión =
nblAσ

A
= nblσ

que como vemos, no depende del la sección del haz A. Por último, el número de proyectiles que colisiona (que
supondremos que es el mismo que se dispersa) será:

Ndisp = PcolisiónNinc = Nincnblσ

Q.E.D.

Si el lector anda ahora algo perdido con los nuevos conceptos el siguiente ejemplo le ayudará a captar su
significado práctico.

Ejemplo 30 (Extraído de Taylor (2013) [2]). Un cazador observa que 50 cuervos se posan aleatoriamente sobre

un roble, donde ya no puede verlos. Cada cuervo tiene una sección eficaz σ ≈ 1

2
pies2 y el roble tiene un área

total (vista desde la posición del cazador) de A = 150 pies2. Si el cazador dispara 60 balas al azar hacia el árbol,
¿a cuántos cuervos esperaría acertar?

En este caso, el número de proyectiles incidentes será Ninc = 60 y el número de blancos será Nbl = 50.
Además, la densidad de blancos en nuestro caso es:

nbl =
Nbl
A

=
50

150

1

pies2
=

1

3

1

pies2

Aplicando el teorema 21 en la página anterior, obtenemos que el número de aciertos (el número de colisiones)
es:

Ndisp = Nincnblσ = 60
1

3

1

2
= 10

Con frecuencia, lo que tendremos será un flujo continuo de proyectiles, no un haz de proyectiles disparados
«a la vez». Por tanto, nos será más útil trabajar con el flujo de partículas entrante φinc por unidad de área y
unidad de tiempo y el flujo de partículas dispersada φdisp por unidad de área y por unidad de tiempo.

Corolario 28. Lanzamos un haz de partículas de la misma masa y con la misma velocidad contra una lámina
de partículas estáticas de sección eficaz σ. Sea:

φinc =
d̄Ninc
dtdA

el número de partículas del haz incidente que llegan a los blancos por unidad de área y por unidad de tiempo.
Igualmente, sea:

φdisp =
d̄Ndisp
dtdA

el número de partículas que colisionan contra los blancos por unidad de área y por unidad de tiempo. Hemos usado
diferenciales inexactos porque en realidad no existen los diferenciales de Ninc y Ndisp, usamos esta notación
simplemente para indicar que son pequeños. Supondremos que la sección del haz incidente A está contenida en
el área sobre la cual se extienden los blancos. Entonces, ambas magnitudes φinc y φdisp están relacionadas entre
sí por la expresión:

φdisp = φincnblσ

donde nbl es el número de blancos por unidad de área, visto desde la dirección incidente. En nuestro modelo,
supondremos que los blancos están distribuidos uniformemente.

Demostración. Partimos del teorema 21 en la página anterior:

Ndisp = Nincnblσ

Si Ndisp y Ninc son pequeños, podemos usar la notación de diferencial inexacta, de manera que la expresión
anterior queda:

d̄Ndisp = d̄Nincnblσ
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Dividiendo la expresión anterior por dt y dA, llegamos a:

d̄Ndisp
dtdA︸ ︷︷ ︸
=φdisp

=
d̄Ninc
dtdA︸ ︷︷ ︸
=φinc

nblσ ⇔ φdisp = φincnblσ

Q.E.D.

A veces, nos será útil trabajar con el flujo total por unidad de tiempo entrante %inc y con el flujo total por
unidad de tiempo dispersado %disp. Para este caso, tenemos el resultado equivalente:

Corolario 29. Lanzamos un haz de partículas de la misma masa y con la misma velocidad contra una lámina
de partículas estáticas de sección eficaz σ. Sea:

%inc =
d̄Ninc
dt

el número de partículas del haz incidente que llegan a los blancos por unidad de tiempo. Igualmente, sea:

%disp =
d̄Ndisp
dt

el número de partículas que colisionan contra los blancos por unidad de tiempo. Supondremos que la sección del
haz incidente A está contenida en el área sobre la cual se extienden los blancos. Entonces, ambas magnitudes
%inc y %disp están relacionadas entre sí por la expresión:

%disp = %incnblσ

donde nbl es el número de blancos por unidad de área, visto desde la dirección incidente. En nuestro modelo,
supondremos que los blancos están distribuidos uniformemente.

Demostración. Partimos del corolario 28 en la página anterior:

φdisp = φincnblσ ⇔
d̄Ndisp
dtdA

=
d̄Ninc
dtdA

nblσ

Multiplicando a ambos lados por dA, obtenemos:

d̄Ndisp
dt︸ ︷︷ ︸

=ρdisp

=
d̄Ninc
dt︸ ︷︷ ︸

=%inc

nblσ ⇔ %disp = %incnblσ

Q.E.D.

3.5.2.2. Teniendo en cuenta la dirección de la dispersión

En ocasiones, no sólo me interesa saber el número de partículas dispersadas, sino el número de partículas
dispersadas en una dirección en concreto. Para esto, vamos a usar la sección eficaz diferencial. Lo habitual es
tomar la dirección del haz incidente como eje Z y después especificar la dirección de cualquier proyectil dando
sus ángulos polares θ y ϕ. Más en concreto, vamos a contar el número de partículas que salen en un cono
estrecho alrededor de (θ, ϕ). Para caracterizar dicho cono, vamos a utilizar el concepto de ángulo sólido.
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ϕ Dirección de

Z

dispersión

Z

Dirección de
dispersión

θ

Observación 65. Si miramos en la dirección perpendicular al eje Z, el ángulo ϕ se corresponde con el ángulo
que forma la proyección de la dirección de dispersión en el plano perpendicular al eje Z con la vertical. Si ahora
miramos según el plano que contiene tanto a la dirección de la dispersión como al eje Z, θ se corresponde con
el ángulo que forma la dirección de dispersión con el eje Z.

Definición 89. Llamamos ángulo sólido al angulo espacial tal que su expresión diferencial es:

dΩ :=
r̂ · d~S
r2

=
~r · d~S
r3

(3.5.1)

Gráficamente:

~r

d~S

X

Y

Z

dΩ

La idea del ángulo sólido3 es el ángulo 2D (la «anchura» del cono) que se forma tras proyectar la superficie
3Más información en la página https://en.wikipedia.org/w/index.php?title=Solid_angle&oldid=874069230.
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sobre una esfera de radio unidad. Es decir, es una medida del agujero que tendría que hacer en la esfera de radio
unidad para poder ver el d~S. Nótese que efectivamente es un ángulo, pues es un parámetro adimensional.

Proposición 78. El ángulo sólido diferencial dΩ expresado en coordenadas esféricas cuando el vector ~r es
paralelo al vector d~S tiene la forma:

dΩ = sen θdθdϕ

Demostración. Partimos de la definición de ángulo sólido 89 en la página anterior:

dΩ =
r̂ · d~S
r2

Como es ~r ‖ d~S por hipótesis:

dΩ =
dS

r2

El diferencial de superficie en coordenadas esféricas viene dado por:

dS = r2 sen θdθdϕ

Sustituyendo, obtenemos:

dΩ =
r2 sen θdθdϕ

r2
= sen θdθdϕ

con lo que se llega al enunciado. Q.E.D.

Proposición 79. Lanzamos un haz de Ninc partículas de la misma masa y con la misma velocidad contra una
lámina de partículas estáticas de sección eficaz dσ para el ángulo sólido dΩ. Es decir, dσ es el área efectiva
de cada blanco para la dispersión en el ángulo sólido dΩ. Supondremos que la sección del haz incidente A está
contenida en el área sobre la cual se extienden los blancos. Sea nbl el número de blancos por unidad de área,
visto desde la dirección incidente; supondremos que los blancos están distribuidos uniformemente. Sea Ndisp,dΩ

el número de partículas que colisionan contra los blancos y son dispersadas en el ángulo sólido dΩ. Sea, además:

φinc =
d̄Ninc
dtdA

el número de partículas del haz incidente que llegan a los blancos por unidad de área y por unidad de tiempo.
Igualmente, sea:

φdisp,dΩ =
d̄Ndisp,dΩ

dtdA

el número de partículas que colisionan contra los blancos y son dispersadas en el ángulo sólido dΩ por unidad
de área y por unidad de tiempo. Por otra parte, sea:

%inc =
d̄Ninc
dt

el número de partículas del haz incidente que llegan a los blancos por unidad de tiempo. Igualmente, sea:

%disp,dΩ =
d̄Ndisp,dΩ

dt

el número de partículas que colisionan contra los blancos y son dispersadas en el ángulo sólido dΩ por unidad
de tiempo. Entonces, se dan las siguientes relaciones:

1.
Ndisp,dΩ = Nincnbl

dσ

dΩ
dΩ

2.
φdisp,dΩ = φincnbl

dσ

dΩ
dΩ

3.
%disp,dΩ = %incnbl

dσ

dΩ
dΩ
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donde:
dσ

dΩ
= F (θ, ϕ)

dΩ

(θ, φ)

blancos

Demostración. Aplicando la proposición 21 en la página 197, restringiéndonos a las partículas dispersadas en
el ángulo sólido dΩ, obtenemos:

Ndisp,dΩ = Nincnbldσ

Multiplicando y dividiendo en el lado derecho de la ecuación por el diferencial de ángulo sólido dΩ, obtenemos:

Ndisp,dΩ = Nincnbl
dσ

dΩ
dΩ

Como el ángulo sólido dΩ es, por la proposición 78 en la página anterior, función de dθ y dϕ, el cociente
dσ

dΩ
será, en general, función de θ y ϕ.

Ahora, si Ndisp y Ninc son pequeños, podemos usar la notación de diferencial inexacta, de manera que la
expresión anterior queda:

d̄Ndisp,dΩ = d̄Nincnbl
dσ

dΩ
dΩ

Dividiendo la expresión anterior por dt y dA, llegamos a:

d̄Ndisp,dΩ

dtdA︸ ︷︷ ︸
=φdisp,dΩ

=
d̄Ninc
dtdA︸ ︷︷ ︸
=φinc

nbl
dσ

dΩ
dΩ⇔ φdisp,dΩ = φincnbl

dσ

dΩ
dΩ

Si multiplicando la parte izquierda de la expresión anterior a ambos lados por dA, obtenemos:

d̄Ndisp,dΩ

dt︸ ︷︷ ︸
=ρdisp,dΩ

=
d̄Ninc
dt︸ ︷︷ ︸

=%inc

nbl
dσ

dΩ
dΩ⇔ %disp,dΩ = %incnbl

dσ

dΩ
dΩ

Q.E.D.

Definición 90. El cociente
dσ

dΩ
de la proposición 79 en la página anterior recibe el nombre de sección eficaz

diferencial. En general, la sección eficaz diferencial es función de los ángulos θ y ϕ.
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Corolario 30. La sección eficaz total σ es igual a la integral sobre todos los posibles ángulos sólidos dΩ asociados

a la sección eficaz diferencial
dσ

dΩ
.

σ =

¨
dσ

dΩ
dΩ =

ˆ π

θ=0

ˆ 2π

ϕ=0

dσ

dΩ
sen θdθdϕ

Demostración.
σ =

¨
dσ =

¨
dσ
dΩ

dΩ
=

¨
dσ

dΩ
dΩ

Por la proposición 78 en la página 201, sabemos que el ángulo sólido en coordenadas esféricas viene dado por:

dΩ = sen θdθdϕ

Sustituyendo, obtenemos:

σ =

¨
dσ

dΩ
sen θdθdϕ

Como θ ∈ [0, π] y ϕ ∈ [0, 2π), si queremos barrer todos los posibles ángulos sólidos, tendremos que barrer todos
los posibles valores de θ y ϕ. En consecuencia, la integral anterior queda:

σ =

ˆ π

θ=0

ˆ 2π

ϕ=0

dσ

dΩ
sen θdθdϕ

Q.E.D.

Proposición 80. Lanzamos un haz de Ninc partículas de la misma masa y con la misma velocidad contra una
lámina de partículas estáticas de sección eficaz dσ para el ángulo sólido dΩ. Es decir, dσ es el área efectiva
de cada blanco para la dispersión en el ángulo sólido dΩ. Supondremos que la sección del haz incidente A está
contenida en el área sobre la cual se extienden los blancos. Sea nbl el número de blancos por unidad de área,
visto desde la dirección incidente; supondremos que los blancos están distribuidos uniformemente. Contamos
con un detector de superficie Adet a distancia L de la lámina de blancos (supondremos que L es mucho mayor
que las dimensiones de la lámina de blancos de manera que la distancia entre cualquier punto de la lámina y
nuestro detector es aproximadamente L) tal que la superficie de detección es perpendicular al vector posición
que une la lámina de blancos con el detector. Sea Ndet el número de partículas detectadas por el detector. Sea,
además:

φinc =
d̄Ninc
dtdA

el número de partículas del haz incidente que llegan a los blancos por unidad de área y por unidad de tiempo.
Igualmente, sea:

φdet =
d̄Ndet
dtdA

el número de partículas detectadas por el detector por unidad de área y por unidad de tiempo. Por otra parte,
sea:

%inc =
d̄Ninc
dt

el número de partículas del haz incidente que llegan a los blancos por unidad de tiempo. Igualmente, sea:

%det =
d̄Ndet
dt

el número de partículas detectadas por el detector por unidad de tiempo. Entonces, se dan las siguientes rela-
ciones:

1.
Ndet =

¨
Adet

Nincnbl
dσ

dΩ

dAdet
L2

2.
φdet =

¨
Adet

φincnbl
dσ

dΩ

dAdet
L2
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3.
%det =

¨
Adet

%incnbl
dσ

dΩ

dAdet
L2

Demostración. Partimos de la proposición 79 en la página 201. De esta forma, sabemos que el número de
partículas dispersadas en un diferencial de ángulo sólido dΩ viene dada por la expresión:

Ndisp,dΩ = Nincnbl
dσ

dΩ
dΩ

Por tanto, para hallar el número de partículas que salen hacia nuestro detector tendremos que integrar la
expresión anterior al ángulo sólido de nuestro detector Ωdet:

Ndet =

¨
Ωdet

Nincnbl
dσ

dΩ
dΩdet

Aplicando la definición de diferencial de ángulo sólido (ver definición 89 en la página 200), sabemos que el
diferencial de ángulo sólido asociado a nuestro detector viene dado por:

dΩdet =
r̂ · d ~Adet
L2

pues la distancia entre la lámina de blancos y el detector es L. Por otra parte, como por hipótesis la superficie
de detección es perpendicular al vector posición que une la lámina de blancos con el detector, será d ~Adet ‖ r̂,
de manera que podemos escribir la expresión anterior como:

dΩdet =
dAdet
L2

Sustituyendo en la expresión que hemos obtenido para Ndet, obtenemos:

Ndet =

¨
Adet

Nincnbl
dσ

dΩ

dAdet
L2

Para obtener las otras expresiones o bien puede aplicarse un razonamiento análogo para las φ y para las
%, o bien puede dividirse la expresión con las N por dA y dt (según proceda) como hemos hecho ya varias
veces. Q.E.D.

3.5.2.3. Cálculo de la sección eficaz diferencial

Proposición 81. Sea un blanco tal que posee simetría axial en la dirección en la que llegan los proyectiles. En

ese caso, la sección eficaz diferencial
dσ

dΩ
depende únicamente de θ y viene dada por la expresión:

dσ

dΩ
=

b

sen θ

∣∣∣∣dbdθ
∣∣∣∣

donde b y θ se corresponden con el parámetro de impacto b y el ángulo de dispersión θ del problema de un único
proyectil y un único blanco de las mismas características.
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dΩ

dσ

bbb

dbdbdb dσ

dΩ

blancos blancos

θ

θ + dθ

dϕ

Demostración. Consideremos todos los proyectiles lanzados con un parámetro de impacto entre b y b + db y
entre un ángulo ϕ y ϕ+ dϕ. Estos son dispersados con ángulo de dispersión entre θ y θ + dθ y entre un ángulo
ϕ y ϕ+ dϕ. Los proyectiles lanzados inciden sobre el blanco en un área:

dσ = b |db| dϕ

donde db va con módulo pues éste puede ser positivo o negativo, mientras que el área debe ser positiva nece-
sariamente. Por otra parte, el diferencial de ángulo sólido en el que son desviadas estas partículas es, por la
proposición 78 en la página 201:

dΩ = sen θdθdϕ

Sin embargo, en la forma anterior estamos considerando siempre que dθ > 0, dado que el diferencial en coor-
denadas esféricas dθ es siempre positivo. No obstante, en nuestro caso dθ no tiene por qué ser necesariamente
positivo. Por tanto, como dΩ debe ser positivo, reescribimos la ecuación anterior como:

dΩ = sen θ |dθ| dϕ

Bien, ahora hallamos la sección eficaz diferencial:

dσ

dΩ
=

b |db| dϕ
sen θ |dθ| dϕ =

b

sen θ

∣∣∣∣dbdθ
∣∣∣∣

Q.E.D.

Observación 66. La proposición 81 en la página anterior nos indica que si hemos hallado la relación entre
el parámetro de impacto b y el ángulo de dispersión θ para un proyectil y blanco determinados, tal que el
blanco presenta simetría axial respecto a la dirección con respecto a la que llegan las partículas, entonces
automáticamente podemos conocer el valor de la sección eficaz diferencial y, en consecuencia, ser capaces de
resolver problemas con un número alto de proyectiles y blancos.

Corolario 31. La sección eficaz diferencial de una esfera rígida de radio R para colisiones elásticas con partí-
culas puntuales viene dada por la expresión:

dσ

dΩ
=
R2

4

Demostración. Por la proposición 77 en la página 196, sabemos que si lanzamos un proyectil puntual contra
una esfera de radio R, el parámetro de impacto b y el ángulo de dispersión están relacionados por la ecuación:

b = R cos
θ

2

Licencia: Creative Commons 205

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 3. FUERZAS CENTRALES CONSERVATIVAS

3.5. DISPERSIÓN DE PARTÍCULAS

Aplicando la proposición 81 en la página 204, sabemos que la sección eficaz diferencial es:

dσ

dΩ
=

b

sen θ

∣∣∣∣dbdθ
∣∣∣∣ =

R cos θ2
sen θ

∣∣∣∣−R2 sen
θ

2

∣∣∣∣ =
R cos θ2
sen θ

R

2
sen

θ

2
= R2 1

4

=sen θ︷ ︸︸ ︷
2 cos

θ

2
sen

θ

2
sen θ

=
R2

4

Q.E.D.

Observación 67. Lo más llamativo del resultado anterior es que la sección eficaz diferencial es isótropa; esto es,
el número de partículas dispersadas no depende de θ. Es el mismo en todas direcciones.

Corolario 32. La sección eficaz total de una esfera rígida radio R para colisiones elásticas con partículas
puntuales vale:

σ = πR2

Demostración. Partimos del corolario 31 en la página anterior, de manera que sabemos:

dσ

dΩ
=
R2

4

Por el corolario 30 en la página 203, sabemos que la sección eficaz total viene dada por:

σ =

ˆ π

θ=0

ˆ 2π

ϕ=0

dσ

dΩ
sen θdθdϕ =

ˆ π

θ=0

ˆ 2π

ϕ=0

R2

4
sen θdθdϕ =

R2

4
2π

ˆ π

0

sen θdθ =

=
πR2

2
[− cos θ]

π
0 =

πR2

2
(1− (−1)) = πR2

Q.E.D.

Ejercicio 11. Obtener la sección eficaz diferencial y la sección eficaz total para la dispersión de partículas
puntuales de masam por medio de un cilindro fijo de radio R y longitud L para colisiones elásticas. El parámetro
de impacto b viene dado como la distancia en perpendicular al eje del cilindro.

Solución. Nótese que, en este caso, como tenemos un cilindro, no tenemos simetría axial con respecto a la
dirección con la que llegan la partículas.

db
dz
dσ

Z

b

θ

Z

En consecuencia, vamos a tener que hallar la sección eficaz diferencial a partir del cociente de los diferenciales
dσ y dΩ. Para ello, vamos a trabajar en coordenadas cilíndricas. Escogemos un dσ cualquiera. Visto desde la
dirección incidente, dicho área será un rectángulo de lados db y dz. De forma que:

dσ = dbdz

Por otra parte, por definición de ángulo sólido (ver definición 89 en la página 200), tenemos:

dΩ =
r̂ · d~S
r2
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Nótese que r no es el radio del cilindro, sino la distancia de la superficie dS al cilindro. Como estamos tomando
la superficie perpendicular al vector ~r, r̂ y d~S serán paralelos y, en consecuencia:

dΩ =
dS

r2

Por otra parte, en coordenadas cilíndricas, el diferencial de superficie lateral viene dado por:

dS = rdθdz

Sustituyendo, tenemos:

dΩ =
rdθdz

r2
=
dθdz

r

dσ

dΩ
=

∣∣∣∣∣dbdzdθdz
r

∣∣∣∣∣ = r

∣∣∣∣dbdθ
∣∣∣∣

donde ponemos los módulos para asegurarnos de que
dσ

dΩ
sea positivo. Por tanto, únicamente tenemos que

sacar la relación entre el parámetro de impacto y el ángulo de dispersión. En lo que se refiere a obtener dicha
relación nuestro problema es indistinguible del caso de la esfera, el de la proposición 77 en la página 196. En
consecuencia, tenemos:

b = R cos
θ

2
⇒
∣∣∣∣dbdθ

∣∣∣∣ =

∣∣∣∣−R2 sen
θ

2

∣∣∣∣ =
R

2
sen

θ

2

donde no hemos necesitado poner el módulo al término sen
θ

2
porque, como θ varía de 0 a 2π,

θ

2
varía de 0 a π

y, de esta forma, es siempre sen
θ

2
≥ 0. Así, la sección eficaz diferencial queda:

dσ

dΩ
= r

R

2
sen

θ

2

y la sección eficaz total:

σ =

¨
r
R

2
sen

θ

2
dΩ =

ˆ L

z=0

ˆ 2π

θ=0

r
R

2
sen

θ

2

dθdz

r
=

ˆ L

z=0

ˆ 2π

θ=0

R

2
sen

θ

2
dθdz =

=
RL

2

[
−2 cos

θ

2

]2π

0

= RL

[
− cos

θ

2

]2π

0

= RL [− (−1)− (−1)] = 2RL

Y esto es justo el valor que esperaríamos para la sección eficaz total, pues si miramos un cilindro de forma
perpendicular, el área que ocupa desde nuestro punto de vista es la de un rectángulo de base 2R y altura L.

3.5.3. Colisión entre un conjunto de proyectiles móviles y un volumen de blancos
fijos

Definición 91. Lanzamos un proyectil contra un volumen de blancos uniforme con sección eficaz (total) σ.
Llamamos recorrido libre medio λ a la distancia media que recorre la partícula entre choque y choque.

Proposición 82. El recorrido libre medio de un proyectil λ en un volumen de blancos de sección eficaz (total)
σ con densidad de blancos por unidad de volumen uniforme ñbl viene dado por:

λ =
1

ñblσ

Demostración. Podemos suponer, sin pérdida de generalidad que nuestro proyectil se mueve en la dirección del
eje x. En un volumen Adx, donde A puede ser un área cualquiera, la densidad de blancos por unidad de área
equivalente será:

nbl = ñbldx

Por la proposición 21 en la página 197, sabemos que el número de choques cuando es Ninc = 1 es:

Ndisp = nblσ = ñbldxσ
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Para hallar la distancia media recorrida entre choque y choque, dividimos la distancia recorrida por el número
de choques producidos en dicha distancia, es decir:

λ =
dx

Ndisp
=

dx

ñbldxσ
=

1

ñblσ

Q.E.D.

Proposición 83. Lanzamos un haz de Ninc partículas de la misma masa y con la misma velocidad contra un
volumen de espesor X de partículas estáticas de sección eficaz (total) σ. Sean ñbl la densidad de partículas por
unidad de volumen y N (x) el número de partículas que consiguen penetrar una distancia x ≤ X dentro del
volumen de blancos. Además, sean:

φinc =
d̄Ninc
dtdA

el número de partículas del haz incidente que llega al volumen de blancos por unidad de área y unidad de tiempo,

φ (x) =
d̄N (x)

dtdA

el número de partículas que consiguen penetrar una distancia x ≤ X dentro del volumen de blancos por unidad
de área y unidad de tiempo. Análogamente, sean:

%inc =
d̄Ninc
dt

el número de partículas del haz incidente que llega al volumen de blancos por unidad de tiempo,

% (x) =
d̄N (x)

dt

el número de partículas que consiguen penetrar una distancia x ≤ X dentro del volumen de blancos por unidad
de tiempo. Entonces, se dan las siguientes relaciones:

1.
N (x) = Nince

−ñblσx = Nince
− xλ

2.
φ (x) = φince

−ñblσx = φince
− xλ

3.
% (x) = %ince

−ñblσx = %ince
− xλ

donde λ es el recorrido libre medio de un proyectil (como los que lanzamos) en el volumen de blancos.

~v

dxσ

~v

dx

φ(x+ dx)A

Demostración. Calculemos el número de partículas dispersadas entre una posición x y una posición x+ dx. En
un volumen Adx, donde A puede ser un área cualquiera, la densidad de blancos por unidad de área equivalente
será:

nbl = ñbl (x+ dx− x) = ñbldx

Así, por la proposición 21 en la página 197, el número de partículas dispersadas entre la posición x y la posición
x+ dx será:

Ndisp,x→x+dx = N (x)nblσ = N (x) ñbldxσ
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pues al volumen Adx entran N (x) partículas. De esta forma, sabemos que el número de partículas que no aún
no han sido dispersadas en la posición x+ dx será el número de partículas sin dispersar en la posición x menos
las dispersadas entre x y x+ dx. De forma que tenemos:

N (x+ dx) = N (x)−Ndisp,x→x+dx = N (x)−N (x) ñblσdx⇔

⇔ N (x+ dx)−N (x) = −N (x) ñblσdx

Nótese que el término de la izquierda es justo la definición de dN . De esta forma, tenemos:

dN = −N (x) ñblσdx⇔
dN

N (x)
= −ñblσdx⇔

ˆ N(x)

Ninc

dν

ν (x)
= −
ˆ x

0

ñblσdχ⇔

⇔ ln

(
N (x)

Ninc

)
= −ñblσx⇔

N (x)

Ninc
= e−ñblσx ⇔ N (x) = Nince

−ñblσx

Usando la definición 82 en la página 207, podemos reescribir la expresión anterior como:

N (x) = Nince
− xλ

Para obtener las expresiones para las φ y las % dividimos la expresión anterior entre dA y dt (según proceda)
como hemos hecho en demostraciones anteriores. Q.E.D.

Lema 11. El teorema de Taylor-Young aplicado a la función f (x) = e−x nos dice que cuando x → 0, f (x)
puede escribirse como:

f (x) = 1− x+ o (|x|)

Corolario 33. Lanzamos un haz de Ninc partículas de la misma masa y con la misma velocidad contra un
volumen de espesor X, con X muy pequeño, de partículas estáticas de sección eficaz (total) σ. Sean ñbl la
densidad de partículas por unidad de volumen y Ndisp el número de partículas que se dispersan al atravesar el
volumen de blancos. Además, sean:

φinc =
d̄Ninc
dtdA

el número de partículas del haz incidente que llega al volumen de blancos por unidad de área y unidad de tiempo,

φdisp =
d̄Ndisp
dtdA

el número de partículas que se dispersan al atravesar el volumen de blancos por unidad de área y unidad de
tiempo. Análogamente, sean:

%inc =
d̄Ninc
dt

el número de partículas del haz incidente que llega al volumen de blancos por unidad de tiempo,

%disp =
d̄Ndisp
dt

el número de partículas que se dispersan al atravesar el volumen de blancos por unidad de tiempo. Entonces
pueden aproximarse Ndisp, φdisp y %disp como sigue:

1.
Ndisp ≈ NincñblσX = Ninc

X

λ

2.
φdisp ≈ φincñblσX = φinc

X

λ

3.
%disp ≈ %incñblσX = %inc

X

λ

donde λ es el recorrido libre medio de un proyectil (como los que lanzamos) en el volumen de blancos.
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Demostración. Por la proposición 83 en la página 208, sabemos que el número de partículas que consiguen
atravesar el volumen de espesor X es:

N (X) = Nince
−ñblσX

De forma que el número de partículas que se dispersan será el número de partículas entrantes menos el número
de partículas salientes sin dispersar:

Ndisp = Ninc −N (X) = Ninc
(
1− eñblσX

)
Por el lema 11 en la página anterior, cuando X es muy pequeño, podemos aproximar la expresión anterior como:

Ndisp ≈ Ninc (1− [1− ñblσX]) = NincñblσX

Usando la definición 82 en la página 207, podemos reescribir la expresión anterior como:

Ndisp ≈ Ninc
X

λ

Para obtener las expresiones para las φ y para las % se puede o bien repetir el razonamiento anterior con
ellas, o bien dividir la expresión a la que hemos llegado por dt y dA (según corresponda). Q.E.D.

Corolario 34. Lanzamos un haz de Ninc partículas de la misma masa y con la misma velocidad contra un
volumen de espesor X, con X muy pequeño, de partículas estáticas de sección eficaz dσ para el ángulo sólido
dΩ. Sean ñbl la densidad de partículas por unidad de volumen y Ndisp,dΩ el número de partículas que se dispersan
en el ángulo sólido dΩ al atravesar el volumen de blancos. Además, sean:

φinc =
d̄Ninc
dtdA

el número de partículas del haz incidente que llega al volumen de blancos por unidad de área y unidad de tiempo,

φdisp,dΩ =
d̄Ndisp,dΩ

dtdA

el número de partículas que se dispersan en el ángulo sólido dΩ al atravesar el volumen de blancos por unidad
de área y unidad de tiempo. Análogamente, sean:

%inc =
d̄Ninc
dt

el número de partículas del haz incidente que llega al volumen de blancos por unidad de tiempo,

%disp,dΩ =
d̄Ndisp,dΩ

dt

el número de partículas que se dispersan en el ángulo sólido dΩ al atravesar el volumen de blancos por unidad
de tiempo. Entonces pueden aproximarse Ndisp,dΩ, φdisp,dΩ y %disp,dΩ como sigue:

1.
Ndisp,dΩ ≈ NincñblX

dσ

dΩ
dΩ

2.
φdisp,dΩ ≈ φincñblX

dσ

dΩ
dΩ

3.
%disp,dΩ ≈ %incñblX

dσ

dΩ
dΩ

donde:
dσ

dΩ
= F (θ, ϕ)
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Demostración. Partimos del corolario 33 en la página 209, restringiéndonos a las partículas dispersadas en un
ángulo sólido dΩ. De forma que tenemos:

Ndisp,dΩ ≈ NincñblXdσ

Dividiendo y multiplicando en el lado derecho de la ecuación por el diferencial de ángulo sólido dΩ, llegamos a:

Ndisp,dΩ ≈ NincñblX
dσ

dΩ
dΩ

Las expresiones equivalentes para las φ y las % se obtienen o bien repitiendo el razonamiento anterior con
ellas, o bien dividiendo la expresión anterior a ambos lados por dA y dt (según proceda). Q.E.D.

Corolario 35. Lanzamos un haz de Ninc partículas de la misma masa y con la misma velocidad contra un
volumen de espesor X, con X muy pequeño, de partículas estáticas de sección eficaz dσ para el ángulo sólido
dΩ. Sean ñbl la densidad de partículas por unidad de volumen. Contamos con un detector de superficie Adet a
distancia L de la lámina de blancos (supondremos que L es mucho mayor que las dimensiones del volumen de
blancos de manera que la distancia entre cualquier punto del volumen y nuestro detector es aproximadamente
L) tal que la superficie de detección es perpendicular al vector posición que une el volumen de blancos con el
detector. Sea Ndet el número de partículas detectadas por el detector. Además, sean:

φinc =
d̄Ninc
dtdA

el número de partículas del haz incidente que llega al volumen de blancos por unidad de área y unidad de tiempo,

φdet =
d̄Ndet
dtdA

el número de partículas detectadas por el detector por unidad de área y unidad de tiempo. Análogamente, sean:

%inc =
d̄Ninc
dt

el número de partículas del haz incidente que llega al volumen de blancos por unidad de tiempo,

%det =
d̄Ndet
dt

el número de partículas detectadas por el detector por unidad de tiempo. Entonces pueden aproximarse Ndet, φdet
y %det como sigue:

1.
Ndet ≈

¨
Adet

NincñblX
dσ

dΩ

dAdet
L2

2.
φdet ≈

¨
Adet

φincñblX
dσ

dΩ

dAdet
L2

3.
%det ≈

¨
Adet

%incñblX
dσ

dΩ

dAdet
L2

Demostración. Partimos del corolario 34 en la página anterior. De esta forma, sabemos que el número de
partículas dispersadas en un diferencial de ángulo sólido dΩ cuando X es muy pequeño es aproximadamente:

Ndisp,dΩ ≈ NincñblX
dσ

dΩ
dΩ

Por tanto, para hallar el número de partículas que salen hacia nuestro detector tendremos que integrar la
expresión anterior al ángulo sólido de nuestro detector Ωdet:

Ndet ≈
¨

Ωdet

NincñblX
dσ

dΩ
dΩdet
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Aplicando la definición de diferencial de ángulo sólido (ver definición 89 en la página 200), sabemos que el
diferencial de ángulo sólido asociado a nuestro detector viene dado por:

dΩdet =
r̂ · d ~Adet
L2

pues la distancia entre la lámina de blancos y el detector es L. Por otra parte, como por hipótesis la superficie
de detección es perpendicular al vector posición que une la lámina de blancos con el detector, será d ~Adet ‖ r̂,
de manera que podemos escribir la expresión anterior como:

dΩdet =
dAdet
L2

Sustituyendo en la expresión que hemos obtenido para Ndet, obtenemos:

Ndet ≈
¨
Adet

NincñblX
dσ

dΩ

dAdet
L2

Para obtener las otras expresiones o bien puede aplicarse un razonamiento análogo para las φ y para las
%, o bien puede dividirse la expresión con las N por dA y dt (según proceda) como hemos hecho ya varias
veces. Q.E.D.

3.5.4. Dispersión de Rutherford (1911)
En este experimento, Rutherford y sus colaboradores observaron la dispersión de partículas alfa por núcleos

de oro en una delgada lámina de oro y utilizaron la distribución observada para deducir el radio atómico. Para
poder obtener resultados a partir de dicha distribución hizo falta conocer teóricamente el número de partículas
que salen despedidas en cada dirección. Para ello, como hemos visto antes, necesitamos calcular la sección eficaz
diferencial. Por suerte, los átomos son esféricos, así que tienen simetría axial con respecto a cualquier dirección,
en particular, con respecto a la dirección en la que lanzamos los proyectiles (las partículas α). En consecuencia,
podemos aplicar la proposición 81 en la página 204 para obtener la sección eficaz diferencial. Bien, para poder
aplicar la mencionada proposición necesitamos conocer la relación entre el parámetro de impacto b y el ángulo
de dispersión θ si contáramos únicamente con un proyectil y con un blanco y justo hallamos dicha relación en
la proposición 76 en la página 184, de forma que sabemos:

b =
|k|
mv2

cot
θ

2

donde v es la velocidad con la que lanzamos las partículas de masa m. En nuestro caso es:

k = KQq

donde Q es la carga del núcleo del átomo, q es la carga de mi partícula alfa y K =
1

4πε0
. Si llamamos qe a la

carga del electrón y Z al número atómico de los átomos que forman la lámina (en nuestro caso, oro), obtenemos:

k = KZqe2qe = 2KZq2
e

De esta forma, la relación entre el parámetro de impacto y el ángulo de dispersión queda:

b =
2KZq2

e

mv2
cot

θ

2
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~v

Q = +Zqe

b

q
rmı́n

θ

Ahora, por la proposición 81 en la página 204, la sección eficaz diferencial viene dada por:

dσ

dΩ
=

b

sen θ

∣∣∣∣dbdθ
∣∣∣∣ =

2KZq2
e

mv2

cot θ2
sen θ

∣∣∣∣ ddθ
[

2KZq2
e

mv2
cot

θ

2

]∣∣∣∣ =

=
2KZq2

e

mv2

cos θ2
sen θ

2

2 sen θ
2 cos θ2

2KZq2
e

mv2

∣∣∣∣∣ ddθ
[

cos θ2
sen θ

2

]∣∣∣∣∣ =

=

[
2KZq2

e

mv2

]2
1

2 sen2 θ
2

∣∣∣∣∣− 1
2 sen θ

2 sen θ
2 − cos θ2

1
2 cos θ2

sen2 θ
2

∣∣∣∣∣ =

=

[
2KZq2

e

mv2

]2
1

2 sen2 θ
2

= 1
2︷ ︸︸ ︷

1

2
sen2 θ

2
+

1

2
cos2 θ

2
sen2 θ

2

=

[
2KZq2

e

mv2

]
1

4 sen4 θ
2

=

[
2KZq2

e

2mv2 sen2 θ
2

]2

=

=

[
KZq2

e

mv2 sen2 θ
2

]2

Bien ahora, nos interesa saber cuál es el ángulo de dispersión de los partículas en función de la mínima
distancia al núcleo atómico. Para ello, volvamos a la expresión que teníamos para el parámetro de impacto:

b =
2KZq2

e

mv2
cot

θ

2

vamos a intentar expresarla en función de la energía, esto no es difícil pues es E =
1

2
mv2 (las partículas al

lanzarlas están muy lejos de los átomos de manera que la fuerza de Coulomb que actúa sobre ellas es casi nula),
de forma que obtenemos:

b =
KZq2

e

E
cot

θ

2
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Por la proposición 75 en la página 181, podemos expresar la energía en función del semieje mayor de la hipérbola:

b =
KZq2

e
2KZq2

e

2a

cot
θ

2
= a cot

θ

2

También por esa misma proposición sabemos que se cumple:{
rmín,k>0 + rmín,k<0 = 2c
rmín,k>0 − rmín,k<0 = 2a

Sumando ambas ecuaciones, tenemos:

2rmín,k>0 = 2c+ 2a⇔ rmín,k>0 = c+ a

Por otra parte, sabemos que una hipérbola se da c2 = a2 + b2, de manera que tenemos:

c =

√
a2 + a2 cot2 θ

2
= a

√
1 + cot2 θ

2

De esta manera, la distancia mínima queda:

rmín = a

(
1 +

√
1 + cot2 θ

2

)

Si reescribimos la expresión anterior en función de la energía, obtenemos:

rmín =
2KZq2

e

2E

(
1 +

√
1 + cot2 θ

2

)
=
KZq2

e

E

(
1 +

√
1 + cot2 θ

2

)

De esta forma, podemos ver que los menores valores de rmín se alcanzan cuando θ es grande, pues cuando θ
es grande, tan θ

2 es también grande, por lo que cot θ2 es pequeño. Me interesa, por tanto, disparar partículas muy
energéticas que salgan rebotadas en ángulos grandes para que se aproximen lo más posible al núcleo atómico.
La idea es que llegaremos a un límite en el valor del ángulo, de forma que no podamos hacer que crezca más
por mucho que aumentemos la energía de las partículas. Ese límite del ángulo es el correspondiente al radio del
átomo.

Una de las cuestiones curiosas de esta problema es que si uno intenta calcular la sección eficaz total σ, la
integral dada por el corolario 30 en la página 203 diverge. Esto se debe a que las fuerzas de Coulomb llegan
hasta el infinito. No obstante, sí que es posible calcular la sección eficaz para un intervalo [θ0, θf ].

Una última curiosidad sobre este experimento es que el átomo es un sistema microscópico, algo dentro del
ámbito de la mecánica cuántica, no de la mecánica clásica. Así que el lector podría preguntarse (y con razón)
por qué demonios funciona esto. Pues resulta que es una de las mayores casualidades de la historia de la física
que la fórmula cuántica para la dispersión de dos partículas cargadas concuerda exactamente con la fórmula
clásica de Rutherford (esto es rotundamente falso para otras fuerzas).
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Capítulo 4

El problema de dos cuerpos

4.1. Centro de masas y coordenadas relativas
Definición 92. Llamamos masa reducida µ de dos cuerpos de masas m1 y m2 a la masa:

µ :=
m1m2

m1 +m2

Definición 93. Sea S un sistema de n partículas, cada una con masa mi con i = 1, . . . , n. Sea O el origen
de un sistema de referencia inercial a partir del cual damos la posición de cada partícula ~ri con i = 1, . . . , n.
Entonces, llamamos centro de masas o baricentro del sistema S al punto cuya posición viene definida como
el promedio de los vectores posición escalados por la masa de cada partícula. Es decir,

~R :=

n∑
i=1

mi~ri

n∑
i=1

mi

Teorema 22 (El problema de dos cuerpos). Sea un sistema de dos partículas con masa m1 y m2. Llamaremos ~F
a la fuerza que la partícula segunda ejerce sobre la primera, es decir, ~F = ~F1←2. Si la única fuerza externa ~Fext
que actúa sobre ambas partículas es tal que existe un campo ~g tal que ~F1←ext = m1~g y ~F2←ext = m2~g, entonces
la dinámica del sistema es equivalente a dos problemas del movimiento de una partícula. Dichos problemas de
una partícula vienen dados por las ecuaciones:

~̈R = ~g

µ~̈r = ~F

donde, µ =
m1m2

m1 +m2
es la masa reducida del sistema, ~R es la posición del centro de masas del sistema y

~r := ~r1 − ~r2 es la posición relativa entre las dos masas. Además, llamaremos M = m1 +m2 a la masa total del
sistema.

Demostración. Por la segunda ley de Newton (ver axioma 1 en la página 8), tenemos:{
m1~̈r1 = ~F1←2 + ~F1←ext
m2~̈r2 = ~F2←1 + ~F2←ext

Por hipótesis es ~F = ~F1←2 y por la tercera ley de Newton (ver axioma 2 en la página 9) es ~F1←2 = −~F2←1.
Además, por hipótesis existe ~g tal que ~F1←ext = m1~g y ~F2←ext = m2~g. De esta forma, lo anterior es equivalente
a: {

m1~̈r1 = ~F +m1~g

m2~̈r2 = −~F +m2~g
(4.1.1)
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Si sumamos ambas ecuaciones de la expresión 4.1.1 en la página anterior, obtenemos:

m1~̈r1 +m2~̈r2︸ ︷︷ ︸
=M ~̈R

= m1g +m2g ⇔M ~̈R = M~g ⇔ ~̈R = ~g

Por otra parte, dividiendo por m1 la primera ecuación y dividiendo por m2 la segunda ecuación de la
expresión 4.1.1 en la página anterior, llegamos a:

~̈r1 =
~F

m1
+ ~g

~̈r2 = −
~F

m2
+ ~g

Si ahora restamos las dos ecuaciones anteriores, obtenemos:

~̈r = ~̈r1 − ~̈r2 =

(
1

m1
+

1

m2

)
~F =

m1 +m2

m1m2
=

1

µ
~F ⇔ µ~̈r = ~F

Q.E.D.

Observación 68. Nótese que si efectivamente existe un campo ~g como el que recoge el enunciado del teorema 22
en la página anterior, dicho campo debe ser necesariamente el mismo en todos los puntos del espacio. No
obstante, sí que podría depender de tiempo, aunque; en ese caso, no sería conservativo.

Observación 69. Si trabajamos con la fuerza gravitatoria entre dos cuerpos, para aplicar el teorema 22 en la
página anterior, nos será más útil reescribir la fuerza gravitatoria entre dos masas m1 y m2 como:

~F = −Gm1m2

r2
r̂ = −µ

µ

Gm1m2

r2
r̂ = − µ

m1m2

m1+m2

Gm1m2

r2
r̂ = −G (m1 +m2)µ

r2
r̂

Nótese, además, que el teorema 22 en la página anterior me indica que si yo quiero estudiar el movimiento de
dos cuerpos que se atraen gravitacionalmente en ausencia de otras fuerzas, voy a tener una ecuación diferencial
muy sencilla para el centro de masas y una ecuación cuya resolución se va a hacer como en el tema anterior.

Ejemplo 31. La solución vista para el problema de dos cuerpos permite hallar una solución en primera aproxi-
mación de la órbita del sistema Tierra-Luna en torno al Sol. Si suponemos que el campo gravitatorio generado
por el Sol es el mismo para la Luna que para la Tierra, podemos aplicar el teorema 22 en la página anterior y,
así, obtener un resultado.

Corolario 36. Sea un sistema de dos partículas con masa m1 y m2. En ausencia de fuerzas externas, el
momento lineal del centro de masas ~Pcm permanece constante.

~Pcm =
−→cte

Demostración. Partimos del teorema 22 en la página anterior:

~̈R = ~g = ~0⇔ ~̇R =
−→cte⇔ M ~̇R︸︷︷︸

=~Pcm

=
−→cte⇔ ~Pcm =

−→cte

Q.E.D.

Proposición 84. Sea un sistema de dos partículas con masa m1 y m2 y sea M = m1 + m2. La posición de
ambas partículas ~r1 y ~r2 en función de la posición de su centro de masas ~R y del vector con origen en la segunda
partícula y extremo en la primera partícula ~r = ~r1 − ~r2 viene dada por:

~r1 = ~R+
m2

M
~r ~r2 = ~R− m1

M
~r
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Demostración. Por la definición de posición de centro de masas (ver definición 93 en la página 215), tenemos:

~R =
m1~r1 +m2~r2

m1 +m2

Por otra parte, sabemos que es:
~r = ~r1 − ~r2 ⇔ ~r1 = ~r + ~r2

Sustituyendo en la ecuación anterior, obtenemos:

~R =
m1~r1 +m2~r2

m1 +m2
=
m1 (~r + ~r2) +m2~r2

m1 +m2
=

m1~r

m1 +m2︸ ︷︷ ︸
=M

+
m1 +m2

m1 +m2
~r2 =

m1~r

M
+ ~r2 ⇔

⇔ ~r2 = ~R− m1~r

M

A continuación si despejamos ~r2 en vez de ~r1:

~r = ~r1 − ~r2 ⇔ ~r2 = −~r + ~r1

Sustituyendo, obtenemos:

~R =
m1~r1 +m2~r2

m1 +m2
=
m1~r1 +m2 (−~r + ~r1)

m1 +m2
=
m1 +m2

m1 +m2
~r1 −

m2~r

m1 +m2︸ ︷︷ ︸
=M

+ = ~r1 −
m2~r

M
⇔

⇔ ~r1 = ~R+
m2~r

M

Q.E.D.

4.2. Sistema de referencia centro de masas
Ahora, vamos a estudiar cómo quedan todas las magnitudes físicas vistas desde el centro de masas. Denota-

remos las magnitudes físicas vistas desde el centro de masas con un asterisco ∗ y denotaremos las magnitudes
físicas del centro de masas con el subíndice cm. A pesar de que el centro de masas no es, en general, un sistema
de referencia inercial, éste ofrece varias ventajas como veremos a continuación.

Teorema 23. Sea un sistema de dos partículas con masa m1 y m2. Visto desde el sistema de referencia centro
de masas:

1. El vector posición del centro de masas, medido desde el centro de masas es siempre el vector nulo.

~R ∗ = ~0

2. El vector que tiene su origen en la segunda partícula y su extremo en la primera partícula es el mismo que
bajo cualquier otro sistema de referencia inercial.

~r ∗ = ~r

3. En función del vector ~r ∗ = ~r la posición de las dos partículas que conforman el sistema queda:

~r ∗1 =
m2

M
~r ∗ ~r ∗2 = −m1

M
~r ∗

4. El momento lineal total desde el centro de masas ~P ∗ es siempre cero.

~P ∗ = ~0
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5. Si llamamos ~p∗ al momento de la primera partícula, entonces ambas partículas tienen momentos del mismo
módulo y dirección pero sentido opuesto.

~p ∗ = m1~̇r
∗
1 = −m2~̇r

∗
2 = µ~̇r ∗

donde µ es la masa reducida de ambas partículas.

6. El momento angular medido desde el centro de masas ~L ∗ puede expresarse como:

~L ∗ = µ~r ∗ × ~̇r ∗ = ~r ∗ × ~p ∗

7. La energía cinética medida desde el centro de masas T ∗ puede expresarse como:

T ∗ =
1

2
µṙ 2 =

p∗ 2

2µ

donde µ es la masa reducida de ambas partículas.

8. El momento de inercia medido desde el centro de masas I∗ puede expresarse como:

I∗ = µr2

donde µ es la masa reducida de ambas partículas.

m1

m2~r∗2

~r∗1

~r

Demostración.

1. Trivial.

2. Por una parte, por definición:
~r ∗ = ~r ∗1 − ~r ∗2

Por otra parte, sea ~R la posición del centro de masas desde un sistema de referencia inercial cualquiera.
Entonces tenemos:

~r1 = ~R+ ~r ∗1 ~r2 = ~R+ ~r ∗2

Por definición, es:
~r = ~r1 − ~r2 = ~R+ ~r ∗1 −

(
~R+ ~r ∗2

)
= ~r ∗1 − ~r ∗2 = ~r ∗

3. Partiendo de la proposición 84 en la página 216, sabemos que desde un sistema de referencia inercial se
cumple:

~r1 = ~R+
m2

M
~r ~r2 = ~R− m1

M
~r
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Como también es:
~r1 = ~R+ ~r ∗1 ~r2 = ~R+ ~r ∗2

Llegamos a:
~R+ ~r ∗1 = ~R+

m2

M
~r ~R+ ~r ∗2 = ~R− m1

M
~r

y claramente lo anterior es equivalente a:

~r ∗1 =
m2

M
~r ∗ ~r ∗2 = −m1

M
~r ∗

4. Por (1) sabemos que es:

~R ∗ = ~0⇒ ~̇R ∗ = ~0⇔ (m1 +m2) ~̇R ∗ = ~0⇔ ~P ∗ = ~0

5. Por (4) sabemos que:
~P ∗ = ~0⇔ m1~̇r

∗
1 +m2~̇r

∗
2 = ~0⇔ m1~̇r

∗
1 = −m2~̇r

∗
2

Por otra parte, claramente sabemos que el momento de la primera partícula es:

m1~̇r
∗
1 = ~p ∗

Como es ~r ∗ = ~r ∗1 − ~r ∗2 , derivando obtenemos:

~̇r ∗ = ~̇r ∗1 − ~̇r ∗2 ⇔ ~̇r ∗1 = ~̇r ∗ + ~̇r ∗2

Sustituyendo, en la expresión anterior, obtenemos:

~p ∗ = m1

(
~̇r ∗ + ~̇r ∗2

)
= m1~̇r

∗ +
m1

m2
m2~̇r

∗
2︸ ︷︷ ︸

=−~p ∗
= m1~̇r

∗ − m1

m2
~p ∗ ⇔

⇔
(

1 +
m1

m2

)
~p ∗ = m1~̇r

∗ ⇔ ~p ∗ = m1
1

1 + m1

m2

~̇r ∗ = m1
1

m2+m1

m2

~̇r ∗ =

=
m1m2

m1 +m2︸ ︷︷ ︸
=µ

~̇r ∗ = µ~̇r ∗

6. Por definición de momento angular (ver definición 13 en la página 20), tenemos:

~L ∗ = m1~r
∗
1 × ~̇r ∗1 +m2~r

∗
2 × ~̇r ∗2 = ~r ∗1 ×

(
m1~̇r

∗
1

)
︸ ︷︷ ︸

=~p ∗

+~r ∗2 ×
(
m2~̇r

∗
2

)
︸ ︷︷ ︸

=−~p ∗

donde sabemos las igualdades marcadas bajo las llaves por (5). De esta forma:

~L ∗ = ~r ∗1 × ~p ∗ − ~r ∗2 × ~p ∗ = (~r ∗1 − ~r ∗2 )× ~p ∗ = ~r ∗ × ~p ∗

donde este último paso es por definición. Por (5), sabemos que es ~p ∗ = µ~̇r ∗, de manera que:

~L ∗ = ~r ∗ ×
(
µ~̇r ∗

)
= µ~r ∗ × ~̇r ∗

7. Por definición de energía cinética, tenemos:

T ∗ =
1

2
m1r

∗ 2
1 +

1

2
m2r

∗ 2
2

Por (5) sabemos que es ~p ∗ = m1~̇r
∗
1 = −m2~̇r

∗
2 , por lo que:

m1ṙ
∗ 2
1 =

1

m1
m2

1ṙ
∗ 2
1︸ ︷︷ ︸

=p∗ 2

=
p∗ 2

m1
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m1ṙ
∗ 2
2 =

1

m2
m2

2ṙ
∗ 2
2︸ ︷︷ ︸

=(−~p ∗)2

=
p∗ 2

m2

De esta forma, podemos reescribir lo anterior como:

T ∗ =
1

2

(
p∗ 2

m1
+
p∗ 2

m2

)
=

1

2
p∗ 2

(
1

m1
+

1

m2

)
=

1

2
p∗ 2

(
m2 +m1

m1m2

)
︸ ︷︷ ︸

= 1
µ

=
p∗ 2

2µ

Por otra parte, por (5) sabemos que ~p ∗ = µ~̇r ∗ ⇒ p∗ 2 = µ2ṙ∗ 2. Así, sustituyendo, llegamos a:

T ∗ =
µ2ṙ∗ 2

2µ
=

1

2
µṙ∗ 2

8. Por definición de momento de inercia tenemos:

I∗ = m1r
∗ 2
1 +m2r

∗ 2
2 = 2T ∗

Por (7), sabemos que:

T ∗ =
1

2
µṙ∗ 2

Sustituyendo, llegamos a:
I∗ = µṙ∗ 2

Q.E.D.

Observación 70. Nótese que según el apartado (3) del teorema 23 en la página 217, si yo conozco el centro de
masas de dos partículas y soy capaz de medir las distancias relativas al centro de masas r∗1 y r∗2 , automáticamente,
conozco el cociente entre las masas m2 y m1, y viceversa.

m2

m1
=
r∗1
r∗2

Ejemplo 32. La estrella Sirio es un sistema binario con estrellas A y B de las cuales conocemos las distancias
relativas al centro de masas del sistema r∗1 y r∗2 , entonces, aplicando la observación 70, puedo obtener la razón
de las masas de ambos objetos.

m2

m1
=
r∗1
r∗2
≈ 2, 2

Teorema 24. Sea S un sistema de n partículas y sea M =

n∑
i=1

mi. Desde cualquier observador inercial, siendo

~R la posición del centro de masas de S según dicho observador inercial, se cumple:

1. El momento lineal del sistema coincide con el momento lineal del centro de masas.

~P = ~Pcm = M ~̇R

2. El momento angular del sistema puede expresarse como la suma del momento angular del centro de masas
y el momento angular del sistema visto desde el centro de masas.

~L = ~Lcm + ~L ∗ = M ~R× ~̇R+ ~L ∗

3. La energía cinética del sistema puede expresarse como la suma de la energía cinética del centro de masas
y la energía cinética del sistema vista desde el centro de masas.

T = Tcm + T ∗ =
1

2
MṘ2 + T ∗
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Demostración.

1. Por definición de momento lineal para varias partículas (ver definición 10 en la página 18), tenemos:

~P =

n∑
i=1

~pi =

n∑
i=1

mi~̇ri =

n∑
i=1

M

M
mi~̇ri = M

n∑
i=1

mi~̇ri

n∑
i=1

mi︸ ︷︷ ︸
= ~̇R

= M ~̇R = ~Pcm

2. Por definición de momento angular para varias partículas (ver definición 13 en la página 20), tenemos:

~L =

n∑
i=1

~Li =

n∑
i=1

mi~ri × ~̇ri

Sabemos que se cumple:
~ri = ~R+ ~r ∗i ⇒ ~̇ri = ~̇R+ ~̇r ∗i

Sustituyendo, obtenemos:

~L =

n∑
i=1

mi

(
~R+ ~r ∗i

)
×
(
~̇R+ ~̇r ∗i

)
=

n∑
i=1

mi

[
~R× ~̇R+ ~r ∗i × ~̇R+ ~R× ~̇r ∗i + ~r ∗i × ~̇r ∗i

]
=

=

n∑
i=1

mi
~R× ~̇R+

n∑
i=1

mi~r
∗
i × ~̇R+

n∑
i=1

mi
~R× ~̇r ∗i +

n∑
i=1

mi~r
∗
i × ~̇r ∗i (4.2.1)

Estudiemos el tercer término:

n∑
i=1

mi
~R× ~̇r ∗i =

n∑
i=1

mi
~R×

(
~̇ri − ~̇R

)
= ~R×

[
n∑
i=1

mi

(
~̇ri − ~̇R

)]

Análogamente con el segundo término:

n∑
i=1

mi~r
∗
i × ~̇R =

n∑
i=1

mi

(
~ri − ~R

)
× ~̇R =

[
n∑
i=1

mi

(
~ri − ~R

)]
× ~̇R

Nótese como:
d

dt

[
n∑
i=1

mi

(
~ri − ~R

)]
=

[
n∑
i=1

mi

(
~̇ri − ~̇R

)]
(4.2.2)

Ahora, vamos a probar que el argumento de la derivada es nulo.

n∑
i=1

mi

(
~ri − ~R

)
=

n∑
i=1

mi~ri −
n∑
i=1

mi
~R =

n∑
i=1

mi~ri − ~R

n∑
i=1

mi︸ ︷︷ ︸
=M

=

=

n∑
i=1

mi~ri −M ~R =

n∑
i=1

mi~ri −M

n∑
i=1

mi~ri

M
=

n∑
i=1

mi~ri −
n∑
i=1

mi~ri = ~0

En consecuencia por la ecuación 4.2.2, es también:

n∑
i=1

mi

(
~̇ri − ~̇R

)
= ~0
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Por consiguiente, el segundo y el tercer término de la ecuación 4.2.1 en la página anterior se anulan y el
momento angular queda:

~L =

n∑
i=1

mi
~R× ~̇R+

n∑
i=1

mi~r
∗
i × ~̇r ∗i︸ ︷︷ ︸

=~L ∗

= ~R× ~̇R

n∑
i=1

mi︸ ︷︷ ︸
=M

+~L ∗ =

= M ~R× ~̇R+ ~L ∗ = ~Lcm + ~L ∗

3. Por definición de energía cinética, tenemos:

T =

n∑
i=1

1

2
miṙ

2
i =

n∑
i=1

1

2
mi

(
~̇R+ ~̇r ∗i

)2

=

n∑
i=1

1

2
miṘ

2 +

n∑
i=1

1

2
miṙ

∗ 2
i +

n∑
i=1

mi
~̇R · ~̇r ∗i

Estudiemos el último término:
n∑
i=1

mi
~̇R · ~̇r ∗i = ~̇R ·

(
n∑
i=1

mi~̇r
∗
i

)
Y el término entre paréntesis justo es:

n∑
i=1

mi~̇r
∗
i = M

n∑
i=1

mi~̇r
∗
i

M
= M ~̇R ∗ = ~0

porque trivialmente es ~R ∗ = ~0 y, en consecuencia, su derivada también es nula. Así, de la expresión que
tenía para la energía cinética, únicamente me quedan:

T =

n∑
i=1

1

2
miṘ

2 +

n∑
i=1

1

2
miṙ

∗ 2
i =

1

2
MṘ2 + T ∗ = Tcm + T ∗

Q.E.D.

Corolario 37. Sea un sistema de dos partículas con masas m1 y m2. El momento angular del sistema puede
escribirse como la suma del momento angular del centro de masas y el momento angular de una partícula de
masa reducida µ cuya posición fuera el vector que tiene como origen la segunda partícula y como extremo la
primera partícula (el vector ~r). Análogamente ocurre con la energía cinética. Es decir:

~L = M ~R× ~̇R+ µ~r × ~̇r

T =
1

2
MṘ2 +

1

2
µṙ2

Demostración. Por el teorema 24 en la página 220, tenemos:

~L = ~Lcm + ~L ∗ = M ~R× ~̇R+ ~L ∗

T = Tcm + T ∗ =
1

2
MṘ2 + T ∗

Ahora, por el teorema 23 en la página 217:

~L = M ~R× ~̇R+ µ~r × ~̇r

T =
1

2
MṘ2 +

1

2
µṙ2

Q.E.D.
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Corolario 38. Sea un sistema de dos partículas con masa m1 y m2. Supondremos que la única fuerza externa
~Fext que actúa sobre ambas partículas es conservativa y, además, es tal que existe un campo ~g tal que ~F1←ext =
m1~g y ~F2←ext = m2~g. Si, adicionalmente, ~F = ~F1←2 es una fuerza conservativa con potencial asociado V~F tal
que V~F = F! (~r1 − ~r2), entonces el lagrangiano del sistema usando la posición del centro de masas ~R y la posición
relativa entre ambas partículas ~r = ~r1 − ~r2 como coordenadas generalizadas es separable en dos lagrangianos
independientes.

L = Lcm + L∗

Lcm = Tcm +M~g · ~x =
1

2
MṘ2 +M~g · ~x

L∗ = T ∗ − V~F (~r) =
1

2
µṙ2 − V~F (~r)

Demostración. Si ~Fext es conservativa, su campo asociado ~g también lo será. Por ser conservativo ~g únicamente
puede depender del vector posición respecto al centro de fuerzas ~x; pero por la observación 68 en la página 216
~g no puede depender de ~x. En consecuencia, ~g debe ser constante. Por lo tanto, su potencial asociado será:

~Fext = m~g ⇔ −dVext
d~x

= m~g ⇔ Vext = −
ˆ
m~g · d~x = C −m~g · ~x

donde C es una constante que podemos suponer cero. De esta forma, escribamos el lagrangiano del sistema:

L = T − V

Por el teorema 24 en la página 220, podemos expresar la energía cinética del sistema como:

T = Tcm + T ∗

y, en consecuencia, tenemos:

L = Tcm + T ∗ − V =
1

2
MṘ2 + T ∗ − V

Por el teorema 23 en la página 217, podemos expresar T ∗ en función de ~r; obteniendo:

L =
1

2
MṘ2 +

1

2
µṙ2 − V

Ahora, obtengamos el potencial. Sobre ambas partículas actúa el campo externo ~g y, adicionalmente, tendremos
el potencial asociado a la fuerza ~F , que, por hipótesis, sabemos que depende exclusivamente de ~r.

V = −m1~g · ~r1 −m2~g · ~r2 + VF (~r) = −~g · (m1~r1 +m2~r2) + VF (~r) =

= −~g · (m1~r1 +m2~r2) + VF (~r) = −M~g · m1~r1 +m2~r2

M
+ VF (~r) = −M~g · ~R+ VF (~r)

De esta forma, obtenemos:

L =
1

2
MṘ2 +

1

2
µṙ2 +M~g · ~R− VF (~r) =

=
1

2
MṘ2 +M~g · ~R︸ ︷︷ ︸

=Lcm

+
1

2
µṙ2 − VF (~r)︸ ︷︷ ︸

=L∗

Q.E.D.

Observación 71. Podemos resumir los conceptos más importantes vistos hasta ahora volviendo al problema de
dos cuerpos con el siguiente dibujo:
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m1

m2

~r2

~r1

~r~F

−~F
~F1

~F2

~R

m1

m2~r∗2

~r∗1

Misma situación desde observador CM

~F1

~F2

En general, la estrategia a seguir para resolver los problemas de este tipo será:

1. Resolver el problema del centro de masas.

2. Resolver el problema de una partícula (normalmente del tema anterior), hallando ~r.

3. Obtener ~r ∗1 y ~r ∗2 .

4. Determinar ~r1 y ~r2.

4.3. Interacción gravitatoria
Proposición 85. Sean dos cuerpos con masa m1 y m2, respectivamente. Si las fuerzas internas son gravitato-

rias, es decir, ~F = −Gm1m2

r2
r̂ donde ~r = ~r1−~r2 y la única fuerza externa ~Fext que actúa sobre ambas partículas

es tal que existe un campo ~g tal que ~F1←ext = m1~g y ~F2←ext = m2~g, entonces ambos cuerpos orbitan en torno
al centro de masas del sistema, es más, visto desde el centro de masas, las trayectorias de las partículas son có-
nicas y el centro de masas es uno de sus focos. Ambas partículas están en todo momento en lugares opuestos del
centro de masas, es decir, sus trayectorias vistas desde el centro de masas están en oposición de fase. Además,
podemos expresar los parámetros a, b, l, L, T y e de dichas cónicas en función de los parámetros de la cónica que
describiría una partícula de masa µ =

m1m2

m1 +m2
en torno a una partícula inmóvil de masa M = m1 +m2 como

sigue:
e = e1 = e2

l1 =
m2

M
l l2 =

m1

M
l

a1 =
m2

M
a a2 =

m1

M
a

b1 =
m2

M
b b2 =

m1

M
b

~L ∗1 =
m2

M
~L ∗ ~L ∗2 =

m1

M
~L ∗

T = T1 = T2 si 0 ≤ e < 1

donde los parámetros sin subíndice son los de la cónica que describiría la partícula de masa µ en torno a una
partícula inmóvil de masa M , los parámetros con subíndice 1 se corresponden con los parámetros de la cónica
de la primera partícula y los parámetros con subíndice 2 se corresponden con los parámetros de la cónica de la
segunda partícula.

Licencia: Creative Commons 224

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 4. EL PROBLEMA DE DOS CUERPOS

4.3. INTERACCIÓN GRAVITATORIA

CM ≡M

t

t′
t

t′

m2

µ

µ

a2

a1
a

b2
b1

b

l
l1

l2

c

m1

29/11/2018 Dibujo 3 (órbitas en torno al centro de masas, circunferencias)
29/11/2018 Dibujo 4 (órbitas en torno al centro de masas, parábolas)
29/11/2018 Dibujo 5 (órbitas en torno al centro de masas, hipérbola)

Demostración. Como existe un campo ~g tal que ~F1←ext = m1~g y ~F2←ext = m2~g, podemos aplicar el teorema 22
en la página 215 de manera que obtenemos que resolver el problema de dos cuerpos es equivalente a resolver
una ecuación diferencial para el centro de masas y otra para la distancia relativa:

µ~̈r = ~F = −Gm1m2

r2
r̂

Por la observación 69 en la página 216, podemos reescribir ~F como:

~F = −GMµ

r2
r̂

Por la proposición 71 en la página 166, sabemos que ~r viene dada por:

r [e cos (θ − θ0) + 1] = l

La ecuación anterior describe la trayectoria de una partícula de masa µ en un campo gravitatorio generado por
una masa M .

Por otra parte, por el teorema 23 en la página 217, tenemos que:

~r ∗1 =
m2

M
~r ~r ∗2 = −m1

M
~r

De esta forma, claramente ambas partículas partículas describirán cónicas en torno al centro de masas, pues ~r
es una cónica y ~r ∗1 y ~r ∗2 no son más que un factor de proporcionalidad multiplicado por ~r. Además, podemos ver
claramente en las fórmulas anteriores que las partículas siempre se encontrarán en lugares opuestos del centro
de masas. Estudiando los signos, vemos que ~r ∗1 y ~r están en fase y que ~r ∗1 y ~r ∗2 están en oposición de fase. Si
expresamos las ecuaciones anteriores en módulo, obtenemos:

r∗1 =
m2

M
r r∗2 =

m1

M
r
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Sustituyendo r en cada caso y sustituyendo en la ecuación dada por la proposición 71 en la página 166, obte-
nemos:

M

m2
r∗1 [e cos (θ − θ0) + 1] = l⇔ r∗1 [e cos (θ − θ0) + 1] = l

m2

M
:= l1

M

m1
r∗2 [e cos (θ − θ0) + 1] = l⇔ r∗2 [e cos (θ − θ0) + 1] = l

m1

M
:= l2

Como podemos ver en las ecuaciones anteriores hay un semi latus rectum equivalente para la trayectoria de la
primera partícula y otro para la trayectoria de la segunda partícula y la excentricidad de ambas cónicas es la
misma.

Por la proposición 74 en la página 178, si es 0 < e < 1, tenemos que:

a =
l

1− e2
b =

l√
1− e2

y si es e > 1 tenemos:

a =
l

e2 − 1
b =

l√
e2 − 1

De esta forma, obtenemos que si 0 < e < 1:

a1 =
l1

1− e2
=
m2

M

l

1− e2
=
m2

M
a

a2 =
l2

1− e2
=
m1

M

l

1− e2
=
m1

M
a

b1 =
l1√

1− e2
=
m2

M

l√
1− e2

=
m2

M
b

b2 =
l2√

1− e2
=
m1

M

l√
1− e2

=
m1

M
b

Y, análogamente, si es e > 1:

a1 =
l1

e2 − 1
=
m2

M

l

e2 − 1
=
m2

M
a

a2 =
l2

e2 − 1
=
m1

M

l

e2 − 1
=
m1

M
a

b1 =
l1√
e2 − 1

=
m2

M

l√
e2 − 1

=
m2

M
b

b2 =
l2√
e2 − 1

=
m1

M

l√
e2 − 1

=
m1

M
b

Calculemos el momento angular respecto al centro de masas de ambas partículas:

~L ∗1 = m1~r
∗
1 × ~̇r ∗1

~L ∗2 = m2~r
∗
2 × ~̇r ∗2

Ya sabemos que:
~r ∗1 =

m2

M
~r ⇒ ~̇r ∗1 =

m2

M
~̇r

~r ∗2 = −m1

M
~r ⇒ ~̇r ∗2 = −m1

M
~̇r

En consecuencia:
~L ∗1 = m1

(m2

M
~r
)
×
(m2

M

)
~̇r = m1

(m2

M

)2

~r × ~̇r

~L ∗2 = m2

(
−m1

M
~r
)
×
(
−m1

M

)
~̇r = m2

(m1

M

)2

~r × ~̇r
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Por otra parte, sabemos que:
~L ∗ = µ~r × ~̇r ⇔ ~r × ~̇r =

1

µ
~L ∗

Sustituyendo, llegamos a:

~L ∗1 =
1

µ
m1

(m2

M

)2
~L ∗ =

m1m
2
2

M2

M

m1m2

~L ∗ =
m2

M
~L ∗

~L ∗2 =
1

µ
m2

(m1

M

)2
~L ∗ =

m2m
2
1

M2

M

m1m2

~L ∗ =
m1

M
~L ∗

Vamos con el periodo. Por la segunda ley de Kepler (ver teorema 19 en la página 143), tenemos:

πab

T =
L

2µ
⇔ T =

2µπab

L

πa1b1
T1

=
L1

2m1
⇔ T1 =

2m1πa1b1
L1

=
2m1π

m2

M am2

M b
m2

M L
=
m1m2

M︸ ︷︷ ︸
=µ

2πab

L
=

2πµab

L
= T

πa2b2
T2

=
L2

2m2
⇔ T2 =

2m2πa2b2
L2

=
2m2π

m1

M am1

M b
m1

M L
=
m2m1

M︸ ︷︷ ︸
=µ

2πab

L
=

2πµab

L
= T

Q.E.D.

Ejemplo 33. Vamos a ver qué diferencia hay en el periodo de la órbita de la Luna en torno a la Tierra,
suponiendo que la Tierra está fija (como en el tema anterior) y considerando a la Tierra móvil.

MT

ML

Considerando la Tierra fija, por la tercera ley de Kepler (ver corolario 27 en la página 187), obtenemos:( T
2π

)2

=
a3

GmT
⇔ T =

√
4π2a3

GmT

Por otra parte, considerando la Tierra móvil, aplicando la proposición 85 en la página 224, sabemos que el
periodo de la órbita de la Luna alrededor de la Tierra, será el mismo que el de una partícula de masa

mTmL

mT +mL
orbitando entorno a una masa MT + ML fija. Nótese que la a esta órbita relativa es la misma que la a de la
órbita de la Luna al suponer la Tierra fija, porque en ambos casos estamos hablando de cómo varía la posición
relativa ~r. Así, en este segundo caso, por la tercera ley de Kepler (ver corolario 27 en la página 187), llegamos
a: (T ′

2π

)2

=
a3

G (mT +mL)
⇔ T ′ =

√
4π2a3

G (mT +mL)

De esta forma:

∆T = T − T ′ =

√
4π2a3

G

(
1√
mT
− 1√

mT +mL

)
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Sustituyendo con los valores numéricos mT = 6 ·1024 kg, mL = 1
81,3mT , G = 6, 67 ·10−11 N·m2

kg2 , a = 3, 84 ·108 m;
obtenemos que:

∆T ≈ 4 h

Nótese, por tanto, que en un sistema de dos partículas, el periodo de la órbita depende de ambas partículas.

Ejemplo 34. Consideremos la órbita del sistema Tierra-Luna en torno al Sol. Como ya dejamos caer en el
ejemplo 31 en la página 216, vamos a considerar que el campo gravitatorio creado por el Sol es el mismo para
la Luna y para la Tierra. Nos interesa calcular cuánto oscila la dirección Tierra-Sol a lo largo de un periodo
lunar; en otras palabras, queremos calcular el ángulo α del dibujo de abajo.

α

MT

Sol

ML

~R
A

Para hacer dicho cálculo, necesitamos conocer el valor del semieje mayor aT de la órbita que describe la
Tierra entorno al centro de masas Tierra-Luna. Por la proposición 85 en la página 224, tenemos:

aT =
mL

mL +mT
a

Llamando A a la distancia entre la Tierra y el Sol, que será más o menos la misma que entre el centro de
masas Luna-Tierra y el Sol, podemos calcular el ángulo α como sigue:

tanα =
aT
A

=
mL

mL +mT

a

A

Sustituyendo los valores numéricos mT = 6 ·1024 kg, mL = 1
81,3mT , A = 1, 5 ·1011 m, a = 3, 84 ·108 m; llegamos

a:
α ≈ 6, 4”

Ejercicio 12. Sean dos partículas de masa m que se mueven alrededor de otra en órbitas circulares bajo su
influencia gravitatoria mutua, siendo T el periodo de sus órbitas (que es mismo para ambas, por la proposición 85
en la página 224). En un momento dado, ambas partículas se paran; es decir, pasan a tener velocidad nula, y
empiezan a caer una hacia la otra. ¿Cuánto tiempo transcurrirá hasta que choquen?

Solución. Lo primero que debemos obtener es el periodo de la órbita circular. Aplicando la tercera ley de
Kepler (ver corolario 27 en la página 187), sabemos que se cumple:

T 2

4π2
=

r3
0

GM

donde r0 es el radio de la órbita circular que traza la partícula de masa µ alrededor del centro de fuerzas y
M = 2m. Despejando, obtenemos:

r0 =
3

√
T 2G2m

4π2
=

3

√
T 2Gm

2π2
(4.3.1)
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Por otra parte, por el teorema 22 en la página 215, tenemos:

µ~̈r = ~F

donde:

µ =
mm

m+m
=
m2

2m
=
m

2

y ~r es la distancia relativa entre ambas partículas. Así, sustituyendo el valor de ~F , obtenemos:

m

2
r̈ = −Gmm

r2
=
−Gm2

r2
⇔ r̈ = −2Gm

r2

Notemos que:

r̈ =
d2r

dt2
=

d

dt

(
dr

dt

)
=

d

dt
(ṙ) =

dṙ

dr

dr

dt
=
dṙ

dr
ṙ

Al sustituir en la ecuación anterior, llegamos a:

dṙ

dr
ṙ = −2Gm

r2
⇔ dṙṙ = −2Gm

dr

r2

Integramos a ambos lados: ˆ ṙ

0

νdν =

ˆ r

r0

−2Gm
dρ

ρ2

donde los límites de integración son los indicados ya que la partícula de masa µ parte del reposo (el enunciado
indica que ambas partículas se paran) y la posición inicial de la partícula de masa µ es r0. Resolviendo las
integrales anteriores, tenemos:

ṙ2

2
= 2Gm

(
1

r
− 1

r0

)
⇔ ṙ2 = 4Gm

(
1

r
− 1

r0

)
⇔

⇔ ṙ = ±2

√
Gm

(
1

r
− 1

r0

)
Ahora, viene uno de los puntos clave del ejercicio. Como las partículas caen una hacia la otra, necesariamente
su distancia debe disminuir, luego debe ser ṙ < 0; es decir, en este caso, la solución negativa es la que tiene

sentido físico. Así, descartamos la solución positiva y haciendo uso de que ṙ =
dr

dt
, llegamos a:

dr

dt
= −2

√
Gm

(
1

r
− 1

r0

)
⇔ dr√

1
r − 1

r0

= −2
√
Gmdt

De nuevo, integramos a ambos lados:
ˆ 0

r0

dr√
1
r − 1

r0

=

ˆ t

0

−2
√
Gmdτ

pues la posición inicial de nuestra masa µ es r0 y, su posición en el momento del choque será 0, pues ambas
partículas coincidirán en el centro de masas. Además, podemos tomar nuestro origen del tiempo en el momento
en el que empiezan a caer, de forma que es t0 = 0. Así, llegamos:

ˆ 0

r0

dr√
1
r − 1

r0

= −2
√
Gmt⇔

⇔ t = − 1

2
√
Gm

ˆ 0

r0

dr√
1
r − 1

r0

(4.3.2)
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Nuestro problema se ha convertido, de esta forma, en resolver la siguiente integral:
ˆ

dr√
1
r − 1

r0

=

ˆ
dr√
r0−r
rr0

=

ˆ √
r
√
r0dr√

r0 − r

Ahora, tomamos el cambio de variable τ2 = r0 − r. Entonces:

r = r0 − τ2

2τdτ = −dr ⇔ dr = −2τdτ

Sustituyendo, obtenemos:
ˆ

dr√
1
r − 1

r0

=

ˆ √
r0 − τ2

√
r0 (−2τdτ)

τ
=

ˆ
−2
√
r0

√
r0 − τ2dτ =

=

ˆ
−2
√
r0

√
r0
r0 − τ2

r0
dτ =

ˆ
−2r0

√
1− τ2

r0
dτ =

ˆ
−2r0

√
1−

(
τ√
r0

)2

dτ

A continuación, tomamos el cambio de variable senα =
τ√
r0

. Por consiguiente:

cosαdα =
dτ√
r0
⇔ dτ =

√
r0 cosαdα

Sustituyendo, obtenemos:
ˆ

dr√
1
r − 1

r0

=

ˆ
−2r

3
2
0

√
1− sen2 α︸ ︷︷ ︸

=cosα

cosαdα =

ˆ
−2r

3
2
0 cos2 αdα

Notemos que:
cos 2α = cos2 α− sen2 α

y, por otra parte, por la identidad fundamental de la trigonometría, tenemos:

sen2 α+ cos2 α = 1⇔ sen2 α = 1− cos2 α

Sustituyendo, obtenemos:

cos 2α = cos2 α− 1 + cos2 α = 2 cos2 α− 1⇔ cos2 α =
1

2
+

1

2
cos 2α

Al sustituir en la integral, obtenemos:
ˆ

dr√
1
r − 1

r0

=

ˆ
−2r

3
2
0

(
1

2
+

1

2
cos 2α

)
dα =

ˆ
−r

3
2
0 (1 + cos 2α) dα =

= −r
3
2
0

(ˆ
dα+

ˆ
cos 2αdα

)
= −r

3
2
0

(
α+

sen 2α

2

)
= −r

3
2
0

(
α+

2 senα cosα

2

)
=

= −r
3
2
0 (α+ senα cosα)

Ahora, deshacemos el cambio de variable:

senα =
τ√
r0
⇔ α = arc sen

(
τ√
r0

)
Por la identidad fundamental de la trigonometría, tenemos:

cosα =
√

1− sen2 α =

√
1− τ2

r0
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Al sustituir en la expresión del resultado de la integral, llegamos a:

ˆ
dr√

1
r − 1

r0

= −r
3
2
0

arc sen

(
τ√
r0

)
+

τ√
r0

√
1− τ2

r0

 =

= −r
3
2
0

arc sen

(
τ√
r0

)
+

τ√
r0

√
r0 − τ2

r0

 = −r
3
2
0

[
arc sen

(
τ√
r0

)
+
τ

r0

√
r0 − τ2

]
A continuación, deshacemos el cambio:

τ2 = r0 − r ⇔ τ =
√
r0 − r

obteniendo: ˆ
dr√

1
r − 1

r0

= −r
3
2
0

[
arc sen

(√
r0 − r√
r0

)
+

√
r0 − r
r0

√
r0 − r0 + r

]
=

= −r
3
2
0

[
arc sen

(√
r0

r0
− r

r0

)
+

√
r0

r2
0

− r

r2
0

√
r

]
=

= −r
3
2
0

[
arc sen

(√
1− r

r0

)
+

√
r

r0
− r2

r2
0

]
Con esto, podemos calcular el tiempo t que nos pedían a partir de la ecuación 4.3.2 en la página 229:

t = − 1

2
√
Gm

ˆ 0

r0

dr√
1
r − 1

r0

=
r

3
2
0

2
√
Gm

[
arc sen

(√
1− r

r0

)
+

√
r

r0
− r2

r2
0

]0

r0

=

=
r

3
2
0

2
√
Gm

[arc sen 1 + 0− (arc sen 0 + 0)] =
r

3
2
0

2
√
Gm

π

2

Sustituyendo el valor hallado para r0 en la ecuación 4.3.1 en la página 228, obtenemos:

t =
π

4
√
Gm

(
3

√
T 2Gm

2π2

) 3
2

=
π

4
√
Gm

√
T 2Gm

2π2
=
π

4

√
T 2Gm

2π2Gm
=

πT
4
√

2π
=
T

4
√

2

4.4. Colisiones

Choque

~v1

~v2

~u1

~u2

m1

m2

m1

m2

Cuando tengamos un choque entre dos partículas, denotaremos con ~v1 a la velocidad de la primera partícula
antes del choque y denotaremos con ~u1 a la velocidad de la primera partícula tras el choque. También, deno-
taremos con ~p1 al momento lineal de la primera partícula antes del choque y denotaremos con ~q1 el momento
lineal de la primera partícula tras el choque. Haremos lo análogo con la segunda partícula.
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Teorema 25. En un choque entre dos partículas puntuales móviles se conserva el momento lineal desde cualquier
sistema de referencia inercial y desde el centro de masas.

~P =
−→cte

Demostración. Por el teorema 23 en la página 217, sabemos que siempre es:

~P ∗ = ~0

luego, en particular, el momento lineal desde el centro de masas en un choque se conserva.
Por el teorema 24 en la página 220, sabemos que podemos expresar el momento lineal del sistema en cualquier

sistema de referencia inercial como:
~P = ~Pcm

como el momento lineal del centro de masas no varía tras el choque, el momento lineal se conserva. Q.E.D.

Definición 94. Llamaremos factor de pérdida de energía Q a la resta de la energía cinética de las partículas
después y antes del choque.

Q := Tf − Ti =
1

2
m1u

2
1 +

1

2
m2u

2
2 −

1

2
m1v

2
1 −

1

2
m2v

2
2 =

1

2
m1

(
u2

1 − v2
1

)
+

1

2
m2

(
u2

2 − v2
2

)
Observación 72. Nótese que si es Q = 0, la energía se conserva, si es Q < 0 se pierde energía y si es Q > 0 se
gana energía.

Proposición 86. El factor de pérdida de energía Q no depende del sistema de referencia.

Demostración. Sea O un observador y sea O′ otro observador tal que ~R =
−−→
OO′, con ~R no necesariamente

constante. Entonces para el observador O, el factor de pérdida de energía Q viene dado por:

Q = Tf − Ti =
1

2
m1

(
u2

1 − v2
1

)
+

1

2
m2

(
u2

2 − v2
2

)
Mientras que para el observador O′, el factor de pérdida de energía Q′ viene dado por:

Q′ = T ′f − T ′i =
1

2
m1

(
u′1

2 − v′1 2
)

+
1

2
m2

(
u′2

2 − v′2 2
)

Por otra parte, tenemos:
~u′1 = ~̇R+ ~u1 ⇒ u′1

2 = Ṙ2 + u2
1 + 2 ~̇R · ~u1

~v′1 = ~̇R+ ~v1 ⇒ v′1
2 = Ṙ2 + v2

1 + 2 ~̇R · ~v1

~u′2 = ~̇R+ ~u2 ⇒ u′2
2 = Ṙ2 + u2

2 + 2 ~̇R · ~u2

~v′2 = ~̇R+ ~v2 ⇒ v′2
2 = Ṙ2 + v2

2 + 2 ~̇R · ~v2

Q′ =
1

2
m1

(
Ṙ2 + u2

1 + 2 ~̇R · ~u1 − Ṙ2 − v2
1 − 2 ~̇R · ~v1

)
+

1

2
m2

(
Ṙ2 + u2

2 + 2 ~̇R · ~u2 − Ṙ2 + v2
2 − 2 ~̇R · ~v2

)
=

=
1

2
m1

(
u2

1 − v2
1 + 2 ~̇R · [~u1 − ~v1]

)
+

1

2
m2

(
u2

2 − v2
2 + 2 ~̇R · [~u2 − ~v2]

)
=

=
1

2
m1

(
u2

1 − v2
1

)
+

1

2
m2

(
u2

2 − v2
2

)
+

1

2
~̇R · (m1~u1 +m2~u2 −m1~v1 −m2~v2) =

= Q+
1

2
~̇R · (~p1 + ~p2 − ~q1 − ~q2)

Y, por el teorema 25:
~p1 + ~p2 = ~q1 + ~q2

y, en consecuencia:
Q′ = Q

Q.E.D.

Licencia: Creative Commons 232

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 4. EL PROBLEMA DE DOS CUERPOS

4.4. COLISIONES

Definición 95. Llamamos coeficiente de restitución e de un choque unidimensional a la expresión:

e :=
u2 − u1

v1 − v2

~v1 ~v2

m1 m2

Choque

~u1 ~u2

m1 m2

Proposición 87. El coeficiente de restitución e no depende del sistema de referencia.

Demostración. Sea O un observador y sea O′ otro observador tal que se encuentra a distancia R de O, con R
no necesariamente constante. Entonces para el observador O, el coeficiente de restitución viene dado por:

e =
u2 − u1

v1 − v2

mientras que para O′ viene dado por:

e′ =
u′2 − u′1
v′1 − v′2

Nótese que es:
u′2 = Ṙ+ u2 u′1 = Ṙ+ u1

v′2 = Ṙ+ v2 v′1 = Ṙ+ v1

De esta forma, tenemos:

e′ =
Ṙ+ u2 − Ṙ− u1

Ṙ+ v1 − Ṙ− v2

=
u2 − u1

v1 − v2
= e

Q.E.D.

Observación 73. Nótese que por la proposición 87, en particular, desde el sistema centro de masas, tenemos:

e =
u∗2 − u∗1
v∗1 − v∗2

Definición 96. Diremos que el choque entre dos partículas es elástico si el factor de pérdida de energía es
nulo Q = 0 (alternativamente, si el choque es adimensional, si e = 1) y diremos que es inelástico si el factor
de pérdida de energía es negativo Q < 0 (alternativamente, si el choque es adimensional, si 0 < e < 1 ).

4.4.1. Descripción desde el sistema centro de masas
Proposición 88. Sean dos partículas con masa m1 y m2 que colisionan . Desde el sistema de referencia centro
de masas se dan las siguientes igualdades:

~p ∗1 = ~p ∗ = −~p ∗2
~q ∗1 = ~q ∗ = −~q ∗2

El ángulo que forma la dirección de ~p ∗1 con la dirección de ~q ∗1 es el mismo que forma la dirección de ~p ∗2 con
la dirección de ~q ∗2 . Llamaremos a dicho ángulo ángulo de dispersión desde el centro de masas θ∗ y no
podemos obtener dicho ángulo únicamente a partir del sistema de referencia centro de masas.
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Si, además, el choque es elástico, entonces se da:

p∗ = q∗

1 2
~p∗ −~p∗

~q∗

−~q∗

θ∗

θ∗

Demostración. La demostración de las primeras dos igualdades viene dada por el teorema 23 en la página 217.
Por otra parte, como ~p ∗1 = −~p ∗2 y ~q ∗1 = −~q ∗2 :

~p ∗1 · ~q ∗1 = (−~p ∗2 ) · (−~q ∗2 ) = ~p ∗2 · ~q ∗2
y en consecuencia, hay un único ángulo de dispersión θ∗.

Si el choque es elástico, como por la proposición 86 en la página 232 el factor de pérdida de energía no
depende del sistema de referencia, debe ser:

Q = 0⇔ T ∗f = T ∗i

Aplicando el teorema 23 en la página 217, sabemos que:

q∗ 2

2µ
= T ∗f = T ∗i =

p∗ 2

2µ
⇔ q∗ = p∗

pues q∗, p∗ ≥ 0. Q.E.D.

4.4.2. Descripción desde el sistema de laboratorio
Definición 97. Llamamos sistema laboratorio a aquel sistema de referencia para el cual es ~p2 = ~0.

Proposición 89. Sean dos partículas con masa m1 y m2 que colisionan. Desde el sistema laboratorio se dan
las siguientes igualdades:

~p1 = ~q1 + ~q2 ⇔
{
p1 = q1 cos θ + q2 cosα
q1 sen θ = q2 senα

donde θ es el ángulo que forman los vectores ~q1 y ~p1 (lo llamaremos ángulo de dispersión) y α es el ángulo
que forman los vectores ~q2 y ~p1 (lo llamaremos ángulo de retroceso). Los vectores ~q1, ~q2 y ~p1 están siempre
en el mismo plano.

Si, además, el choque es elástico, entonces tenemos la siguiente igualdad:

q2 =
2m2

M
p1 cosα si q2 6= 0
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~p1

~q1

~q2
m1 m2

θ

α

Demostración. Como la fuerza de interacción (la fuerza de choque) se produce en la dirección perpendicular a
sus superficies y, por tanto, en la dirección que une sus centros de masas; desde dichos puntos, la fuerza que
actúa es central. Por la proposición 7 en la página 22, como la fuerza es central, el momento angular se conserva.
Por el corolario 7 en la página 22, el movimiento estará restringido a un plano.

Por el teorema 25 en la página 232, se conserva el momento lineal:

~p1 = ~q1 + ~q2 ⇔
{
p1 = q1 cos θ + q2 cosα
0 = q1 sen θ − q2 senα

Por otra parte, si el choque es elástico, por la proposición 86 en la página 232 el factor de pérdida de energía
no depende del sistema de referencia y, en consecuencia, debe ser:

Q = 0⇔ Tf = Ti ⇔
q2
1

2m1
+

q2
2

2m2
=

p2
1

2m1

De la segunda ecuación para el momento, obtenemos la relación entre ambos ángulos:

q1 sen θ = q2 senα

Por otra parte, de la ecuación vectorial del momento, obtenemos:

~q1 = ~p1 − ~q2 ⇒ q2
1 = p2

1 + q2
2 − 2 ~p1 · ~q2︸ ︷︷ ︸

=p1q2 cosα

= p2
1 + q2

2 − 2p1q2 cosα

Sustituyendo el valor hallad de q2
1 en la ecuación de la energía, llegamos a:

p2
1 + q2

2 − 2p1q2 cosα

2m1
+

q2
2

2m2
=

p2
1

2m1
⇔

⇔ p2
1 = p2

1 + q2
2 − 2p1q2 cosα+

m1

m2
q2
2 ⇔ q2

2 − 2p1q2 cosα+
m1

m2
q2
2 = 0

Suponiendo q2 6= 0, lo anterior es equivalente a:

q2 − 2p1 cosα+
m1

m2
q2 = 0⇔ q2

(
1 +

m1

m2

)
= 2p1 cosα⇔ q2 =

2m2

m1 +m2
p1 cosα =

=
2m2

M
p1 cosα

Si es q2 = 0, entonces ~p1 = ~q1 y θ = α = 0. Q.E.D.

4.4.3. Descripción en el sistema laboratorio a partir del sistema centro de masas
Teorema 26. Sean dos partículas con masa m1 y m2 que colisionan. Se dan las siguientes relaciones:

~p1 = ~q1 + ~q2
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~p1 =

(
m1

m2
+ 1

)
~p ∗ =

M

m2
~p ∗

~q1 =
m1

m2
~p∗ + ~q∗

~q2 = ~p ∗ − ~q ∗
q2

sen θ
=

q1

senα

q2

sen θ∗
=

q∗

senα

donde θ es el ángulo dispersión (el ángulo que forman ~p1 y ~q1) , α es el ángulo de retroceso (el ángulo que
forman ~p1 y ~q2) y θ∗ es el ángulo de dispersión desde el centro de masas (el ángulo que forman ~p ∗ y ~q ∗). Estas
relaciones quedan resumidas con el siguiente triángulo (llamado triángulo mágico):

m1

m2
~p ∗

~q1
~q ∗ ~q2

~p ∗

~p1

θ θ∗ α

Si, además, el choque es elástico, se cumple:

2α+ θ∗ = π

q2 = 2p∗ sen
θ∗

2
si q2 6= 0

Ahora el subtriángulo derecho del triángulo mágico es isósceles:
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m1

m2
~p ∗

~q1
~q ∗ ~q2

~p ∗
θ θ∗ α

α

Demostración. Tenemos la primera relación por la proposición 89 en la página 234.
Relacionemos ~p1, ~p2, ~q1 y ~q2 con ~p ∗ y ~q ∗:

~p1 = m1
~̇R+ ~p∗

~0 = ~p2 = m2
~̇R− ~p∗

~q1 = m1
~̇R+ ~q∗

~q2 = m2
~̇R− ~q∗

De la segunda ecuación, obtenemos:

m2
~̇R− ~p∗ = ~0⇔ ~̇R =

~p ∗

m2

En consecuencia, sustituyendo, llegamos a:

~p1 = m1
~p ∗

m2
+ ~p ∗ =

(
m1

m2
+ 1

)
~p ∗ =

(
m1 +m2

m2

)
~p ∗ =

M

m2
~p ∗

~q1 = m1
~p ∗

m2
+ ~q ∗

~q2 = m2
~p ∗

m2
− ~q ∗ = ~p ∗ − ~q ∗

Las dos relaciones de ángulos son consecuencia de aplicar el teorema del seno al triángulo mágico.
Bien, ahora si el choque es elástico, por la proposición 88 en la página 233, es p∗ = q∗ y, en consecuencia el

subtriángulo derecho del triángulo mágico es isósceles. Así, tenemos:

2α+ θ∗ = π ⇔ α =
π − θ∗

2
=
π

2
− θ∗

2

Por la proposición 89 en la página 234, cuando el choque es elástico y q2 6= 0, se da:

q2 =
2m2

M
p1 cosα =

2m2

M
p1 cos

(
π

2
− θ∗

2

)
=

2m2

M
p1 sen

θ∗

2

Antes, hemos obtenido que:

~p1 =
M

m2
~p ∗ ⇒ p1 =

M

m2
p∗
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sustituyendo, tenemos:

q2 =
2m2

M

M

m2
p∗ sen

θ∗

2
= 2p∗ sen

θ∗

2

Q.E.D.

Definición 98. Sean dos partículas con masa m1 y m2 que colisionan. Se llama energía transferida al
blanco a la energía cinética de la segunda partícula (la que está inmóvil en sistema laboratorio) tras el choque.

También llamamos proporción de energía transferida al blanco al cociente entre la energía transferida
al blanco y la energía cinética total del sistema.

Proposición 90. Sean dos partículas con masa m1 y m2 que colisionan elásticamente. Entonces la energía
transferida al blanco viene dada por:

T2,f =
2p∗ 2

m2
sen2 θ

∗

2

Demostración. Por definición de energía cinética tenemos:

T2,f =
q2
2

2m2

Ahora, por el teorema 26 en la página 235, tenemos que:

T2,f =
4p∗ 2 sen2 θ∗

2

2m2
=

2p∗ 2

m2
sen2 θ

∗

2

Q.E.D.

Proposición 91. Sean dos partículas con masa m1 y m2 que colisionan elásticamente. La energía cinética del
sistema (tanto antes como después del choque) puede expresarse como:

T =
M2p∗ 2

2m1m2
2

Demostración. Como el choque es elástico, la energía cinética debe conservarse. En el sistema laboratorio, antes
del choque únicamente se mueve la primera partícula. Así:

T = Tf = Ti =
p2

1

2m1

Por el teorema 26 en la página 235, tenemos que:

T =

M2p∗ 2

m2
2

2m1
=
M2p∗ 2

2m1m2
2

Q.E.D.

Proposición 92. Sean dos partículas con masa m1 y m2 que colisionan elásticamente. La proporción de energía
transferida al blanco viene dado por la expresión:

T2,f

T
=

4m1m2

M2
sen2 θ

∗

2

Demostración. Partimos de las proposiciones 90 y 91. De manera que:

T2,f

T
=

2p∗ 2

m2
sen2 θ∗

2

M2p∗ 2

2m1m2
2

=
2p∗ 2 sen2 θ∗

2 2m1m
2
2

M2p∗ 2m2
=

4m1m2

M2
sen2 θ

∗

2

Q.E.D.

Corolario 39. Sean dos partículas con masa m1 y m2 que colisionan elásticamente. La máxima transferencia
de energía se produce cuando el choque es frontal.

Licencia: Creative Commons 238

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 4. EL PROBLEMA DE DOS CUERPOS

4.4. COLISIONES

Demostración. Estudiando la expresión de la proposición 92 en la página anterior, vemos que su valor es máximo
cuando:

sen
θ∗

2
= 1⇔ θ∗

2
=
π

2
⇔ θ∗ = π

para un θ∗ restringido a [0, π]. Y un ángulo de θ∗ = π se corresponde claramente con un choque frontal, pues
θ∗ es el ángulo que forman entre sí ~p ∗ y ~q ∗. Q.E.D.

Corolario 40. Sean dos partículas con masa m1 y m2 que colisionan elásticamente. La máxima transferencia
en energía si el choque es frontal (θ∗ = π) se produce cuando m1 = m2. Si m1 � m2 o m1 � m2, la proporción
de energía transferida tiende a cero.

Demostración. Partimos de la proposición 92 en la página anterior. Si el choque es frontal, la expresión de la
proporción de transferencia en energía al blanco queda:

T2,f

T
=

4m1m2

M2
=

4m1m2

(m1 +m2)
2

Claramente la expresión anterior es simétrica enm1 ym2, así que aquello que le ocurra am1, le ocurrirá también
a m2. Vamos a derivar para obtener los puntos críticos:

d
T2,f

T

dm1
=

4m2 (m1 +m2)
2 − 4m1m22 (m1 +m2)

(m1 +m2)
4

Igualando la derivada a cero, obtenemos:

m2 (m1 +m2)
2

= 2m1m2 (m1 +m2)

como m1,m2 > 0 debe ser m1 +m2 6= 0 y, en consecuencia:

m1 +m2 = 2m1 ⇔ m2 = m1

De manera que el único punto crítico es m1 = m2. Para ver que es máximo, vamos a estudiar el límite de la
función original cuando tiene a cero y cuando tiende a infinito, que son los extremos de nuestro intervalo de
estudio:

ĺım
m1→0

T2,f

T
= ĺım
m1→0

4m1m2

(m1 +m2)
2 = 0

ĺım
m1→∞

T2,f

T
= ĺım
m1→∞

4m1m2

(m1 +m2)
2 = ĺım

m1→∞
4m1m2

m2
1

= 0

En consecuencia, m1 = m2 es un máximo absoluto de la función T2,f

T . Además, con los límites anteriores
hemos probado que la proporción de energía transferida al blanco tiende a cero si es m1 � m2 o si es m2 �
m1. Q.E.D.

Ejemplo 35. Si tenemos un choque elástico entre un protón y una partícula alfa con m1

m2
= 1

4 , el máximo
porcentaje de energía transferida es un 64 %.

Proposición 93. Sean dos partículas con masam1 ym2 que colisionan. La relación entre el ángulo de dispersión
desde el centro de masas θ∗ y el ángulo de dispersión viene dada por la expresión:

tan θ =
q∗ sen θ∗

m1

m2
p∗ + q∗ cos θ∗

Demostración. Partimos del triángulo mágico del teorema 26 en la página 235. En el subtriángulo izquierdo
podemos ver fácilmente que el ángulo de abajo a la derecha es π − θ∗. En consecuencia, el ángulo de arriba a
la derecha es π − θ − (π − θ∗) = θ∗ − θ. Ahora por el teorema del seno, tenemos:

m1

m2
p∗

sen (θ∗ − θ) =
q∗

sen θ
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Por el lema 10 en la página 133, tenemos que:

sen (θ∗ − θ) = sen θ∗ cos θ − cos θ∗ sen θ

Así, sustituyendo, tenemos:

m1

m2
p∗

sen θ∗ cos θ − cos θ∗ sen θ
=

q∗

sen θ
⇔

m1

m2
p∗

sen θ∗ cos θ
sen θ − cos θ∗

= q∗ ⇔

⇔ m1

m2

p∗

q∗
=

sen θ∗

tan θ
− cos θ∗ ⇔ m1

m2

p∗

q∗
+ cos θ∗ =

sen θ∗

tan θ
⇔

⇔ tan θ =
sen θ∗

m1

m2

p∗

q∗ + cos θ∗
=

sen θ∗
m1
m2

p∗+q∗ cos θ∗

q∗

=
q∗ sen θ∗

m1

m2
p∗ + q∗ cos θ∗

Q.E.D.

Corolario 41. Sean dos partículas con masa m1 y m2 que colisionan elásticamente. La relación entre el ángulo
de dispersión desde el centro de masas θ∗ y el ángulo de dispersión viene dada por la expresión:

tan θ =
sen θ∗

m1

m2
+ cos θ∗

Demostración. Partimos de la proposición 93 en la página anterior:

tan θ =
q∗ sen θ∗

m1

m2
p∗ + q∗ cos θ∗

Si el choque es elástico, por la proposición 88 en la página 233, tenemos que p∗ = q∗. En consecuencia:

tan θ =
q∗ sen θ∗

m1

m2
q∗ + q∗ cos θ∗

=
sen θ∗

m1

m2
+ cos θ∗

Q.E.D.

4.4.4. Casos particulares
Sabemos, trivialmente, que θ∗ ∈ [0, π] porque θ∗ es el ángulo que forma ~p∗ con ~q∗ y el ángulo entre dos

vectores varía entre 0 y π. Sin embargo θ, en general, no puede variar desde θ = 0 hasta θ = π. Aunque está
claro que θ nunca podrá ser mayor que π.

Proposición 94. Sean dos partículas con masa m1 y m2 que colisionan elásticamente. Entonces α ∈
[
0, π2

]
.

Si es m1 > m2, entonces se da:
θ∗ = 0⇒ θ = 0

θ∗ = π ⇒ θ = 0

tan θmáx =

m2

m1

√
1− m2

m1

2

m2

m1
+ 1

≤
m2

m1

m2

m1
+ 1

θmáx <
π

4
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m1

m2
~p ∗

~q1
~q ∗ ~q2

~p ∗

~p1

θ θ∗ α

Si es m1 < m2, tenemos:
θ∗ = 0⇔ θ = 0

θ∗ = π ⇔ θ = π

θmáx = π
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m1

m2
~p ∗

~q1
~q ∗ ~q2

~p ∗

~p1

θ∗ αθ

Si es m1 = m2, entonces:

θ =
θ∗

2
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~p ∗

~q1
~q ∗ ~q2

~p ∗

~p1

θ∗ αθ

Demostración. Por el teorema 26 en la página 235, si el choque es elástico, se da:

2α+ θ∗ = π ⇔ α =
π

2
− θ∗

2

y como θ∗ ∈ [0, π], α ∈
[
0, π2

]
.

Partimos del corolario 41 en la página 240:

tan θ =
sen θ∗

m1

m2
+ cos θ∗

Derivando, obtenemos:

d tan θ

dθ∗
=

cos θ∗
(
m1

m2
+ cos θ∗

)
− sen θ∗ (− sen θ∗)(

m1

m2
+ cos θ∗

)2

Igualando la derivada a 0, llegamos a:

m1

m2
cos θ∗ +

=1︷ ︸︸ ︷
cos2 θ∗ + sen2 θ∗ = 0⇔ cos θ∗ = −m2

m1

Si es m1 > m2, como la función tan θ es estrictamente creciente, tenemos que el valor máximo de θ se
alcanza cuando:

cos θ∗ = −m2

m1
⇒ sen θ∗ =

√
1− m2

2

m2
1
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donde hemos aplicado que sen (arc cosx) =
√

1− x2 1. Si llamamos x al cociente x := m2

m1
, obtenemos:

tan θ =

√
1− x2

1
x + x

=

√
1− x2

1+x
x

=
x
√

1− x2

x+ 1
≤ x

x+ 1
< 1⇒ θ <

π

4

Por otra parte:
θ∗ = 0⇒ sen θ∗ = 0⇒ tan θ = 0⇒ θ = 0

θ∗ = π ⇒ sen θ∗ = 0⇒ tan θ = 0⇒ θ = 0

Nótese que, en principio, θ = π podría ser una solución de las dos ecuaciones anteriores, pero como hemos
visto antes es θ < π

4 , así que no puede ser.

Si es m1 < m2, no existen ningún punto crítico, en consecuencia, no existe ninguna limitación a priori.
Tenemos:

θ∗ = 0⇒
{

sen θ∗ = 0
cos θ∗ = 1

⇒ tan θ = 0+ ⇒ θ = 0

θ∗ = π ⇒


sen θ∗ = 0

cos θ∗ = −1⇒ m1

m2︸︷︷︸
<1

−1 < 0 ⇒ tan θ = 0− ⇒ θ = π

Por último, si es m1 = m2, entonces, por el teorema 26 en la página 235, se cumple:

2α+ θ∗ = π ⇔ α =
π

2
− θ∗

2

Así, el ángulo superior derecho del subtriángulo derecho es α y el ángulo superior derecho del subtriángulo
izquierdo es el complementario de α, que es:

π

2
− α =

θ∗

2

En consecuencia, en el subtriángulo izquierdo, tenemos:

θ + π − θ∗ +
θ∗

2
= π ⇔ θ − θ∗

2
= 0⇔ θ =

θ∗

2

Q.E.D.

4.5. Secciones eficaces (sistemas centro de masas y laboratorio)

4.5.1. Repaso de conceptos de dispersión
En el tema anterior estudiamos varios conceptos relacionados con la dispersión de partículas en la que el

blanco estaba siempre fijo. Gracias a los conceptos nuevos vistos en este tema, vamos a ser capaces de resolver
la colisión colineal de dos haces de partículas en movimiento. Para ello, vamos a repasar todas las magnitudes
físicas que introdujimos en el tema anterior y vamos a ver cómo se expresan desde el centro de masas y desde
el sistema laboratorio. Como en el sistema laboratorio el segundo objeto está quieto, los blancos lo estarán, de
manera que las definiciones de todos los conceptos son exactamente iguales a las del tema anterior.

1Esto puede verse en la página https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&oldid=
876493420#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions.
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θ

α

dA

φ

Proposición 95. El número de partículas (y magnitudes derivadas) es el mismo en el sistema centro de masas
y en el sistema laboratorio. Ambos sistemas también miden el área de la misma forma. Lo único que es diferente
es la sección eficaz diferencial.

1.
Ninc = N∗inc

2.
φinc = φ∗inc

3.
%inc = %∗inc

4.
Ndisp = N∗disp

5.
φdisp = φ∗disp

6.
%disp = %∗disp

7.
nbl = n∗bl

8.
σ = σ∗

9.
dσ

dΩ
dΩ =

dσ

dΩ∗
dΩ∗

10. En general:
dσ

dΩ
6= dσ

dΩ∗

donde las magnitudes sin distinción son las referidas al sistema laboratorio y las que llevan una ∗ son las
referidas al sistema centro de masas.
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Demostración. Las relaciones (1) a (7) son triviales; se deben a que no puede haber un mayor número de
partículas en el sistema centro de masas y que en el sistema laboratorio o al revés. Como el área se mide igual
bajo ambos sistemas, se dan también (7) y (8). (9) se da porque, por (8) es dσ = dσ∗:

dσ

dΩ
dΩ = dσ = dσ∗ =

dσ

dΩ∗
dΩ∗

Ahora bien, en general es:
dσ

dΩ
6= dσ

dΩ∗

porque en general es:
dΩ 6= dΩ∗

y esto último se debe a que, como hemos visto en las secciones anteriores, el ángulo de dispersión no es el mismo
en el sistema centro de masas que en el sistema laboratorio. Nótese que en la sección eficaz asociada dσ sí que
es la misma, porque dΩ y dΩ∗ están relacionados. Es decir, es lo mismo decir: «una sección eficaz dσ para un
ángulo sólido dΩ» que «una sección eficaz dσ para un ángulo sólido dΩ∗». Q.E.D.

Como ya vimos en el tema anterior si yo conozco la sección eficaz diferencial de la colisión que tengo entre
manos, puedo responder ya a cualquier pregunta sobre el sistema mediante el teorema 21 en la página 197 (o
derivados) simplemente integrando. Por ello es por lo que en este tema vamos a centrarnos en la sección eficaz
diferencial y en cómo cambia ésta del sistema centro de masas al sistema laboratorio.

4.5.2. Relación entre la sección eficaz diferencial entre el sistema centro de masas
y el sistema laboratorio

Proposición 96. Sean dos haces planos de partículas que están lanzados uno contra el otro de forma colineal (en
exactamente la misma dirección). Consideraremos que las partículas del primer haz tienen masa m1, mientras
que las del segundo haz tiene masa m2. Supondremos que todas las partículas del primer haz están lanzadas a la
misma velocidad y haremos lo mismo con el segundo haz. Si m1 < m2 (o equivalentemente si hay una relación
unívoca entre θ y θ∗) y las colisiones son todas elásticas, entonces la sección eficaz diferencial en el sistema
laboratorio está relacionada con la sección eficaz diferencial en el sistema centro de masas por la expresión:

dσ

dΩ
=

dσ

dΩ∗

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗ +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗

∣∣∣∣∣∣∣∣∣
Demostración. Partimos de la proposición 95 en la página anterior, de forma que tenemos:

dσ

dΩ
dΩ =

dσ

dΩ∗
dΩ∗ ⇔ dσ

dΩ
=

dσ

dΩ∗
dΩ∗

dΩ

Nuestro objetivo es, por tanto, estudiar el cociente
dΩ∗

dΩ
. Por la proposición 78 en la página 201, podemos

expresar el ángulo sólido en coordenadas esféricas, obteniendo:

dΩ∗

dΩ
=

sen θ∗dθ∗dϕ∗

sen θdθdϕ

Ahora, nos damos cuenta de que el ángulo ϕ es el mismo en ambos sistemas de referencia, por tanto:

ϕ = ϕ∗ ⇒ dϕ = dϕ∗

En consecuencia, la expresión anterior queda:

dΩ∗

dΩ
=

sen θ∗dθ∗

sen θdθ
=

∣∣∣∣d (cos θ∗)
d (cos θ)

∣∣∣∣
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donde los valores absolutos se deben a que la sección eficaz diferencial debe ser siempre positiva, por tanto, el

factor
dΩ∗

dΩ
que relaciona dos secciones eficaces diferenciales debe ser positiva. Sin embargo, el cociente

d (cos θ∗)
d (cos θ)

puede ser negativo o positivo dependiendo del caso.
Hallamos la relación entre θ y θ∗ para colisiones elásticas en el corolario 41 en la página 240:

tan θ =
sen θ∗

m1

m2
+ cos θ∗

Nótese que si es m1 < m2, la relación entre θ y θ∗ es unívoca. Por otra parte, sabemos que:

cos2 θ =
1

1 + tan2 θ
=

1

1 + sen2 θ∗

m2
1

m2
2

+cos2 θ∗+2
m1
m2

cos θ∗

=

m2
1

m2
2

+ cos2 θ∗ + 2m1

m2
cos θ∗

m2
1

m2
2

+ cos2 θ∗ + 2m1

m2
cos θ∗ + sen2 θ∗

=

=

m2
1

m2
2

+ cos2 θ∗ + 2m1

m2
cos θ∗

m2
1

m2
2

+ 2m1

m2
cos θ∗ + 1

=

(
m1

m2
+ cos θ∗

)2

m2
1

m2
2

+ 2m1

m2
cos θ∗ + 1

Si llamamos z := cos θ, z∗ := cos θ∗, C = m1

m2
, nosotros queremos calcular:∣∣∣∣d (cos θ∗)
d (cos θ)

∣∣∣∣ =

∣∣∣∣dz∗dz
∣∣∣∣

y podemos reescribir la expresión de arriba como:

z2 =
(C + z∗)2

C2 + 2Cz∗ + 1

Ahora mismo hemos obtenido z2 = f (z∗) donde f es la función dependiente de cos θ∗ que hemos hallado arriba,
diferenciando, obtenemos:

d
(
z2
)

= df (z∗)⇔ 2zdz =
df (z∗)
dz∗

dz∗ ⇔ dz∗

dz
=

2z
df(z∗)
dz∗

Hallemos
df (z∗)
dz∗

:

df (z∗)
dz∗

=
2 (C + z∗)

(
C2 + 2Cz∗ + 1

)
− (C + z∗)2

2C

(C2 + 2Cz∗ + 1)
2 =

=
2 (C + z∗)

(C2 + 2Cz∗ + 1)
2

[
C2 + 2Cz∗ + 1− C (C + z∗)

]
=

=
2 (C + z∗)

(C2 + 2Cz∗ + 1)
2

[
C2 + 2Cz∗ + 1− C2 − Cz∗

]
=

2 (C + z∗)

(C2 + 2Cz∗ + 1)
2 [Cz∗ + 1]

dz∗

dz
= 2

C+z∗√
C2+2Cz∗+1

2(C+z∗)

(C2+2Cz∗+1)2 [Cz∗ + 1]
=

[
C2 + 2Cz∗ + 1

] 3
2

Cz∗ + 1

Deshaciendo todos los cambios de variable, obtenemos:

∣∣∣∣d (cos θ∗)
d (cos θ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗ +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗

∣∣∣∣∣∣∣∣∣
Y, por ende:

dσ

dΩ
=

dσ

dΩ∗

∣∣∣∣d (cos θ∗)
d (cos θ)

∣∣∣∣ =
dσ

dΩ∗

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗ +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗

∣∣∣∣∣∣∣∣∣
Q.E.D.
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Proposición 97. Sean dos haces planos de partículas que están lanzados uno contra el otro de forma colineal (en
exactamente la misma dirección). Consideraremos que las partículas del primer haz tienen masa m1, mientras
que las del segundo haz tiene masa m2. Supondremos que todas las partículas del primer haz están lanzadas a
la misma velocidad y haremos lo mismo con el segundo haz. Si m1 > m2 y las colisiones son todas elásticas,
entonces la sección eficaz diferencial en el sistema laboratorio está relacionada con la sección eficaz diferencial
en el sistema centro de masas por la expresión:

dσ

dΩ
=

[
dσ

dΩ∗

]
θ∗=θ∗1

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗1 +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗1

∣∣∣∣∣∣∣∣∣+

[
dσ

dΩ∗

]
θ∗=θ∗2

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗2 +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗2

∣∣∣∣∣∣∣∣∣
donde θ∗1 y θ∗2 son los dos ángulos que se corresponden con θ y el subíndice en los corchetes las secciones eficaces
diferenciales indica «evaluado en». Nótese que la sección eficaz diferencial es única, lo que pasa es que es preciso
evaluarla en dos ángulos diferentes.

Demostración. Si m1 > m2, entonces la relación entre θ∗ y θ dada por la proposición 41 en la página 240 no es
unívoca; hay dos valores de θ∗ para uno de θ. Por tanto, parte de las partículas que para el sistema laboratorio
salen con ángulo θ, para el sistema centro de masas saldrán con θ∗1 y otra parte saldrá con θ∗2 . En consecuencia,
para contar todas la partículas que en sistema laboratorio salen con θ tendré que sumar las que para el centro de
masas salen con θ∗1 y las que salen con θ∗2 . En consecuencia, por la proposición 95 en la página 245, tendremos:[

dσ

dΩ
dΩ

]
θ

=

[
dσ

dΩ∗
dΩ∗

]
θ∗1

+

[
dσ

dΩ∗
dΩ∗

]
θ∗2

Dividiendo por dΩ a ambos lados, obtenemos:[
dσ

dΩ

]
θ

=

[
dσ

dΩ∗
dΩ∗

dΩ

]
θ∗1

+

[
dσ

dΩ∗
dΩ∗

dΩ

]
θ∗2

Y para cada uno de estos términos sí que hay una relación unívoca entre θ y θ∗1 y entre θ y θ∗2 . En consecuencia,
podemos aplicar la proposición 96 en la página 246 y llegamos al enunciado. Q.E.D.

4.5.3. Partículas «rechazadas» del blanco
Si tenemos dos haces de partículas que lanzamos unos contra otros, a veces, dependiendo de las razón entre

las masas de las partículas de los haces m1

m2
, es posible que salgan «rebotadas» o «rechazadas» partículas del

segundo haz. En ese caso, nos gustaría saber cuántas partículas de dicho segundo haz salen en un determinado
ángulo sólido dΩ∗ (medido según el sistema centro de masas) o para un dΩ (medido desde el sistema labora-
torio). Para hacer dicho cálculo ya sabemos que conviene conocer la sección eficaz diferencial de las partículas
«rechazadas». Para hallar dicha sección eficaz diferencial recurriríamos al sistema laboratorio o al sistema centro
de masas (donde podemos aplicar los conocimientos del tema pasado) y seguramente intentaríamos aplicar la
proposición 81 en la página 204 si las partículas con las que trabajamos son lo suficientemente buenas. En
cualquier caso, no vamos a hablar de eso ahora (pues es temario del tema anterior). Únicamente vamos a hallar
cuál es la relación entre la sección eficaz diferencial para los blancos rechazados según el sistema laboratorio y
según el sistema centro de masas.

Proposición 98. Sean dos haces planos de partículas que están lanzados uno contra el otro de forma colineal (en
exactamente la misma dirección). Consideraremos que las partículas del primer haz tienen masa m1, mientras
que las del segundo haz tiene masa m2. Supondremos que todas las partículas del primer haz están lanzadas a
la misma velocidad y haremos lo mismo con el segundo haz. Si las colisiones son todas elásticas, entonces la
sección eficaz diferencial de las partículas «rechazadas» en el sistema laboratorio está relacionada con la sección
eficaz diferencial de las partículas «rechazadas» en el sistema centro de masas por la expresión:[

dσ

dΩ

]
rechazadas

=

[
dσ

dΩ∗

]
rechazadas

4 cosα

donde α es el ángulo de retroceso.
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Demostración. Partimos de la proposición 95 en la página 245, de forma que tenemos:[
dσ

dΩ

]
rechazadas

dΩ =

[
dσ

dΩ∗

]
rechazadas

dΩ∗ ⇔
[
dσ

dΩ

]
rechazadas

=

[
dσ

dΩ∗

]
rechazadas

dΩ∗

dΩ

Nuestro objetivo es, por tanto, estudiar el cociente
dΩ∗

dΩ
. Por la proposición 78 en la página 201, podemos

expresar el ángulo sólido en coordenadas esféricas, obteniendo:

dΩ∗

dΩ
=

sen θ∗dθ∗dϕ∗

senαdαdϕ

Ahora, nos damos cuenta de que el ángulo ϕ es el mismo en ambos sistemas de referencia, por tanto:

ϕ = ϕ∗ ⇒ dϕ = dϕ∗

En consecuencia, la expresión anterior queda:

dΩ∗

dΩ
=

sen θ∗dθ∗

senαdα
=

∣∣∣∣d (cos θ∗)
d (cosα)

∣∣∣∣
donde los valores absolutos se deben a que la sección eficaz diferencial debe ser siempre positiva, por tanto, el

factor
dΩ∗

dΩ
que relaciona dos secciones eficaces diferenciales debe ser positiva. Sin embargo, el cociente

d (cos θ∗)
d (cosα)

puede ser negativo o positivo dependiendo del caso.
Hallamos la relación entre θ∗ y α para el caso de colisiones elásticas en el teorema 26 en la página 235:

θ∗ + 2α = π ⇔ θ∗ = π − 2α

En consecuencia:

cos θ∗ = cos (π − 2α) = − cos (2α) = − cos2 α+ sen2 α = −2 cos2 α+ cos2 α+ sen2 α︸ ︷︷ ︸
=1

=

= 1− 2 cos2 α

Llamando z = cosα, tenemos:

d (cos θ∗)
d (cosα)

=
d

dz

(
1− 2z2

)
= −4z = −4 cosα

Por ende:
dΩ∗

dΩ
=

∣∣∣∣d (cos θ∗)
d (cosα)

∣∣∣∣ = |−4 cosα| = 4 cosα

En conclusión: [
dσ

dΩ

]
rechazadas

=

[
dσ

dΩ∗

]
rechazadas

dΩ∗

dΩ
=

[
dσ

dΩ∗

]
rechazadas

4 cosα

Q.E.D.

4.5.4. Ejemplos
Ejemplo 36. Consideremos dos haces de esferas rígidas dirigidos el uno contra el otro. Las esferas del primer
haz tienen radio R1 mientras que las esferas del segundo haz tienen radio R2. Supondremos que los choques son
elásticos.
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Z

b

~p1

R2
R1

α

~q2

α

~q1
~q∗

−~q∗

θθ∗

~p∗

~q1
~q∗ ~q2

~p∗

~p1

θ∗ αθ

Llamando R := R1 +R2, podemos relacionar el parámetro de impacto b con α como sigue:

b = R senα

Como el choque es elástico, por el teorema 26 en la página 235, tenemos que:

θ∗ + 2α = π ⇔ α =
π

2
− θ∗

2
⇒ senα = cos

θ∗

2
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Así, tenemos:

b = R cos
θ∗

2

Como las esferas tienen simetría axial respecto a la dirección incidente, podemos aplicar la proposición 81 en la
página 204, obteniendo la sección eficaz diferencial bajo el sistema centro de masas:

dσ

dΩ∗
=

b

sen θ∗

∣∣∣∣ dbdθ∗
∣∣∣∣ =

R cos θ
∗

2

sen θ∗

∣∣∣∣−1

2
R sen

θ∗

2

∣∣∣∣ =
R2

4 sen θ∗
2 sen

θ∗

2
cos

θ∗

2
=
R2

4

sen θ∗

sen θ∗
=
R2

4

Aplicando la proposición 96 en la página 246, tenemos que la sección eficaz diferencial en el sistema labora-
torio es:

dσ

dΩ
=

dσ

dΩ∗

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗ +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗

∣∣∣∣∣∣∣∣∣ =
R2

4

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗ +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗

∣∣∣∣∣∣∣∣∣
Imaginemos que ahora queremos hallar la sección eficaz diferencial de retroceso en sistema laboratorio. Para

ello, como las esferas tienen simetría axial respecto a la dirección incidente, podemos aplicar la proposición 81
en la página 204, obteniendo: [

dσ

dΩ

]
rechazadas

=
b

senα

∣∣∣∣ dbdα
∣∣∣∣

donde era b = R senα como hemos visto al principio de este ejemplo. Así:[
dσ

dΩ

]
rechazadas

=
R senα

senα
|−R cosα| = R2 cosα

Para hallar la sección eficaz diferencial de retroceso en el sistema centro de masas, podemos aplicar la
proposición 98 en la página 248, con lo que llegamos a:[

dσ

dΩ

]
rechazadas

=

[
dσ

dΩ∗

]
rechazadas

4 cosα⇔ R2 cosα = 4 cosα

[
dσ

dΩ∗

]
rechazadas

⇔

⇔
[
dσ

dΩ∗

]
rechazadas

=
R2

4

Por lo que vemos, desde el sistema de referencia centro de masas, para nuestro ejemplo se da:

dσ

dΩ
=

[
dσ

dΩ∗

]
rechazadas

=
R2

4

Y, además, ambas secciones eficaces diferenciales son isótropas; es decir, no dependen del ángulo.

Ejemplo 37. Tenemos dos haces de partículas cargadas de la misma masam y de la misma carga q. Disparemos
ambos haces de partículas uno contra el otro de forma colineal. Queremos calcular la sección eficaz diferencial
tanto desde el centro de masas como desde el sistema laboratorio. También deseamos hacer lo mismo para la
sección eficaz diferencial de retroceso.

Si estudiemos el caso de dos partículas, por el teorema 22 en la página 215, nuestro problema es equivalente
a tener una partícula sin masa, inmóvil y de carga q generando el campo y tener otra partícula de masa µ = m

2
y carga q orbitando a distancia r de la carga generadora del campo.
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~v

q′
b

µ

θ∗

a

β

b

En la sección 3.5.4 en la página 212, ya hallamos la sección eficaz diferencial correspondiente a esta situación.
De forma que obtenemos:

dσ

dΩ∗
=

[
Kq2

mv2 sen2 θ∗

2

]2

Aplicando la proposición 96 en la página 246, obtenemos que en sistema laboratorio la sección eficaz diferencial
queda:

dσ

dΩ
=

dσ

dΩ∗

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗ +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗

∣∣∣∣∣∣∣∣∣ =

[
Kq2

mv2 sen2 θ∗

2

]2

∣∣∣∣∣∣∣∣∣
[
1 + 2m1

m2
cos θ∗ +

(
m1

m2

)2
] 3

2

1 + m1

m2
cos θ∗

∣∣∣∣∣∣∣∣∣

Licencia: Creative Commons 252

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 4. EL PROBLEMA DE DOS CUERPOS

4.5. SECCIONES EFICACES (SISTEMAS CENTRO DE MASAS Y LABORATORIO)

como en nuestro caso es m1 = m2, obtenemos:

dσ

dΩ
=

[
Kq2

mv2 sen2 θ∗

2

]2 ∣∣∣∣∣ [2 + 2 cos θ∗]
3
2

1 + cos θ∗

∣∣∣∣∣ =

[
Kq2

mv2 sen2 θ∗

2

]2 ∣∣∣∣∣2
3
2 [1 + cos θ∗]

3
2

1 + cos θ∗

∣∣∣∣∣ =

=

[
Kq2

mv2 sen2 θ∗

2

]2

= 2
3
2

√
1 + cos θ∗

Según la proposición 94 en la página 240, cuando es m1 = m2, se da θ =
θ∗

2
, de forma que tenemos:

dσ

dΩ
=

[
Kq2

mv2 sen2 θ

]2

2
3
2

√
1 + cos 2θ

Por el teorema 26 en la página 235, tenemos:

θ∗ + 2α = π ⇔ α =
π

2
− θ∗

2
⇒ sen

θ∗

2
= cosα

De esta forma, sabemos que la sección eficaz diferencial de retroceso, viene dada por:[
dσ

dΩ∗

]
rechazadas

=

[
Kq2

mv2 cos2 α

]2

Por la proposición 98 en la página 248, obtenemos que:[
dσ

dΩ

]
rechazadas

=

[
dσ

dΩ∗

]
rechazadas

4 cosα =

[
Kq2

mv2 cos2 α

]2

4 cosα

Examinemos con más detalle las trayectorias que describen las partículas. Vamos a realizar un razonamiento
similar al realizado en la demostración de la proposición 85 en la página 224.

θ

l2

Ze

l1

θ

La trayectoria de la órbita relativa viene dada por:

r [e cos (θ − θ0)− 1] = l
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Cuando r →∞, debe ser e cos (θ − θ0)− 1→ 0⇔ cos (θ − θ0) = 1
e . Además, nótese que según el dibujo que

hemos hecho es θ0 = π. Recordemos que, por la proposición 84 en la página 216 era:

~r∗1 =
m2

M
~r

~r∗2 = −m1

M
~r

Si multiplicamos la ecuación ecuación de la trayectoria por m2

M , obtenemos:

m2

M
r︸︷︷︸

=r∗1

e cos

θ − θ0︸︷︷︸
=π

− 1

 =
m2

m1 +m2
l︸ ︷︷ ︸

=:l1

Análogamente, multiplicando por m1

M :

m1

M
r︸︷︷︸

=r∗2

e cos

θ − θ0︸︷︷︸
=0

− 1

 =
m1

M
l︸︷︷︸

=:l2

Nótese que en ambos casos obtenemos una hipérbola de la misma excentricidad, únicamente cambia l. Por
ello, el ángulo que forman entre sí las asíntotas de la hipérbola es el mismo en el sistema centro de masas que
visto desde el sistema laboratorio (estudiando el movimiento relativo), este ángulo es θ∗.
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Capítulo 5

Sistemas de referencia no inerciales

5.1. Rotación de sistemas de referencia
Sea S : (O;x, y, z) un sistema de referencia inercial ortonormal con origen en O y con coordenadas x, y, z.

Análogamente sea S′ : (O′, x1, x2, x3) un sistema de referencia ortonormal no inercial con origen en O′ y con
coordenadas x1, x2, x3. Llamaremos X,Y, Z a los ejes del sistema de referencia S y llamaremos X1, X2, X3 a los
ejes del sistema de referencia S′. Adicionalmente, llamaremos î, ĵ, k̂ a los vectores ortonormales de la base de
R3 asociada a S y llamaremos ê1, ê2, ê3 a los vectores ortonormales de la base de R3 asociada a S′. Asimismo,
llamaremos ~r al vector posición de una partícula desde el sistema de referencia S y denotaremos con ~r′ al vector
posición de esa misma partícula desde el sistema de referencia S′. Por último llamaremos ~R al vector que une
el origen de S con el origen de S′. Es decir, ~R =

−−→
OO′. De forma que se cumple ~r = ~R+ ~r′.

X

Y

Z

î

k̂

ĵ

~R

~r

~r′

X1

X2

X3

ê1

ê2

ê3

Licencia: Creative Commons 255

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 5. SISTEMAS DE REFERENCIA NO INERCIALES

5.1. ROTACIÓN DE SISTEMAS DE REFERENCIA

Con lo visto hasta ahora, la posición de una partícula vendría dada en ambos sistemas de la siguiente forma:

S : ~r = xî+ yĵ + zk̂

S′ : ~r′ = x1ê1 + x2ê2 + x3ê3

Utilizaremos la notación de Leibniz para designar una derivada temporal según el sistema S y la notación
de Newton para indicar una derivada temporal según el sistema S′. Como para el sistema S′, el está quieto,
siempre será:

˙̂ei = ~0 ∀i = 1, 2, 3

Sin embargo, en general, para el sistema S será:

d

dt
êi 6= ~0 ∀i = 1, 2, 3

Observación 74. Si un vector ~u no es constante para S′, entonces al menos una de sus coordenadas x1, x2, x3

no puede ser constante. Análogamente, si ~u no es constante para S, entonces al menos una de sus coordenadas
x, y, z no puede ser constante.
Observación 75. La derivada de un escalar λ respecto al tiempo es la misma en ambos sistemas de referencia,
porque los escalares no dependen de una base.

dλ

dt
= λ̇

En particular esto es cierto para las coordenadas x, y, z, x1, x2, x3 que, como son escalares, no dependen de
ninguna base.

5.1.1. Rotaciones
Teorema 27. Sean S : (O;x, y, z) un sistema de referencia inercial ortonormal y S′ : (O, x1, x2, x3) un sistema
de referencia ortonormal no inercial tales que su origen es común O = O′; es decir, es ~R = ~0. Entonces, existe
un ~ω ∈ R3 tal que la variación de los vectores unitarios de S′ según el sistema inercial S viene dada por la
expresión:

dêi
dt

= ~ω × êi ∀i = 1, 2, 3

Demostración. Como
dêi
dt

es un vector, en particular, podemos expresarlo como combinación lineal de la base
ê1, ê2, ê3. Entonces tenemos que ∃akl ∀k, l = 1, 2, 3 tales que:

dêk
dt

=

3∑
l=1

aklêl

Por otra parte, como la base del sistema S′ es ortonormal, tenemos:

êi · êj = δij

De esta forma, derivando a ambos lados en la ecuación anterior, obtenemos al aplicar la regla del producto:

êi ·
dêj
dt

+
dêi
dt
· êj = 0

Pero, por la hallado antes, podemos expresar las derivadas de los vectores como combinación lineal de la base
de S′, por lo que llegamos a:

êi ·
3∑
k=1

ajkêk +

3∑
k=1

aikêk · êj = 0⇔

⇔
3∑
k=1

ajkêk · êi +

3∑
k=1

aikêk · êj = 0
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Como era êi · êj = δij , obtenemos que lo anterior es equivalente a:

aji + aij = 0

y lo anterior debe cumplirse para todo i, j; por lo que tenemos:

aji + aij = 0 ∀i, j = 1, 2, 3⇔
{
aji = −aij ∀i, j = 1, 2, 3 3 i 6= j

2aii = 0 ∀i = 1, 2, 3

En consecuencia, la matriz formada por los aij es antisimétrica:

(aij) =

 0 a12 a13

−a12 0 a23

−a13 −a23 0


y así, sólo hay tres elementos linealmente independientes. Definimos el vector ~ω como:

~ω := (−a23, a13,−a12)

De esta forma:

~ω × ê1 =

∣∣∣∣∣∣
ê1 ê2 ê3

−a23 a13 −a12

1 0 0

∣∣∣∣∣∣ = −a12ê2 − a13ê3

dê1

dt
= (aij)

1
0
0

 = −a12ê2 − a13ê3

~ω × ê2 =

∣∣∣∣∣∣
ê1 ê2 ê3

−a23 a13 −a12

0 1 0

∣∣∣∣∣∣ = a12ê1 − a23ê3

dê2

dt
= (aij)

0
1
0

 = a12ê1 − a23ê3

~ω × ê3 =

∣∣∣∣∣∣
ê1 ê2 ê3

−a23 a13 −a12

0 0 1

∣∣∣∣∣∣ = a13ê1 + a23ê2

dê3

dt
= (aij)

0
0
1

 = a13ê1 + a23ê2

Con lo que efectivamente existe ~ω ∈ R3 tal que:

dêi
dt

= ~ω × êi ∀i = 1, 2, 3

Q.E.D.

Observación 76. Nótese que, en general, las componentes ω1, ω2, ω3 del vector ~ω que aparece en el teorema 27
en la página anterior no representan la variación de ningún ángulo.

Ejemplo 38. Suponemos ~ω = ωê3. En este caso, aplicando el teorema 27 en la página anterior, obtenemos:

dê1

dt
= ~ω × ê1 =

∣∣∣∣∣∣
ê1 ê2 ê3

0 0 ω
1 0 0

∣∣∣∣∣∣ = ωê2

dê2

dt
= ~ω × ê2 =

∣∣∣∣∣∣
ê1 ê2 ê3

0 0 ω
0 1 0

∣∣∣∣∣∣ = −ωê1
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dê3

dt
= ~ω × ê3 =

∣∣∣∣∣∣
ê1 ê2 ê3

0 0 ω
0 0 1

∣∣∣∣∣∣ = ~0

Si tomamos ~r = ê1, entonces, por el teorema anterior, tenemos 27 en la página 256:

dê1

dt
=
d~r

dt
= ωê2 = ~ω × ê1 = ~ω × ~r

Es decir, en este ejemplo, los ejes X1 y X2 están girando en torno al eje X3. Por tanto, en este caso, ω sí que
representa la variación de un ángulo.

î

ĵ
ê1

ê2

Y

X

X1

X2
ϕ

ϕ

Proposición 99. Sean S : (O;x, y, z) un sistema de referencia inercial ortonormal y S′ : (O, x1, x2, x3) un
sistema de referencia ortonormal no inercial tales que su origen es común O = O′; es decir, es ~R = ~0. Sea
~u ∈ R3 un vector cualquiera. Entonces:

d~u

dt
= ~̇u+ ~ω × ~u

Demostración. Por nuestros conocimientos de álgebra lineal, sabemos que existen x1, x2, x3 ∈ R tales que:

~u = x1ê1 + x2ê2 + x3ê3 =

3∑
i=1

xiêi

Por una parte, por la regla del producto, tenemos:

~̇u =

3∑
i=1

ẋiêi +

3∑
i=1

xi ˙̂ei

Sin embargo, como los vectores êi son constantes para S′, deber ser ˙̂ei = ~0 ∀i = 1, 2, 3. En consecuencia:

~̇u =

3∑
i=1

ẋiêi

Por otra parte, por la regla del producto, tenemos:

d~u

dt
=

3∑
i=1

dxi
dt
êi +

3∑
i=1

xi
dêi
dt
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Por la observación 75 en la página 256, tenemos que lo anterior es igual a:

d~u

dt
=

3∑
i=1

ẋiêi︸ ︷︷ ︸
=~̇u

+

3∑
i=1

xi
dêi
dt

donde el primer sumatorio es justo cómo varia el vector ~u para S′, es decir, ~̇u. Ahora, aplicando el teorema 27
en la página 256 al segundo sumatorio, obtenemos:

d~u

dt
= ~̇u+

3∑
i=1

xi~ω × êi = ~̇u+ ~ω ×
(

3∑
i=1

xiêi

)
= ~̇u+ ~ω × ~u

Q.E.D.

Corolario 42. Sean S : (O;x, y, z) un sistema de referencia inercial ortonormal y S′ : (O, x1, x2, x3) un sistema
de referencia ortonormal no inercial tales que su origen es común O = O′; es decir, es ~R = ~0. Sea ~u ∈ R3 un
vector cualquiera tal que es constante para el sistema de referencia S′. Entonces:

d~u

dt
= ~ω × ~u

Demostración. Partimos de la proposición 99 en la página anterior. De forma que sabemos:

d~u

dt
= ~̇u+ ~ω × ~u

Pero si ~u es constante para el sistema de referencia S′, entonces debe ser ~̇u = ~0, de forma que llegamos a:

d~u

dt
= ~ω × ~u

Q.E.D.

Observación 77. Todo vector ~u que satisfaga la ecuación dada en el corolario 42, visto desde el sistema de
referencia S, es un vector de longitud constante que gira en torno al vector ~ω con velocidad angular ω.
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~ω

R

~r

α
~v

rsinα

5.1.2. Traslaciones
Teorema 28. Sean S : (O;x, y, z) un sistema de referencia ortonormal y S′ : (O′, x1, x2, x3) otro sistema de
referencia ortonormal tales que están alineados; es decir, se cumple x̂ = ê1, ŷ = ê2 y ẑ = ê3. Entonces:

dêi
dt

= ˙̂ei = ~0 ∀i = 1, 2, 3

Demostración. Trivialmente para S′ se da ˙̂ei = ~0 ∀i = 1, 2, 3 y trivialmente para S se da dx̂
dt = ~0, dŷ

dt = ~0 y
dẑ
dt = ~0. Como son x̂ = ê1, ŷ = ê2 y ẑ = ê3, se cumple el enunciado. Q.E.D.

Observación 78. Si tenemos dos sistemas de referencia alineados S y S′, como sus bases vectoriales asociadas
son las mismas, un vector tendrá la misma descomposición, es decir, las coordenadas del vector serán las mismas
en ambos sistemas. Lo que ocurre, es que si yo quiero hablar de un punto en el espacio (por ejemplo, la posición
de una partícula), entonces habrá dos vectores diferentes un ~u para el sistema S y un ~u′ para el sistema S′ que
me describan el mismo punto. No obstante, las coordenadas del vector ~u serán las mismas en ambos sistemas y
lo mismo ocurrirá con las coordenadas de ~u′.

Proposición 100. Sean S : (O;x, y, z) un sistema de referencia ortonormal y S′ : (O′, x1, x2, x3) otro sistema
de referencia ortonormal tales que están alineados; es decir, se cumple x̂ = ê1, ŷ = ê2 y ẑ = ê3. Sean ~R =

−−→
OO′,

~u un vector cualquiera que tiene su origen en O y ~u′ el vector que tiene su origen en O′ y su extremo en el
extremo de ~u. Entonces:

~̇u =
d~u

dt
=
d~R

dt
+
d~u′

dt
= ~̇R+ ~̇u′
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Demostración. Como son x̂ = ê1, ŷ = ê2 y ẑ = ê3 y, como por la observación 78 en la página anterior, las
coordenadas de cualquier vector son las mismas en ambos sistemas de referencia, derivar con respecto a un
sistema de referencia es igual que derivar con respecto al otro sistema de referencia. En consecuencia:

~̇a =
d~a

dt
∀~a ∈ R3 (5.1.1)

y, en particular, es:

~̇u =
d~u

dt

Tenemos que se cumple:
~u = ~R+ ~u′

Derivando, tenemos:
d~u

dt
=
d~R

dt
+
d~u′

dt

Por la ecuación 5.1.1, tenemos que lo anterior es equivalente a:

d~u

dt
= ~̇R+ ~̇u′

Q.E.D.

5.1.3. Ejemplos
Ejemplo 39 (Fuerza de Lorentz y ciclotrón). Consideremos una partícula de carga q y velocidad ~v inmersa en
un campo magnético ~B. Por la ley de Lorentz, la fuerza que actúa sobre dicha partícula es:

~F = q~v × ~B = m
d~v

dt
⇔ d~v

dt
= − q

m
~B︸ ︷︷ ︸

=:~ωc

×~v = ~ωc × ~v

donde ωc =
qB

m
= cte. Así una partícula sobre la que actúa una fuerza magnética constante siempre describirá

un movimiento circular.
Por otra parte es:

ωcv =
v2

R
⇔ R =

v2

ωcv
=

v

ωc
=
mv

qB

Este es el principio que se usa en el ciclotrón. Veámoslo gráficamente:
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~v

~B

donde sometemos ambas partes del ciclotrón a una diferencia de potencial V = V0 cosωct. La velocidad
máxima que se puede obtener es:

vmáx =
qBR

m
Cuando la velocidad de la partícula es cercana a la de la luz, hay que tener en cuenta efectos relativistas y

entonces la frecuencia ωc disminuye si la velocidad aumenta.

Ejemplo 40 (Fuerza eléctrica y magnética). Ahora, suponemos que tenemos una partícula de masa m y carga
q sometida a un campo eléctrico ~E y a un campo magnético ~B. De esta forma, la fuerza que actúa sobre la
partícula es:

m
d~v

dt
= ~F = q ~E + q~v × ~B ⇔ d~v

dt
=

q

m
~E − q

m
~B × ~v

Si, ahora suponemos que ~B = Bk̂ y ~E = Eĵ, tenemos:

− q

m
~B × ~v =

( q
m
vyB,−

q

m
vxB, 0

)
dvx
dt

=
q

m
vyB

dvy
dt

=
q

m
E − q

m
vxB

dvz
dt

= 0

Si, además es E = 0, podemos hallar vy integrando:

dvy
dt

= − q

m
vxB ⇔ vy = − q

m
B

ˆ
vxdt︸ ︷︷ ︸
=x

= − q

m
xB + C

De esta forma, tenemos:

ẍ =
dvx
dt

=
q

m
vyB =

q

m

(
− q

m
xB + C

)
B = −

(
qB

m

)2

x+ C ′
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En consecuencia, hemos llegado a la ecuación diferencial:

d2x

dt2
+
( q
m
B
)2

x = cte

que es justo la ecuación de un oscilador armónico. Así, existen ω, φ ∈ R que permiten expresar vx y vy como:

vx = v0 cos (ωt+ φ)⇒ x =
v0

ω
sen (ωt+ φ) +K1

vy = −v0 sen (ωt+ φ)⇒ y =
v0

ω
cos (ωt+ φ) +K2

donde K1 y K2 son constantes. Como podemos ver, claramente la trayectoria es una circunferencia, como
esperábamos.

Ahora, volvemos al caso E 6= 0, para resolver el sistema de ecuaciones diferenciales ahora, lo que hacemos

es un cambio de variable ~v′ = ~v − ~v1 tal que
{
v1x = E

B
v1y = 0

y así obtenemos las ecuaciones:

vy = v′y + v1y︸︷︷︸
=0

= v′y

vx = v′x + v1x
dv′x
dt

=
q

m
v′yB

dv′y
dt

= − q

m
v′xB

Llegamos a la misma ecuación diferencial que antes pero con variables v′x y v′y. De esta forma, las soluciones
erá de la forma:

v′x = v0 cos (ωt+ φ)

v′y = −v0 sen (ωt+ φ)

Y deshaciendo el cambio de variable:

vx =
E

B
+ v0 cos (ωt+ φ)

vy = −v0 sen (ωt+ φ)

Resolviendo para el caso particular
{

x (0) = 0, y (0) = 0
vx (0) = (0) , vy (0) = 0

, obtenemos:

vy = 0⇔ senφ = 0⇔ φ = 0, π

vx = 0⇔ E

B
+ v0 cosφ⇔ φ = π, v0 =

E

B

Así, aplicando sen (x+ π) = − senx y cos (x+ π) = − cosx, llegamos a:

vx =
E

B
(1− cosωt)⇒ x (t) = A+

ˆ
E

B
(1− cosωt) dt = A+

E

B
t− E

Bω
senωt

vy =
E

B
senωt⇒ C +

ˆ
E

B
senωtdt = C − E

B
cosωt

Como x (0) = 0, debe ser A = 0. Y, como y (0) = 0, necesariamente C =
E

B
. Así:

x (t) =
E

B

(
t− senωt

ω

)
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y (t) =
E

B
(1− cosωt)

Gráficamente, la trayectoria queda:

x

y

5.1.4. Caso general
Teorema 29. Sean S : (O;x, y, z) un sistema de referencia ortonormal y S′ : (O′, x1, x2, x3) otro sistema de
referencia ortonormal. Sean ~R =

−−→
OO′, ~u un vector cualquiera que tiene su origen en O y ~u′ el vector que tiene

su origen en O′ y su extremo en el extremo de ~u. Entonces:

d~u

dt
=
d~R

dt
+ ~̇u′ + ~ω × ~u′

Demostración. Sea S′′ : (O′;λ1, λ2, λ3) un sistema de referencia ortonormal que tiene su origen coincidente con
el origen de S′, pero que está alineado con S, es decir, la base de R3 del sistema de referencia S′′ es la misma
que la de S′. De esta forma, S′′ no es más que S′ trasladado un vector ~R y S′ no es más que una rotación
aplicada a S′′. Por la proposición 42 en la página 259, sabemos que:[

d~u′

dt

]
S′′

= ~̇u′ + ~ω × ~u′

Por otra parte, por la proposición 100 en la página 260, tenemos que:

d~u

dt
=
d~R

dt
+

[
d~u′

dt

]
S′′

=
d~R

dt
+ ~̇u′ + ~ω × ~u′

Q.E.D.

5.1.5. Comparación de velocidades y aceleraciones
Proposición 101. Sean S : (O;x, y, z) un sistema de referencia ortonormal inercial y S′ : (O′, x1, x2, x3) otro
sistema de referencia ortonormal. Sean ~R =

−−→
OO′, ~r el vector que describe la posición de una partícula para el

sistema de referencia S y ~r′ el vector que describe la posición de la misma partícula para el sistema de referencia
S′. Entonces:

d~r

dt
=
d~R

dt
+ ~̇r′ + ~ω × ~r′

d2~r

dt2
=
d2 ~R

dt2
+ ~̈r′ + ~ω × (~ω × ~r′) + 2~ω × ~̇r′ + ~̇ω × ~r′

Licencia: Creative Commons 264

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 5. SISTEMAS DE REFERENCIA NO INERCIALES

5.1. ROTACIÓN DE SISTEMAS DE REFERENCIA

X

Y

Z

î

k̂

ĵ

~R

~r

~r′

X1

X2

X3

ê1

ê2

ê3

Demostración. Por el teorema 29 en la página anterior, tenemos:

d~r

dt
=
d~R

dt
+ ~̇r′ + ~ω × ~r′

Si volvemos a derivar, obtenemos:

d2~r

dt2
=
d2 ~R

dt2
+
d~̇r′

dt
+
d~ω

dt
× ~r′ + ~ω × d~r′

dt

Aplicando la proposición 99 en la página 258, obtenemos:

d2~r

dt2
=
d2 ~R

dt2
+ ~̈r′ + ~ω × ~̇r′ +

(
~̇ω + ~ω × ~ω

)
︸ ︷︷ ︸

= d~ω
dt

×~r′ + ~ω ×
(
~̇r + ~ω × ~r′

)
︸ ︷︷ ︸

= d~r′
dt

Como ~ω × ~ω = ~0, la expresión anterior queda:

d2~r

dt2
=
d2 ~R

dt2
+ ~̈r′ + 2~ω × ~̇r′ + ~̇ω × ~r′ + ~ω × (~ω × ~r′)

Q.E.D.

Definición 99. Consideremos la expresión para las aceleraciones de la proposición 101 en la página anterior:

d2~r

dt2
=
d2 ~R

dt2
+ ~̈r′ + ~ω × (~ω × ~r′) + 2~ω × ~̇r′ + ~̇ω × ~r′
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1.
d2~r

dt2
=: ~a es la aceleración de la partícula medida desde el sistema de referencia S.

2.
d2 ~R

dt2
=: ~A es la aceleración relativa entre los sistemas de referencia S′ y S.

3. ~̈r′ =: ~a′ es la aceleración de la partícula medida desde el sistema de referencia S′.

4. El término ~ω × (~ω × ~r′) recibe el nombre de aceleración centrípeta.

5. El término 2~ω × ~̇r′ recibe el nombre de aceleración de Coriolis.

6. El término ~̇ω × ~r′ recibe el nombre de aceleración azimutal o aceleración de Euler transversal.

Teorema 30 (2ª ley de Newton para sistemas de referencia no inerciales). S′ : (O′, x1, x2, x3) un sistema de
referencia ortonormal no inercial y sea ~r′ la posición de una partícula medida desde S′. Entonces, se cumple:

m~̈r′ = ~F −md2 ~R

dt2
−m~ω × (~ω × ~r′)− 2m

(
~ω × ~̇r′

)
−m~̇ω × ~r′

donde ~F es la suma de fuerzas que actúan sobre el sistema y ~R y ~ω vienen dados respecto a un observador
inercial cualquiera.

Demostración. Sea S un sistema inercial cualquiera con origen en O tal que ~R =
−−→
OO′, entonces, por la propo-

sición 101 en la página 264, se cumple:

d2~r

dt2
=
d2 ~R

dt2
+ ~̈r′ + ~ω × (~ω × ~r′) + 2~ω × ~̇r′ + ~̇ω × ~r′

Como S es un sistema de referencia inercial, para él se cumple la segunda ley de Newton (ver axioma 1 en la
página 8):

~F = m
d2~r

dt2
= m

d2 ~R

dt2
+m~̈r′ +m~ω × (~ω × ~r′) + 2m~ω × ~̇r′ +m~̇ω × ~r′ ⇔

⇔ m~̈r′ = ~F −md2 ~R

dt2
−m~ω × (~ω × ~r′)− 2m

(
~ω × ~̇r′

)
−m~̇ω × ~r′

Q.E.D.

Definición 100. Consideremos la expresión de la segunda ley de Newton para sistemas de referencia no
inerciales (ver teorema 30):

m~̈r′ = ~F −md2 ~R

dt2
−m~ω × (~ω × ~r′)− 2m

(
~ω × ~̇r′

)
−m~̇ω × ~r′

1. ~F es la suma de todas las fuerzas que actúan sobre la partícula.

2. El término −md2 ~R

dt2
= −m~A recibe el nombre de fuerza de arrastre.

3. El término −m~ω × (~ω × ~r′) recibe el nombre de fuerza centrífuga.

4. El término −2m~ω × ~̇r′ recibe el nombre de fuerza de Coriolis.

5. El término −m~̇ω × ~r′ recibe el nombre de fuerza azimutal.

Observación 79. Nótese que hay aceleración centrípeta (hacia dentro), pero fuerza centrífuga (hacia fuera),
con signo negativo. De forma similar la aceleración azimutal y la aceleración de Coriolis tienen signo positivo,
mientras que las fuerzas acimutales y de Coriolis tienen signo negativo.

Observación 80. La fuerza de Coriolis sólo existe en el caso de que el cuerpo lleve velocidad medido desde el
sistema S′ y la fuerza azimutal sólo existe en el caso de la velocidad o dirección de la rotación de S′ en torno a
un sistema de referencia inercial con el mismo origen no sea constante.
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5.1.6. Ejemplos
Ejemplo 41. Tenemos una mosca que se mueve sobre la mesa de un alfarero en línea recta desde el centro del
plato. Nos piden hallar la velocidad de la mosca y su aceleración en función de un sistema inercial.

~ω

x

ê1~r′
O′ θ

Nos dan r′ (t) como dato. Como las aceleraciones son las mismas en cualquier sistema de referencia inercial,
podemos escoger el sistema de referencia inercial que nos simplifique más los cálculos. En concreto con el origen
en el centro del plato y tal que el eje de rotación del plato sea el eje Z. De esta forma, en nuestro caso es:

~ω = θ̇ (t) ê3

~r′ (t) = r′ (t) ê1

~r = ~r′ y ~R = ~0. Aplicando la proposición 101 en la página 264, obtenemos que:

d2~r

dt2
=
d2 ~R

dt2︸︷︷︸
=~0

+~̈r′ + ~ω × (~ω × ~r′) + 2~ω × ~̇r′ + ~̇ω × ~r′ =

= r̈′ê1 + θ̇ê3 ×
(
θ̇ê3 × r′ê1

)
+ 2θ̇ê3 × ṙ′ê1 + θ̈ê3 × r′ê1 =

= r̈′ê1 + θ̇ê3 × θ̇r′ê2 + 2θ̇ṙ′ê2 + θ̈rê2 = r̈′ê1 − θ̇2r′ê1 + 2θ̇ṙ′ê2 + θ̈rê2 =

=
[
r̈′ − θ̇2r′

]
ê1 +

[
θ̈r′ + 2θ̇ṙ′

]
ê2

Esta es una forma de hacerlo. Ahora hagamos el ejercicio suponiendo que no sabemos nada de lo aprendido
en este tema. Para ello, vamos a operar directamente desde el sistema de referencia inercial descrito antes.
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θ
X

Y

e1

e2

Obtenemos las relaciones geométricas:

ê1 = cos θî+ sen θĵ

ê2 = − sen θî+ cos θĵ

~r = r′ (t) cos θî+ r′ (t) sen θĵ

d~r

dt
=
(
ṙ′ cos θ − r′ sen θ θ̇

)
î+
(
ṙ′ sen θ + r cos θ θ̇

)
ĵ

d2~r

dt2
=
(
r̈′ cos θ − 2ṙ′ sen θ θ̇ − r′ cos θ θ̇2 − r′ sen θ θ̈

)
î+
(
r̈′ sen θ + 2ṙ′ cos θ θ̇ − r sen θ θ̇2 + r cos θ θ̈

)
ĵ

Reagrupando términos y volviendo a la base ê1, ê2 obtenemos:

d2~r

dt2
=
[
r̈′ − r′θ̇2

]
ê1 +

[
2ṙ′θ̇ + r′θ̈

]
ê2

Ejemplo 42. Tenemos un vaso de agua sobre un plato que hacemos girar con velocidad angular ω, queremos
obtener la forma que describe la superficie del agua.

~ω
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Sabemos que es ~a′ = ~0 desde el sistema de referencia no inercial S′ que gira con el vaso, porque desde dicho
sistema de referencia nada se mueve. Escogemos nuestro sistema de referencia inercial con origen en el centro
del vaso. Por la segunda ley de Newton para sistemas no inerciales (ver teorema 30 en la página 266) aplicada
a un volumen dV del líquido de densidad ρ, tenemos:

~0 = ρdV ~̈r′ = ~F − ρdV d
2 ~R

dt2︸ ︷︷ ︸
=~0

−ρdV ~ω × (~ω × ~r′)− 2ρdV
(
~ω × ~̇r′

)
︸ ︷︷ ︸

=~0

− ρdV ~̇ω × ~r′︸ ︷︷ ︸
=~0

donde el primer término marcado se anula porque ~R = ~0, el segundo término marcado se anula porque como
según el sistema S′ todo está estático, así que ~̇r′ = ~0 y, por último, el último término se anula porque el disco
gira con velocidad constante y la dirección de giro tampoco cambia, por lo que ~̇ω = ~0. De esta forma, tenemos:

~0 = ~F − ρdV ~ω × (~ω × ~r′)

Sobre el dV de líquido actúa la fuerza gravitatoria y las fuerzas de presión ~FP , de manera que obtenemos:

0 = ~FP + ρdV ~g − ρdV ~ω × (~ω × ~r′)
Despejando, llegamos a:

~FP = −ρdV ~g + ρdV ~ω × (~ω × ~r′)

~ω

~g

−~ω × (~ω × ~r)

~g ∗

La fuerza de presión será perpendicular a la superficie del fluido. Como tenemos simetría de revolución,
podemos suponer, sin pérdida de generalidad, que ~r′ tiene la dirección del eje X. De esta forma, la dirección
perpendicular a la fuerza de presión formará un ángulo α con la horizontal cuya tangente vendrá dada por el
cociente entre las componentes horizontales de ~FP y las componentes verticales de ~FP . Esto último se debe a
que buscamos la dirección perpendicular a FP , de forma que obtenemos:

dz

dr
= tanα =

ρdV ω2r

ρdV g
=
ω2r

g
⇔ dz =

ω2

g
rdr ⇔ z =

ω2

2g
r2 + C

donde C es una constante.
Podemos hacer el mismo problema por energías. Por una parte, vemos claramente:

~Fg = −ρdV gk̂ ⇔ Vg = ρdV gz
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donde hemos tomado como nula la constante aditiva. Por otra parte, tenemos que hallar la energía potencial
asociada a la fuerza centrífuga.

~FC = ρdV ω2rr̂ ⇔ VC = −
ˆ
ρdV ω2rr̂ · d~r = −

ˆ
ρdV ω2rdr = −ρdV ω

2

2
r2

donde también hemos tomado como nula la constante aditiva. Como las fuerzas de presión son perpendiculares
a la superficie del agua, la superficie del agua debe ser una superficie equipotencial. En consecuencia, tenemos
la ecuación:

ρdV gz − ρdV ω2r2

2
= cte⇔ z − ω2r2

2g
= C ⇔ z =

ω2

2g
r2 + C

donde C es una constante.

Ejemplo 43. Tenemos un vaso de agua en un vagón de tren acelerado con aceleración ~A. Queremos ver qué
forma tiene la superficie del líquido.

~A

− ~A

~g
~g∗

Aplicamos el mismo razonamiento que en el ejemplo 42 en la página 268. Tomamos un sistema de referencia
inercial en reposo fuera del tren. Tomamos un dV del líquido de densidad ρ. Aplicamos la segunda ley de Newton
para sistemas de referencia no inerciales (ver teorema 30 en la página 266) al sistema de referencia no inercial
del vaso:

~0 = ρdV ~̈r′ = ~F − ρdV d
2 ~R

dt2
− ρdV ~ω × (~ω × ~r′)︸ ︷︷ ︸

=~0

− 2ρdV
(
~ω × ~̇r′

)
︸ ︷︷ ︸

=~0

− ρdV ~̇ω × ~r′︸ ︷︷ ︸
=~0

donde todos los términos marcados se anulan porque el sistema de referencia no inercial no gira con respecto al
inercial. Así, únicamente tenemos fuerzas de arrastre en nuestro caso. De nuevo, las fuerzas que actúan sobre
nuestro dV de líquido son el peso y las fuerzas de presión:

~0 = ~FP + ρdV ~g − ρdV ~A⇔ ~FP = −ρdV ~g + ρdV ~A

De nuevo, la fuerza de presión será perpendicular a la superficie del fluido. Tomemos el eje X1 del sistema de
referencia no inercial según la dirección de avance del tren. Al igual que antes, la dirección perpendicular a la
fuerza de presión formará un ángulo α con la horizontal cuya tangente vendrá dada por el cociente entre las
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componentes horizontales de ~FP y las componentes verticales de ~FP . Esto último se debe a que buscamos la
dirección perpendicular a FP , de forma que obtenemos:

dz

dx
= tanα =

ρdV A

−ρdV g ⇔
dz

dx
= −A

g
⇔ dz = −A

g
dx⇔ z = −A

g
x+ C

donde C es una constante.

5.2. Movimiento cerca de la superficie de la Tierra o en ella
Notemos que la Tierra rota de oeste a este, por lo que el vector ~ω de un sistema no inercial situado en su

superficie estará dirigido hacia el norte y su módulo será ω =
2π

T donde T es el periodo de la rotación de la
Tierra.

Proposición 102. Desde un sistema de referencia situado en la superficie de la Tierra, para una partícula de
masa m, la segunda ley de Newton para sistemas de referencia no inerciales puede aproximarse como:

m~̈r′ ≈ ~Fng +m~g −m~ω ×
(
~ω × ~R

)
− 2m

(
~ω × ~̇r′

)
donde ~R es el vector que va desde el centro de la Tierra hasta el origen de nuestro sistema de referencia, ~g es
el campo gravitatorio terrestre en su superficie y ~Fng son las fuerzas no gravitatorias que actúan sobre nuestra
partícula.

Demostración. El mayor problema que plantea nuestra situación es encontrar un sistema de referencia inercial
desde el cual operar. Como la Tierra gira alrededor del Sol, la Tierra no es un sistema de referencia inercial.
Asimismo, el Sol tampoco lo es, pues rota entorno al núcleo galáctico. Y así podríamos seguir. Es decir, los
sistemas completamente inerciales no existen en la naturaleza. Para todos nuestros resultados, supondremos que
el centro de la Tierra es un sistema de referencia inercial; es decir, despreciaremos todos los efectos debidos a la
traslación de la Tierra. Esto tiene sentido, pues el periodo de rotación de la Tierra es de 24 horas, mientras que
el de traslación en torno al Sol es de 1 año. Es decir, los efectos debidos a la traslación de la Tierra son mucho
menores en amplitud (en módulo) que los debidos a la rotación de la Tierra. La Tierra gira en torno a un eje
con velocidad constante. Como dicha velocidad es constante (en realidad no es constante, está disminuyendo,
pero esto sólo es apreciable a escalas geológicas), desde el sistema de referencia de la superficie de la Tierra no
aparecerá una fuerza azimutal sobre las partículas; si bien sí aparecerá una fuerza centrífuga y una fuerza de
Coriolis.

Por la segunda ley de Newton para sistemas de referencia no inerciales (ver teorema 30 en la página 266)
debe cumplirse:

m~̈r′ = ~F −md2 ~R

dt2
−m~ω × (~ω × ~r′)− 2m

(
~ω × ~̇r′

)
−m~̇ω × ~r′︸ ︷︷ ︸

=~0

donde ~R es el vector que va desde el centro de la Tierra hasta el origen de nuestro sistema de referencia y el
último término se anula por lo dicho antes. Como ~R es constante para el sistema de referencia de la superficie
de la Tierra, por el corolario 42 en la página 259, tenemos:

~A =
d2 ~R

dt2
=

d

dt

(
d~R

dt

)
=

d

dt

(
~ω × ~R

)
= ~ω ×

(
~ω × ~R

)
En consecuencia, la segunda ley de Newton queda:

m~̈r′ = ~F −m~ω ×
(
~ω ×

(
~R+ ~r′

))
− 2m

(
~ω × ~̇r′

)
Por último, podemos descomponer la ~F que aparecen en la expresión anterior en el peso m~g y otras fuerzas
~Fng. Haciendo eso, llegamos a:

m~̈r′ = ~Fng +m~g −m~ω ×
(
~ω ×

(
~R+ ~r′

))
− 2m

(
~ω × ~̇r′

)
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Como vemos, la fuerza de arrastre actúa en realidad como una fuerza centrífuga extra. En los movimientos en
la superficie de la Tierra, podremos suponer ~R+~r′ ≈ ~R, de forma que podremos considerar la fuerza centrífuga
efectiva constante, con lo que llegamos al enunciado. Q.E.D.

Observación 81. Nótese que en el último paso de la demostración de la proposición 102 en la página anterior
estamos despreciando la fuerza centrífuga real −m~ω × (~ω × ~r′) en favor de un término que aparenta ser una
fuerza centrífuga −m~ω ×

(
~ω × ~R′

)
= −m~A, pero en realidad es una fuerza de arrastre.

5.2.1. Dirección de la fuerza de Coriolis
De la proposición 102 en la página anterior, podemos deducir que la fuerza centrífuga efectiva tiene una

componente radial que disminuye el peso efectivo y también crea una componente tangencial hacia el ecuador
(tanto en el hemisferio norte como en el sur).

~ω

−m~ω × (~ω × ~R)

−m~ω × (~ω × ~R)

λ

λ

O

N

S

También de la proposición 102 en la página anterior, podemos deducir que la fuerza de Coriolis que actúa
sobre partículas que se mueven en la dirección radial de la Tierra se dirige hacia el este tanto en el hemisferio
norte como en el sur.
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~ω

O

N

S

~v′

~v′

Igualmente, la fuerza de Coriolis que actúa sobre partículas que se mueven en la dirección tangencial se
dirige hacia el oeste. Si uno mira en la dirección de la velocidad, en el hemisferio norte, la fuerza de coriolis iría
hacia la derecha mientras que en el hemisferio sur iría hacia la izquierda.
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~ω

O

N

S

~v′

~v′

5.2.2. Gravedad aparente
Definición 101. Llamamos gravedad aparente ~g′ a la expresión:

~g′ = ~g − ~ω ×
(
~ω × ~R

)
donde ~R es el vector que va desde el centro de la Tierra hasta el origen de nuestro sistema de referencia.

Corolario 43. En función de la gravedad aparente ~g′, podemos reescribir la expresión de la proposición 102 en
la página 271 como:

mr̈′ ≈ ~Fng +m~g′ − 2m~ω × ~̇r′

donde ~g es el campo gravitatorio terrestre en su superficie y ~Fng son las fuerzas no gravitatorias que actúan
sobre nuestra partícula.

Demostración. Partimos de la proposición 102 en la página 271:

m~̈r′ ≈ ~Fng +m~g −m~ω ×
(
~ω × ~R

)
︸ ︷︷ ︸

=m~g′

−2m
(
~ω × ~̇r′

)
⇔ mr̈′ ≈ ~Fng +m~g′ − 2m~ω × ~̇r

Q.E.D.

Proposición 103. La gravedad aparente ~g′ se encuentra desviada de la dirección radial en un ángulo α cuya
tangente satisface:

tanα >
ω2R sen 2λ

2g
≤ ω2R

2g

donde λ es la latitud.
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~g′v−m~ω × (~ω × ~R)

~g′

~g′h

~g

α

λ

Demostración. λ es el ángulo que forma el vector ~R con la dirección perpendicular a ~ω. Como es sen
(
x+ π

2

)
=

cosx, obtenemos: ∣∣∣∣∣∣~ω × (~ω × ~R
)∣∣∣∣∣∣ = ||~ω|| ||~ω||

∣∣∣∣∣∣~R∣∣∣∣∣∣ cosλ = ω2R cosλ

Descomponemos la gravedad aparente en una componente tangencial («horizontal») y en una componente radial
(«vertical»).

g′h = ω2R cosλ senλ

g′v = g − ω2R cos2 λ

De esta forma, si llamamos α al ángulo que forma la dirección radial con la gravedad aparente, obtenemos que
su tangente vale:

tanα =
g′h
g′v

Como g � ω2R cos2 λ en la Tierra, podemos aproximar el valor de la tangente anterior por:

tanα >
ω2R cosλ senλ

g
=
ω2R sen 2λ

2g
≤ ω2R

2g

Al hacer esto, obtenemos una cota superior a la desviación de la gravedad aparente con respecto a la dirección
radial. Q.E.D.

Observación 82. Hallemos cual es la cota superior de la desviación de la gravedad apareente mencionada en la
proposición 103 en la página anterior. Sabemos:

ω ≈ 2π

1 día
= 7, 292 · 10−5 s−1

R = 6371 km

De forma que:

ω2R = 34
mm
s2

Operando, obtenemos:

tanα ≤ ω2R

2g
⇔ α < 6′
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Es decir, cada 100 m avanzados en la dirección radial, hay una desviación de 17 cm. Dicho de otra forma, en
los 6371 km del radio de la Tierra, el vector gravedad aparente se desvía 11 km.

Observación 83. Nótese que no hay fuerza centrífuga en el polo pues en este caso ~R y ~ω tienen la misma dirección
y, en consecuencia, su producto vectorial se anula. Sin embargo, en el ecuador sí que hay fuerza centrífuga. Si
medimos experimentalmente el valor de la aceleración de la gravedad en el polo y en el ecuador, obtenemos:

gpolo = 9, 832
m
s2

gecuador = g − ω2R = 9, 7799
m
s2

gpol − gecuador = 52
mm
s2

5.2.3. El efecto de las fuerzas de Coriolis
Lo primero es notar que la fuerza de Coriolis únicamente afecta a los cuerpos en movimiento, pues, en caso

contrario es ~̇r′ = ~0 y el término correspondiente se anula.

5.2.3.1. Caída libre

Proposición 104. Sea un cuerpo de masa m que dejamos caer desde el reposo desde una altura h medida sobre
la superficie de la Tierra. Si suponemos que la gravedad aparente tiene dirección radial, mediante el método de
aproximaciones sucesivas, hasta primer orden, obtenemos que la desviación en la dirección paralela al ecuador
debida a la fuerza de Coriolis puede aproximarse por:

x′ ≈ 1

3
ωg′ cosλ

(
2h

g′

) 3
2

k̂
ĵ

î

λ

~ω

Demostración. Por la segunda ley de Newton para sistemas no inerciales aplicada a la Tierra (ver corolario 43
en la página 274), obtenemos:

mr̈′ ≈ ~Fng +m~g′ − 2m~ω × ~̇r′
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Si estamos en caída libre, no habrá otras fuerzas, de forma que ~Fng = ~0. Dividiendo toda la ecuación por m,
obtenemos:

~̈r′ = ~g′ − 2~ω × ~̇r′

Descomponiendo ~ω en según nuestro sistema de referencia situado sobre la superficie de la Tierra, obtenemos:

~ω = ω cosλĵ + ω senλk̂

donde λ es la latitud. Así:

~ω × ~̇r′ =

∣∣∣∣∣∣
î ĵ k̂
0 ω cosλ ω senλ
ẋ ẏ ż

∣∣∣∣∣∣ = (ω cosλż′ − ω senλẏ′) î+ ω senλẋ′ĵ − ω cosλẋk̂

Como, por hipótesis ~g′ tiene la dirección de k̂, llegamos a las ecuaciones:ẍ
′ = 2ω senλẏ′ − 2ω cosλż′

ÿ′ = −2ωẋ′ senλ
z̈′ = −g′ + 2ω cosλẋ′

(5.2.1)

Como vemos, tenemos un sistema de ecuaciones diferenciales lineales. Para resolverlo, vamos a aplicar el método
de las aproximaciones sucesivas. Primero, supondremos que es ω = 0. De esta forma, llegamos a las ecuaciones: ẍ′ = 0

ÿ′ = 0
z̈′ = −g′

Como la partícula parte del reposo es x′ (0) = 0, y′ (0) = 0, z′ (0) = h, ẋ′ = (0) , ẏ′ = (0) , ż′ = (0), de forma que
llegamos a la conocida solución:

x′ = 0 y′ = 0 z′ = h− 1

2
g′t2

que se enseña en bachillerato.
Muy bien, la clave del método de aproximaciones sucesivas, es la siguiente. Ahora, daremos la solución

hallada a orden 0 en ω como válida y la usaremos para hallar volver a hallar las ecuaciones para ẍ′, ÿ′ y z̈′.
Tenemos:

ẋ′ = 0 ẏ′ = 0 ż′ = −g′t
Sustituyendo estos valores en las ecuaciones 5.2.1, obtenemos:ẍ

′ = −2ω cosλ (−g′t) = 2ω cosλg′t
ÿ′ = 0
z̈′ = −g′

Resolvemos este nuevo sistema. La solución para las componentes y′ y z′ será la misma que antes. No obstante,
la de x′ cambiará:

ẍ′ = 2ω cosλg′t⇔ ẋ′ = A+

ˆ
2ω cosλg′tdt = A+ ωg′ cosλt2

Como debe ser ẋ (0) = 0, obtenemos que A = 0.

ẋ′ = ωg′ cosλt2 ⇔ x′ = B +

ˆ
ωg′ cosλt2dt = B +

ωg′ cosλ

3
t3

Como debe ser x (0) = 0, obtenemos que B = 0. Así, nuestra solución queda:

x′ =
ωg′ cosλ

3
t3 y′ = 0 z′ = h− 1

2g
′t2

Por último, para hallar la distancia que se desvía en función de la altura, despejamos t de la ecuación en z′.
Sabemos que cuando la partícula impacte contra el suelo, será z′ = 0.

z′ = 0⇔ h =
1

2
g′t2 ⇔ t2 =

2h

g′
⇔ t =

√
2h

g′
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Sustituyendo en la expresión para x′, obtenemos:

x′ =
ωg′ cosλ

3

(
2h

g′

) 3
2

Q.E.D.

Estudiemos la expresión dada por la proposición anterior 104 en la página 276 y introduzcamos unos valores
numéricos para ver la magnitud del efecto. Si dejamos caer un objeto en un pozo de 100 m de profundidad de
una mina situada en el ecuador, el objeto se desviaría unos x′ ≈ 2, 2 cm hacia el este.

Observación 84. Nótese que existe una solución exacta para el sistema de ecuaciones 5.2.1 en la página anterior,
ya que es un sistema lineal de primer orden (haciendo un cambio de variable sencillo). Veámoslo:ẍ

′ = 2ω senλẏ′ − 2ω cosλż′

ÿ′ = −2ωẋ′ cosλ
z̈′ = −g′ + 2ω cosλẋ′

Si tomamos x1 = ẋ′, x2 = ẏ′ y x3 = ż′, llegamos al sistema de ecuaciones:ẋ1 = 2ω senλx2 − 2ω cosλx3

ẋ2 = −2ωx1 cosλ
ẋ3 = −g′ + 2ω cosλx1

Obtenemos el sistema matricial:ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸

=Ẋ

=

 0 2ω senλ −2ω cosλ
−2ω senλ 0 0
2ω cosλ 0 0


︸ ︷︷ ︸

=:A

x1

x2

x3


︸ ︷︷ ︸

=X

+

 0
0
−g′


︸ ︷︷ ︸

=B

Cuya solución viene dada por:

X (t) = etAX0 +

ˆ t

0

e(t−τ)AB (τ) dτ

En nuestro caso es X0 = (0). Así que la solución es únicamente la solución particular. Las expresiones matemá-
ticas de la solución salen complicadas. La más sencilla es justo la que queremos calcular.

x′ (t) =
gt cosλ

2ω
− g cosλ sen (2ωt)

4ω2

En la solución exacta es, por supuesto, y′ (t) 6= 0. De hecho, y′ (t) < 0 ∀t > 0; 0 < λ < π
2 . Por tanto, la fuerza de

Coriolis provoca también una desviación hacia el ecuador, aunque esta desviación es mucho menor la existente
en la dirección î.

Observación 85. Si estudiamos el problema desde un sistema de referencia inercial S, como la única fuerza que
actúa es la fuerza gravitatoria, nuestro objeto describirá una cónica. Como lo dejamos caer libremente, la órbita
descrita será una elipse. Veamos que la energía de la órbita asociada sería menor que la de una órbita circular.
En ambos casos, la energía potencial asociada será la misma y únicamente variará la cinética. La velocidad de
la órbita circular es:

vc =

√
GM

R
= 790

m
s

Mientras que la velocidad de nuestra partícula, suponiendo h� R es:

ω (R+ h) ≈ ωR = 464, 5
m
s

En consecuencia, la energía será menor que la de una órbita circular y será a < R+ h.
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5.2.3.2. Movimiento sobre la superficie de la Tierra

Proposición 105. Sea una partícula de masa m que se mueve hacia el ecuador sobre la superficie de la Tierra.
Supongamos que sobre ella no actúan otras fuerzas además de la gravitatoria y la fuerza normal del suelo. Si
la partícula se encuentra en el hemisferio norte, la fuerza de Coriolis la desviará hacia su derecha, mientras
que en el hemisferio sur la desviará hacia su izquierda. En ambos casos, se desviará hacia el oeste. Además, la
aceleración de la partícula viene dada por:

~̈r′ = −2ωṙ′ senλî

donde λ es la latitud.

k̂
ĵ

î

~ω

~v′
λ

λ

Demostración. Por el corolario 43 en la página 274, tenemos:

m~̈r′ ≈ ~Fng +m~g′ − 2m~ω × ~̇r′

Por hipótesis, sobre la partícula no actúan otras partículas más allá de la gravitatoria y de la normal; por ende,
~Fng = ~N . Además, si la partícula se desliza sobre la superficie de la Tierra, la fuerza gravitatoria se compensa
con la normal, de forma que tenemos:

~̈r′ = −2~ω × ~̇r′

De esta forma, si la partícula se encuentra en el hemisferio norte, la fuerza de Coriolis la desviará hacia su
derecha, mientras que en el hemisferio sur la desviará hacia su izquierda. En ambos casos, se desviará hacia
el oeste. Si llamamos λ a la latitud de la partícula, podemos describir la fuerza de Coriolis que actúa sobre la
partícula como sigue:

~̈r′ = −2ωṙ′ senλî

pues el ángulo que forman los vectores ~ω y ~̇r es justo λ o π
2 +λ (dependiendo de si se encuentra en el hemisferio

norte o en el hemisferio sur. No obstante, como se da senλ = sen
(
π
2 + λ

)
, podemos usar la misma expresión

para ambos casos. Q.E.D.

Proposición 106. Sea una partícula de masa m que se mueve libremente sobre la superficie de la Tierra.
Supongamos que sobre ella no actúan otras fuerzas además de la gravitatoria y la fuerza normal del suelo.
Entonces, la fuerza de Coriolis crea un movimiento circular, cuyo sentido de giro (visto desde arriba) será
horario en el hemisferio norte y antihorario en el hemisferio sur. Además, la aceleración de la partícula viene
dada por:

~̈r′ = 2ω cosλẋ′k̂ − 2ω senλ
(
k̂ × ~̇r′

)
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Demostración. Por hipótesis, sobre la partícula no actúan otras partículas más allá de la gravitatoria y de
la normal; por ende, ~Fng = ~N . Además, si la partícula se desliza sobre la superficie de la Tierra, la fuerza
gravitatoria se compensa con la normal, de forma que al aplicar el corolario 43 en la página 274, obtenemos:

~̈r′ = −2~ω × ~̇r′

Por otra parte, descomponemos ~ω en función de los ejes de nuestro sistema de referencia no inercial:

~ω = ω cosλĵ + ω senλk̂

y hacemos lo mismo con la velocidad:
~̇r′ = ẋ′î+ ẏ′ĵ

Así, obtenemos:

~̈r′ = −2
(
ω cosλĵ + ω senλk̂

)
×
(
ẋ′î+ ẏ′ĵ

)
= −2

[
−ẋ′ω cosλk̂ + ω senλk̂ × ~̇r′

]
⇔

⇔ ~̈r′ = 2ω cosλẋ′k̂ − 2ω senλ
(
k̂ × ~̇r′

)
Como vemos el segundo término se corresponde con una aceleración que es siempre perpendicular a la dirección
de la trayectoria. Es decir, la fuerza de Coriolis crea un movimiento circular. Al hacer el producto vectorial,
obtenemos que dicho movimiento circular produce una rotación en sentido horario en el hemisferio norte y en
sentido antihorario en el hemisferio sur (visto desde arriba). Q.E.D.

Observación 86. Según la proposición 106 en la página anterior, sobre una partícula de masas m que se mueva
sobre la superficie de la Tierra aparecerá una fuerza hacia arriba si ésta se desplaza hacia el este o hacia el oeste.
Este término es, por supuesto, muy pequeño en comparación con la gravedad aparente ~g′.

5.2.3.3. Consecuencias meteorológicas

Es por el resultado de la proposición 106 en la página anterior que las borrascas giran en sentido antihorario
en el hemisferio norte y horario en el hemisferio sur. Con los anticiclones ocurre justo lo contrario. En el
hemisferio norte tenemos:

B A

Otro fenómeno meteorológico debido a la fuerza de Coriolis es la desviación de los vientos alisios, que vienen
del noreste y se desvían hacia el oeste por la fuerza de Coriolis.
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Ecuador

N

S
Vientos alisios

5.3. El péndulo de Foucault
Definición 102. Se llama péndulo de Foucault a un péndulo muy largo con un periodo de oscilación mucho
menor que el periodo de rotación de la Tierra.

Proposición 107. Para un observador situado en la superficie de la Tierra en el hemisferio norte, la trayectoria
de un péndulo de Foucault de periodo T0 con oscilaciones pequeñas viene dada por las ecuaciones paramétricas:

x′ (t) = A′ cos (ω1t+ ϕ) cos

(
2π

T t senλ

)
+B′ cos (ω1t+ φ) sen

(
2π

T t senλ

)

y′ (t) = −A′ cos (ω1t+ ϕ) sen

(
2π

T t senλ

)
+B′ cos (ω1t+ φ) cos

(
2π

T t senλ

)

donde ω1 = 2π

√
sen2 λ

T 2
+

1

T 2
0

≈ 2π

T0
y T es el periodo de la rotación de la Tierra, A′, B′, ϕ, φ ∈ R son parámetros

que dependen de las condiciones iniciales y λ es la latitud.

FT

mg

L

M

k̂
ĵ

î

~ω

λ

λ

λ
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x

y

Puede verse una animación aquí1.

Demostración. Podemos suponer, sin pérdida de generalidad que tenemos atada una partícula de masa m en
el extremo del péndulo. Como las oscilaciones son pequeñas por hipótesis, el movimiento se restringe al plano
horizontal, por tanto, ż′ = 0. Así, la velocidad de la partícula de masa m queda:

~̇r′ = ẋ′î+ ẏ′ĵ

Por la segunda ley de Newton para sistemas no inerciales aplicada a la superficie de la Tierra (ver corolario 43
en la página 274), tenemos:

m~̈r′ = ~FT +m~g′ − 2m~ω × ~̇r′

donde ~FT es la tensión ejercida por la cuerda. Calculemos el término de la fuerza de Coriolis. Para ello, des-
componemos ~ω según el sistema de referencia no inercial en función de la latitud λ:

~ω = ω cosλĵ + ω senλk̂

De esta forma, obtenemos:

−2m
(
ω cosλĵ + ω senλk̂

)
× ~̇r′ = −2mω cosλĵ ×

(
ẋ′î+ ẏ′ĵ

)
− 2mω senλk̂ × ~̇r′ =

= −2mωẋ cosλk̂ − 2mω senλk̂ × ~̇r′
1https://drive.google.com/file/d/1S7gKbOgTuW0TOF6L2mf01XvoPfqYyNyU/view
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En el producto vectorial anterior, el primer término tiene dirección vertical, mientras que la dirección del segundo
término está contenida en el plano tangente a la superficie de la Tierra. Para ver que el término en la dirección
k̂ es despreciable, hagamos unas cuentas rápidas. Si suponemos, λ = π

2 y ẋ′ = 10 m
s , entonces obtenemos que el

módulo de dicho término es 1, 5 mm
s2 . Luego, evidentemente es despreciable frente a ~g′.

Como las oscilaciones son pequeñas por hipótesis, podemos aproximar la oscilación del péndulo por un
movimiento armónico con ω2

0 =
g

L
. De esta manera, despreciando el término en k̂, la segunda ley de Newton

queda:

~̈r′ =
~FT +m~g′

m
− 2ω senλk̂ × ~̇r′ + 2ω cosλẋ′k̂ ≈ −~g

′

L
~r′ − 2ω senλk̂ × ~̇r′

Al expresar la velocidad en sus componentes, llegamos a:

~̈r′ = −g
′

L
~r′ − 2ω senλ

(
ẋ′ĵ − ẏ′î

)
⇔


ẍ′ = −g

′

L
x′ + 2ω senλẏ′

ÿ′ = −g
′

L
y′ − 2ω senλẋ′

¿Cómo resolvemos este sistema de forma sencilla? Pues, en este caso, interesa tomar el cambio de variable
z := x′ + iy′ y hacer cuentas con las ecuaciones que tenemos para obtener una ecuación para z. Para ello,
sumamos ambas ecuaciones multiplicando la segunda por i. De esta forma, obtenemos:

ẍ′ + iÿ′︸ ︷︷ ︸
=z̈

= −g
′

L
(x′ + iy′)︸ ︷︷ ︸

=z

+2ω senλ (ẏ′ − iẋ′)⇔

⇔ z̈ = −g
′

L
z + 2iω senλ (iẏ′ + ẋ′)︸ ︷︷ ︸

=ż

⇔

⇔ z̈ = −g
′

L
z − 2iω senλż ⇔ z̈ + 2iω senλż +

g′

L
z = 0

Como
g′

L
= ω2

0 =
4π2

T 2
0

y es ω =
2π

T , obtenemos:

z̈ +
4π

T i senλż +
4π2

T 2
0

= 0

que justo tiene la forma de un oscilador lineal amortiguado débil, pues:

T > T0 ⇔
1

T <
1

T0
⇔ 1

T 2
<

1

T 2
0

4π2>0⇐==⇒ 4π2

T 2
<

4π2

T 2
0

⇔ ω < ω0

De esta forma, por la proposición 38 en la página 98, obtenemos que la solución de nuestro sistema es:

z = e−
2π
T it senλ (A cosω1t+B senω1t)

donde A,B ∈ C y ω1 = 2π

√
sen2 λ

T 2
+

1

T 2
0

≈ 2π

T0
. En consecuencia, obtenemos las soluciones de nuestra ecuación

al hallar la parte real y la parte imaginaria de z. Aplicando la fórmula de Euler (ver proposición 23 en la
página 74) y llamando A := a+ bi y B := c+ di, obtenemos:

z =

[
cos

(
−2π

T t senλ

)
+ i sen

(
−2π

T t senλ

)]
[(a+ bi) cosω1t+ (c+ di) senω1t] =

= [(a+ bi) cosω1t+ (c+ di) senω1t]

[
cos

(
−2π

T t senλ

)
+ i sen

(
−2π

T t senλ

)]
=

= (a cosω1t+ c senω1t) cos

(
2π

T t senλ

)
+ (b cosω1t+ d senω1t) sen

(
2π

T t senλ

)
︸ ︷︷ ︸

=x′

+
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i

[
− (a cosω1t+ c senω1t) sen

(
2π

T t senλ

)
+ (b cosω1t+ d senω1t) cos

(
2π

T t senλ

)]
︸ ︷︷ ︸

=y′

Los términos marcados entre paréntesis son soluciones de un oscilador armónico. De manera que, por la propo-
sición 36 en la página 89 sabemos que existen A′, B′, ϕ, φ ∈ R tales que podemos expresar la solución anterior
como sigue:

x′ (t) = A′ cos (ω1t+ ϕ) cos

(
2π

T t senλ

)
+B′ cos (ω1t+ φ) sen

(
2π

T t senλ

)
y′ (t) = −A′ cos (ω1t+ ϕ) sen

(
2π

T t senλ

)
+B′ cos (ω1t+ φ) cos

(
2π

T t senλ

)
Q.E.D.

Observación 87. En el polo norte, un observador inercial no vería el péndulo de Foucault girar. Sin embargo,
un observador no inercial sí que lo vería girar. Lo primer se debe a que para el observador inercial las únicas
fuerzas que actúan son la tensión y la gravedad terrestre. Por tanto, para el observador inercial, el sistema
sería el péndulo de toda la vida. Sin embargo, para el observador no inercial, tendríamos las ecuaciones de la
proposición 107 en la página 281 con λ = π

2 , con lo que el observador no inercial sí que vería un giro.

En 1851, Foucault en el Panteón de París con datos m = 28 kg, L = 67 m y λ = 48o50′, se obtuvo T = 32 h
y T0 = 16 s.

5.4. Efecto Larmor
Proposición 108. Sea una partícula de masa m y carga q sometida a una fuerza eléctrica generada por una

carga inmóvil q′ y un campo magnético constante en el tiempo ~B tal que B � 2
√

2mπ

qT donde T es el periodo

de la órbita elíptica que describiría q en torno al centro de fuerzas si fuese ~B = ~0. Si, además, las cargas q y q′
son de distinto signo; entonces, para un observador inercial, la posición de la partícula viene descrita por:

r (t) =
l

e cos
(
θ (t) + qB

2m t− φ
)

+ 1

x

ysistema de referencia no inercial

x

ysistema de referencia inercial

Puede verse una animación aquí2.
2https://drive.google.com/open?id=1yHLh9IteUknfzD0JLaDqCUHduNi7Q15i
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Demostración. En esta demostración vamos a usar la similitud existente entre la fuerza de Coriolis y la fuerza
magnética, en el sentido de que ambas son perpendiculares a la trayectoria. Para un observador inercial, la
segunda ley de Newton aplicada a la partícula de carga q queda:

m
d2~r

dt2
= −Kq

′q
r2

r̂ + q
d~r

dt
× ~B ⇔ d2~r

dt2
= − k

mr2
r̂ +

q

m

d~r

dt
× ~B

donde aparecen los términos correspondientes a la fuerza electrostática y a la fuerza de Lorentz y es k = Kq′q.
Bien, ahora nos hacemos la siguiente pregunta: ¿existe un sistema de referencia no inercial con origen en el
centro de fuerzas de la fuerza de Coulomb tal que desde él en la segunda ley de Newton no aparecen términos
dependientes de la velocidad? Para un sistema de referencia no inercial que gira con velocidad constante ω
respecto al centro de fuerzas del campo eléctrico, por la segunda ley de Newton para sistemas de referencia no
inerciales (ver teorema 30 en la página 266), tenemos:

m~̈r′ = − k

r′ 2
r̂′ + q~̇r′ × ~B −md2 ~R

dt2︸ ︷︷ ︸
=~0

−m~ω × (~ω × ~r′)− 2m
(
~ω × ~̇r′

)
−m~̇ω × ~r′︸ ︷︷ ︸

=~0

donde el primer término marcado se anula porque es ~R = ~0 y el último término se anula porque es ω = cte.
Dividiendo por la masa a ambos lados y reordenando términos, obtenemos:

~̈r′ = − k

mr′ 2
r̂′ − ~ω × (~ω × ~r′)− 2

(
~ω × ~̇r′

)
− q

m
~B × ~̇r′ =

= − k

mr′ 2
r̂′ − ~ω × (~ω × ~r′)− 2

[(
~ω +

q

2m
~B
)
× ~̇r′

]
De esta forma, vemos que, efectivamente si:

~ω = − q

2m
~B

entonces el término dependiente de la velocidad (el término en ~̇r) se anula. Bien, si nos quedamos con este
sistema de referencia inercial, al sustituir ~ω, la segunda ley de Newton nos queda:

~̈r′ = − k

mr′ 2
r̂′ − 2

(
− q

2m
~B
)
×
[(
− q

2m
~B
)
× ~r′

]
= − k

r′ 2
r̂′ − 2

q2

4m2
~B ×

(
~B × ~r′

)
=

= − k

mr′ 2
r̂′ − q2

2m2
~B ×

(
~B × ~r′

)
Nótese que este segundo término siempre tiene dirección radial (r̂′), ya sea hacia dentro o hacia fuera.

Estudiemos el módulo del primer término: ∣∣∣∣∣∣∣∣− k

mr′ 2
r̂′
∣∣∣∣∣∣∣∣ =

∣∣∣∣ k

mr′ 2

∣∣∣∣
Como la longitud del eje mayor 2a de una elipse es siempre mayor que la distancia de cualquier punto de la
elipse al foco se da siempre 2a > r′, tenemos:∣∣∣∣∣∣∣∣− k

mr′ 2
r̂′
∣∣∣∣∣∣∣∣ > 2

∣∣∣∣ k

ma2

∣∣∣∣ = 2a
|k|
a3

> r′
|k|
a3

Y, por la tercera ley de Kepler (ver teorema 20 en la página 187), tenemos:∣∣∣∣∣∣∣∣− k

mr′ 2
r̂′
∣∣∣∣∣∣∣∣ > r′

4π2

T 2

Como por hipótesis es:

B � 2
√

2mπ

qT ⇔ q√
2m

B � 2π

T ⇔
q2

2m2
B2 � 4π2

T 2
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tenemos: ∣∣∣∣∣∣∣∣− k

mr′ 2
r̂′
∣∣∣∣∣∣∣∣� q2

2m2
B2r′ ≥

∣∣∣∣∣∣∣∣− q2

2m2
~B ×

(
~B × ~r′

)∣∣∣∣∣∣∣∣
De esta forma, podemos despreciar el término que contiene al campo magnético en comparación con el

originado por la fuerza de Coulomb. Insistimos en que esto sólo es válido porque la fuerza centrífuga obtenida
(el término en ~B) tiene dirección radial.

Por consiguiente, la segunda ley de Newton en el sistema de referencia no inercial queda:

~̈r′ ≈ − k

mr′ 2
r̂′

de manera que para el sistema no inercial la partícula describe la misma elipse que describiría para un sistema
inercial si fuese ~B = ~0. De esta forma, por la proposición 71 en la página 166, tenemos que la trayectoria desde
el punto de vista del sistema no inercial en polares queda:

r′ [e cos (θ′ − θ′0) + 1] = l⇔ r′ (θ′) =
l

e cos (θ′ − θ′0) + 1

donde l =
L2

m |k| . Como es ~r′ = ~r, al tener ambos sistemas de referencia el mismo origen, es r = r′ y, así, en

coordenadas polares en ambos sistemas de referencia, la componente radial será la misma. Lo que variará será
el ángulo θ que tendrá un desfase que dependerá de ω y del tiempo y, por tanto, de B. No es difícil ver que la
relación entre θ y θ′ será:

θ = θ′ + ωt+ ϕ

donde ϕ es un desfase inicial entre el sistema de referencia inercial y no inercial. Hemos hallado antes que es:

~ω = − q

2m
~B

de forma que:

θ (t) = θ′ (t)− qB

2m
t+ ϕ⇔ θ′ (t) = θ (t) +

qB

2m
t− ϕ

donde el signo menos se debe a que ~ω tiene dirección opuesta a ~B. Así, la trayectoria vista desde un sistema de
referencia inercial vendrá dada por:

r (t) =
l

e cos
(
θ (t) + qB

2m t− θ′0 − ϕ
)

+ 1

Si llamamos φ := θ′0 + ϕ, llegamos al enunciado. Q.E.D.

Definición 103. Llamamos frecuencia Larmor a:

ω =
q

2m

que es la mitad de la frecuencia del ciclotrón (ver ejemplo ).

Observación 88. En electromagnetismo, el efecto Larmor se conoce como efecto Zeeman y se usa en espectros-
copia.

5.5. Las mareas
Definición 104. Llamamos fuerzas de marea que ejerce un cuerpo de masa m2 sobre una partícula de masa
m situada sobre la superficie de otro cuerpo de masa m1 al conjunto de las fuerzas gravitatorias generadas por
la masa m2 que actúan sobre la masa m vistas desde un sistema de referencia no inercial con ~ω = ~0 situado en
el centro del cuerpo de masa m1.
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5.5.1. Obtención de las fuerzas de marea
Proposición 109. Las fuerzas de marea que ejerce un cuerpo de masa m2 sobre una partícula móvil de masa
m que se encuentra en la superficie de otro cuerpo de masa m1 vienen dadas por las expresión:

~Fmarea = −Gm2m

(
R̂

R2
− r̂

r2

)

donde G es la constante de gravitación universal, ~R es el vector que va desde el centro del cuerpo de masa m2

al centro del cuerpo de masa m1 y ~r es el vector posición de la partícula de masa m con respecto al centro del
cuerpo de masa m2.

m2
~r

CM

m

~R
m1

Demostración. Estamos ante el problema de dos cuerpos. Por la proposición 85 en la página 224, sabemos que
ambos cuerpos orbitarán en torno al centro de masas. Escogemos un sistema de referencia no inercial con origen
en el centro del cuerpo de masa m1. Aunque el cuerpo de masa m1 rote sobre sí mismo, escogemos el sistema
de referencia de tal forma que el sistema de referencia no rote; es decir, tal que ~ω = ~0. Por la segunda ley de
Newton para un sistema de referencia no inercial (ver teorema 30 en la página 266) aplicada a la partícula de
masa m situada sobre la superficie del cuerpo de masa m1, tenemos:

m~̈r′ = ~F −md2 ~D

dt2
−m~ω × (~ω × ~r′)− 2m

(
~ω × ~̇r′

)
−m~̇ω × ~r′

donde ~D es el vector que parte del centro de masas del sistema y termina en el centro de la masa m1. En nuestro
caso, como es ~ω = ~0, todos los términos excepto los dos primeros se hacen cero:

m~̈r′ = ~F −md2 ~D

dt2
(5.5.1)

La ~F que aparece en el término anterior puede descomponerse de la siguiente forma:

~F = ~Fng −
Gm1m

r′ 2
r̂′ − Gm2m

r2
r̂

pues las fuerzas que actúan sobre la partícula de masa m son las fuerzas gravitatorias que las masas m1 y m2

ejercen sobre la masa m y el resto de fuerzas (no gravitatorias) que actúan sobre m.
Por otra parte, tenemos por la proposición 84 en la página 216:

~D = ~R ∗1 =
m2

M
~R

donde M = m1 + m2. Como el sistema de referencia no inercial únicamente se encuentra trasladado respecto
de uno inercial situado en el centro de masas, por la proposición 100 en la página 260, tenemos:

d2 ~D

dt2
= ~̈D = ~̈R ∗1 =

m2

M
~̈R

Ahora, por el teorema 22 en la página 215, tenemos que:

µ ~̈R = −Gm1m2

R2
R̂⇔ ~̈R = −Gm1m2

µR2
R̂
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Sustituyendo, obtenemos:

d2 ~D

dt2
=
m2

M

− M

m1m2︸ ︷︷ ︸
= 1
µ

Gm1m2

R2
R̂

 = −Gm2

R2
R̂

Sustituyendo todo la hallado hasta la fecha en la ecuación 5.5.1 en la página anterior, obtenemos:

m~̈r′ = ~Fng −
Gm1m

r′ 2
r̂′ − Gm2m

r2
r̂ −m

(
−Gm2

R2
R̂

)
=

= ~Fng −
Gm1m

r′ 2
r̂′−Gm2m

r2
r̂ +

Gm2m

R2
R̂︸ ︷︷ ︸

fuerzas de marea

Las fuerzas de marea son justo los términos que son debidos a la masa m2 por la definición 104 en la página 286.
De esta forma tenemos:

~Fmarea = −Gm2m

(
r̂

r2
− R̂

R2

)
como queríamos demostrar. Q.E.D.

Lema 12. El teorema de Taylor-Young aplicado a la función:

f (x) =
1

(1 + x)
2

nos dice que cuando x→ 0, f (x) puede escribirse como:

f (x) = 1− 2x+ o (|x|)

Lema 13. El teorema de Taylor-Young aplicado a la función:

f (x) = 1 + x2

nos dice que cuando x→ 0, f (x) puede escribirse como:

f (x) = 1 + o (|x|)

Corolario 44. Supongamos que la Tierra está recubierta de océanos en su totalidad. Las fuerzas de marea que
ejerce la Luna sobre un dV de líquido de densidad ρ situado en la superficie de la Tierra vienen dadas por la
expresión:

~Fmarea = −GMLρdV

(
r̂

r2
− R̂

R2

)
donde ML es la masa de la Luna, ~R es el vector que va desde el centro de la Luna hasta el centro de la Tierra y
~r es el vector que va desde el centro de la Luna hasta la partícula de masa m. Además, a lo largo de la dirección
de R̂ =: î, las fuerzas de marea permiten la siguiente aproximación a primer orden:

~Fmarea,x ≈
2GMLρdV x

R3
î

donde x es la distancia a lo largo de la dirección de î al centro de la Tierra. Análogamente, a lo largo del eje
perpendicular a la dirección R̂ (llamaremos al vector unitario de dicha dirección ĵ), las fuerzas de marea pueden
ser aproximadas a primer orden de la siguiente manera:

~Fmarea,y ≈ −
GMLρdV y

R3
ĵ

donde y es la distancia a lo largo de la dirección de ĵ al centro de la Tierra.
Este resultado no sólo es válido para estudiar las fuerzas de marea ejercidas por la Luna sobre la Tierra,

sino también para estudiar los efectos de las fuerzas de marea ejercidas por el Sol, cambiando la masa de la
Luna por la masa del Sol en las ecuaciones.
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TL

~r

CM

ρdV

~R

Tα

α

î

ĵ

Demostración. Partiendo de la proposición 104 en la página 286, obtenemos al sustituir m2 = ML y m = ρdV :

~Fmarea = −GMLρdV

(
r̂

r2
− R̂

R2

)
(5.5.2)

A lo largo de la dirección de î = R̂, podemos descomponer la expresión anterior anterior como:

~Fmarea,x = −GMLρdV

(
1

r2
− 1

R2

)
î

Como, en este caso, es r = R+ x, tenemos:

~Fmarea,x = −GMLρdV

(
1

(R+ x)
2 −

1

R2

)
î = −GMLρdV

R2

(
1

(R+x)2

R2

− 1

)
î =

= −GMLρdV

R2

(
1(

R+x
R

)2 − 1

)
î = −GMLρdV

R2

(
1(

1 + x
R

)2 − 1

)
î

Como es x� R, podemos usar el lema 12 en la página anterior para obtener una aproximación a primer orden
de la expresión anterior:

~Fmarea,x ≈ −
GMLρdV

R2

(
1− 2

x

R
− 1
)
î =

2GMLρdV x

R3
î

Análogamente, a lo largo de la dirección de ĵ, podemos descomponer la expresión dada en la ecuación 5.5.2. Si
llamamos α al ángulo que forman los vectores ~r y ~R, podemos descomponer la expresión anterior como:

~Fmarea,y = −GMLρdV

(
1

r2

[
cosαî+ senαĵ

]
− î

R2

)
Viendo el dibujo de debajo de la proposición deducimos:

cosα =
R

r
senα =

y

r

Sustituyendo, obtenemos:

~Fmarea,y = −GMLρdV

(
1

r2

[
R

r
î+

y

r
ĵ

]
− î

R2

)
= −GMLρdV

[(
R

r3
− 1

R2

)
î+

y

r3
ĵ

]
Ya que, en este caso, es r2 = R2 + y2, sustituyendo, obtenemos:

~Fmarea,y = −GMLρdV

[(
R

(R2 + y2)
3
2

− 1

R2

)
î+

y

R3
ĵ

]
=
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= −GMLρdV


 R(

R2
(

1 + y2

R2

)) 3
2

− 1

R2

 î+
y

R3
ĵ

 =

= −GMLρdV


 R

R3
(

1 + y2

R2

) 3
2

− 1

R2

 î+
y

R3
ĵ

 =

= −GMLρdV


 1

R2
(

1 + y2

R2

) 3
2

− 1

R2

 î+
y

R3
ĵ


Usando el lema 13 en la página 288, obtenemos una aproximación a primer orden de:

1 +
y2

R2
≈ 1

Sustituyendo en la expresión anterior, tenemos:

~Fmarea,y = −GMLρdV

[(
1

R21
3
2

− 1

R2

)
î+

y

R3
ĵ

]
= −GMLρdV y

R3
ĵ

Q.E.D.

5.5.2. Magnitud de las mareas
Proposición 110. Supongamos que la Tierra está recubierta de océanos en su totalidad. Las fuerzas de marea
que ejerce la Luna sobre la Tierra causan una diferencia de altura entre el punto más bajo y el punto más alto
del líquido que se puede aproximar por la expresión:

h ≈ 3MLR
4
T

2MTR3

donde ML es la masa de la Luna, RT es el radio de la Tierra, MT es la masa de la Tierra y R es la distancia
que separa la Tierra de la Luna. La expresión anterior es válida para las fuerzas de marea ejercidas por el Sol
sustituyendo la masa de la Luna por la masa del Sol.

L T
P

S

R

Q

X

h

Y

Fx
Fy

Fy

Fx

Demostración. Probemos, primero, que las fuerzas de marea dadas en la proposición 109 en la página 287 son
conservativas:

~Fmarea = −Gm2m

(
R̂

R2
− r̂

r2

)

Licencia: Creative Commons 290

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo
CAPÍTULO 5. SISTEMAS DE REFERENCIA NO INERCIALES

5.5. LAS MAREAS

Claramente, el término anterior únicamente depende de posiciones, luego sólo tenemos que determinar que el
rotacional de la expresión es cero para ver que la fuerza es conservativa:

~∇× ~Fmarea = ~∇×
[
−Gm2m

(
R̂

R2
− r̂

r2

)]
Como el rotacional es un operador lineal, obtenemos:

~∇× ~Fmarea = −Gm2m

~∇× R̂

R2︸ ︷︷ ︸
=0

−~∇× r̂

r2


donde el primer término se anula porque

R̂

R2
=
−→cte. De esta forma, obtenemos:

~∇× ~Fmarea = Gm2m~∇×
r̂

r2

y este término se anula porque
r̂

r2
se corresponde con una fuerza descrita por la ley cuadrática inversa. Y por

nuestros conocimientos del tema 3, sabemos que una fuerza así es conservativa, por lo que su rotacional será
nulo. Así ~∇× ~Fmarea = ~0 y las fuerzas de marea son conservativas.

Sabemos que la superficie del agua es una superficie equipotencial. Por tanto, para un dV de líquido de
densidad ρ será:

V (P ) = V (Q)⇔ Vmarea (P ) + ρdV gh1 = Vmarea (Q) + ρdV gh2

pues las únicas fuerzas que actúan sobre un dV de líquido son las fuerzas de marea y las fuerzas gravitatorias.
Llamando: h := h1 − h2 (que es justo la diferencia de alturas, lo que queremos obtener), llegamos a:

Vmarea (P ) + ρdV gh = Vmarea (Q)⇔ ρdV gh = Vmarea (Q)− Vmarea (P ) (5.5.3)

Y, por el corolario 3 en la página 24, tenemos:

Vmarea (Q)− Vmarea (P ) = − [WP→Q]marea = −
ˆ Q

P

~Fmarea · d~r =

ˆ P

Q

~Fmarea · d~r

Como la fuerza de las mareas es conservativa, podemos realizar la integral anterior por aquel camino que nos sea
más fácil. De esta forma, haremos la integral a lo largo del eje Y hasta el centro de la Tierra y luego a lo largo
del eje X hasta el punto P . Para ello, usaremos las expresiones halladas en el corolario 44 en la página 288.
Supondremos que la distancia de los puntos P y Q al centro de la Tierra es justo el radio de la Tierra. En
consecuencia: ˆ P

Q

~Fmarea · d~r =

ˆ 0

y=RT

~Fmarea,ydy +

ˆ −RT
x=0

~Fmarea,xdx ≈

≈ −
ˆ 0

y=RT

GMLρdV y

R3
dy +

ˆ −RT
x=0

2GMLρdV x

R3
dx =

ˆ RT

y=0

GMLρdV y

R3
dy +

2GMLρdV

R3

[
x2

2

]−RT
0

=

=
GMLρdV

R3

[
y2

2

]RT
0

+
GMLρdV

R3
R2
T =

GMLρdV

2R3
R2
T +

GMLρdV

R3
R2
T =

=
GMLρdV R

2
T

R3

(
1

2
+ 1

)
=

3

2

GMLρdV R
2
T

R3

Sustituyendo en la ecuación 5.5.3, obtenemos:

ρdV gh ≈ 3

2

GMLρdV R
2
T

R3
⇔ gh ≈ 3

2

GMLR
2
T

R3

Ahora, podemos escribir g como sigue:

g =
GMT

R2
T
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Sustituyendo en la ecuación anterior, llegamos a:

GMT

R2
T

h ≈ 3

2

GMLR
2
T

R3
⇔ h ≈ 3

2

MLR
4
T

MTR3

Q.E.D.

Utilizando la proposición 110 en la página 290, al introducir los datos numéricos ML = 7, 35 · 1022 kg,
MT = 5, 98 · 1024 kg, , RT = 6, 37 · 106 m y R = 3, 84 · 108 m, llegamos a:

hL ≈ 54 cm

Haciendo lo mismo para los datos del sistema Tierra-Sol: MS = 1, 99 · 1030 kg, MT = 5, 98 · 1024 kg,
, RT = 6, 37 · 106 m y R = 1, 495 · 1011 m, obtenemos:

hS ≈ 25 cm

De esta forma, vemos que aunque la diferencia de alturas debida al Sol es menor que la debida a Luna, la
diferencia de alturas debido al Sol no es despreciable frente a la de la Luna. Esto hace que si es Sol y la Luna
está alineados, entonces sus efectos se suman y causan una diferencia de alturas de hT = hL + hS ≈ 79 cm;
este efecto se conoce con el nombre de mareas vivas. Igualmente si el Sol y la Luna están justo en direcciones
perpendiculares, entonces su efecto se resta obtendríamos una diferencia de altura hT = hL − hS ≈ 29 cm; este
fenómeno se conoce con el nombre de mareas muertas.

Si bien es cierto que la aproximación que hemos introducida es correcta, especialmente en el centro de
los océanos más grandes, la situación real incluye muchas complicaciones; ante todo, la existencia de masas
continentales. Esto puede contribuir tanto a crear mares más grandes o más pequeñas que las calculadas. Por
ejemplo, un mar pequeño, como el Mediterráneo o el Mar Negro tendrá mareas más pequeñas que las predichas
por nuestro modelo porque las masas continentales aíslan dichos mares de los océanos más grandes. De forma
similar, las masas continentales pueden bloquear las mareas de un gran océano, confinándolas y creando, de
esta forma, mareas de mayor amplitud.

El único aspecto del que no hemos hablado todavía es por qué las mareas son diferentes cada día. Esto se
debe a que la posición de la Luna en el cielo es diferente cada día. Esto, a su vez, a que el periodo de rotación
de la Luna en torno a la Tierra es mayor que el periodo de rotación de la Tierra.

Licencia: Creative Commons 292

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo

Apéndice A

Registro de cambios

A.1. Versión 1.0.0
Primera versión de los apuntes.

A.1.1. Versión 1.0.1
Corregido el hecho de que hasta el capítulo tercero no aparece la sección en el encabezado.

En la proposición 68, en la página 161, se ha cambiado «y la velocidad el momento circular viene dada
por la expresión:» por «y la velocidad del momento circular viene dada por la expresión:».

En la solución del ejercicio 10 en la página 164, se ha añadido un espacio entre «por la proposición 68 en
la página 160» y «tenemos».

Se ha cambiado el nombre de la sección 3.4.2 de «Órbitas para la ley cuadrática inversa» a «Órbitas y
trayectorias para la ley cuadrática inversa».

En el ejemplo 8 en la página 31 se ha cambiado «otra bola que impacta con la varilla» por «otra bola que
impacta contra la varilla».

En todos los dibujos de la sección 1.7.1 «Expresión de la posición, la velocidad y la aceleración en coor-
denadas cilíndricas y esféricas (ejercicio para casa)», se ha cambiado φ por ϕ para que cuadre con el
texto.

En la demostración del lema 3 en la página 60, hemos cambiado el párrafo:

Asombrosamente, se cumple:

∂~ri
∂qj

=
∂~ri
dt

dt

∂qj
=

∂~ri
dt
∂qj
dt

=
∂~̇ri
∂q̇j
∀i = 1, . . . , N ; j = 1, . . . , n

por:
Asombrosamente, por el teorema de la función inversa, se cumple:

∂~ri
∂qj

=
∂~ri
∂qj

dt

dt
=
∂~ri
dt

dt

∂qj
=

∂~ri
dt
∂qj
dt

=
∂~̇ri
∂q̇j
∀i = 1, . . . , N ; j = 1, . . . , n
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A.1.2. Versión 1.0.2
Al comienzo de la demostración de la proposición 105, en la página 276, se ha cambiado:

mr̈′ ≈ ~Fng +m~g′ − 2m~ω × ~̇r′

por:
m~̈r′ ≈ ~Fng +m~g′ − 2m~ω × ~̇r′

En la demostración de la proposición 106, en la página 277, en la expresión matemática que viene a
continuación de «Así, obtenemos:», se ha llevado a cabo el siguiente cambio:

~̈r′ = −2m
(
ω cosλĵ + ω senλk̂

)
×
(
ẋ′î+ ẏ′ĵ

)
= −2

[
−ẋ′ω cosλk̂ + ω senλk̂ × ~̇r′

]
⇔

por:
~̈r′ = −2

(
ω cosλĵ + ω senλk̂

)
×
(
ẋ′î+ ẏ′ĵ

)
= −2

[
−ẋ′ω cosλk̂ + ω senλk̂ × ~̇r′

]
⇔

A.1.3. Versión 1.0.3
En la demostración de la proposición 31 en la página 81, en la referencia dada a la proposición 24, no se
mencionaba la página donde aparecía esta última; dicha página es la página 74.

Se ha cambiado el nombre de la sección 1.8 «Coordenadas generalizadas, ligaduras y sistemas» a «Coor-
denadas generalizadas y ligaduras».

Se ha cambiado el nombre de la sección 1.8.2 de «Tipos de sistemas» a «Coordenadas naturales y forzadas».

A.1.4. Versión 1.0.4
En la primera oración de la demostración del teorema 9 en la página 51 se ha cambiado «toerema» por
«teorema».

En la primera oración de la demostración del teorema 14 en la página 64 se ha cambiado «toerema» por
«teorema».

A.1.5. Versión 1.0.5
En el último párrafo de la página 269 se ha cambiado «que actúa sobre partículas que se mueven en la
dirección radial de la tierra se dirige hacia el este tanto el hemisferio norte» por «que actúa sobre partículas
que se mueven en la dirección radial de la Tierra se dirige hacia el este tanto en el hemisferio norte»

En la última oración de la observación 83 en la página 273 se ha cambiado «Si medidos experimentalmente
el valor de la aceleración» por «Si medimos experimentalmente el valor de la aceleración».

En el texto situado sobre la última expresión matemática que aparece en la demostración de la proposición
104 en la página 274, se ha cambiado «que se desvía en función de la altura, despejamos t d e la ecuación
en z′.» por «que se desvía en función de la altura, despejamos t de la ecuación en z′.»

A.2. Versión 1.1.0
Añadido el ejercicio 12 en la página 228. Como consecuencia, a partir de este momento hay un desfase en
el número de las páginas con respecto a la versión 1.0.5.
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En el enunciado del corolario 33 de la página 209 se ha cambiado:

φdisp ≈ φincñblσX = Ninc
X

λ

%disp ≈ %incñblσX = Ninc
X

λ
por:

φdisp ≈ φincñblσX = φinc
X

λ

%disp ≈ %incñblσX = %inc
X

λ
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