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Lain-Calvo

Capitulo 1

Principios de mecanica

1.1. Introduccion

La mecanica Newtoniana se centra en los vectores, como la fuerza y el momento de fuerzas:

L dp
F=2L
dt
. dL
Ny = =2
O gt

Sin embargo, también podemos centrarnos en escalares mediante los conceptos: trabajo W, energia potencial
V' y energia cinética T'. Iremos desarrollando este otro enfoque a lo largo del curso.
1.1.1. Ejemplos

Ejercicio 1. Tenemos un muelle de masa m y constante k que cuelga del techo. Sobre él actia la fuerza gra-
vitatoria.

x =0 Vo =20

P

Solucién (Resolucion por dindmica). Si escogemos el eje x positivo hacia abajo, las dos fuerzas que actian son
F. = kx y P = mg. De esta forma, aplicamos la segunda ley de Newton >, F; = mad y llegamos a la ecuacion
diferencial:
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dz _ +
m— = —kx +m
e g

Alternativamente, en notacion de Newton:
mi = —kx + mg
Nota 1. En este curso vamos a usar la notacion de Newton:

. _ dx . d’z
L= — i=—
dt dt?
Solucién (Resolucion por energias). Es importante remarcar que todas las fuerzas que actian son conservativas.
Tomamos el origen de referencia para el potencial gravitatorio en la posicion de equilibrio x = 0. De esta forma,
las diferentes expresiones para las energias presentes son:

1
V. = ikz2
Vy = —mgx
T=-mx
De esta forma, la energia mecénica es:
En,=Ve+Vy+T = %ka —mgz%—%mﬁ

Aplicamos el teorema de la energia mecanica AE,, = Wgyco. Como no hay fuerzas no conservativas, podemos
escribir:

dE,,
2Em
dt <

& kre — mgr +mii =0 <

=0

@x(ka:—mg—i—mx):O(:){kzngrmiO

Y llegamos a la misma ecuacién del movimiento que por Newton.

1.1.2. Conceptos basicos: espacio y tiempo
Veamos como son los conceptos de espacio y tiempo dentro del &mbito de la mecanica clasica:
1. Son magnitudes continuas.
2. Son magnitudes universales.
3. El tiempo es absoluto (igual para todos los observadores).
4. La geometria del espacio es euclidea.
5. La precision es infinita.

6. Principio de relatividad: la posiciéon y la velocidad no son absolutas, dependen del observador. Lo impor-
tante son la posicion y la velocidad relativas. Sin embargo, la aceleracion si es absoluta; siempre que el
valor de la aceleraciéon sea nulo, la velocidad es constante, independientemente del sistema de referencia.
Dicho de otra forma, no puede distinguirse el movimiento a velocidad constante del reposo y todos los
observadores situados en sistemas no acelerados son equivalentes.
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7. Sistema de referencia inercial: (en cartesianas) tiene un origen, unos ejes (siempre destrogiros) y un tiempo
cumpliendo que la aceleraciéon que sufren es nula. Aqui es donde estan en vigor las leyes de Newton.

AR

=\

N\

X

8. Existen magnitudes vectoriales y magnitudes escalares.

1.1.3. Leyes de Newton

Representaremos las posiciones con 77j, las velocidades con ¥; = 7; y las aceleraciones con a; = 0; = ;. Es
interesante recordar el siguiente esquemas:

I+
I+
U

T

\T
a
&
a
&

Imaginemos un sistema con n cuerpos aislados entre si, cada uno con una masa m;, entonces las leyes de Newton
son las que siguen:
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Axioma 1 (Segunda ley de Newton). Sea S un sistema aislado de n cuerpos, de manera que el cuerpo i-ésimo
tiene masa m; y estd situado en la posicion 7;. Entonces, la suma de las fuerzas que actian sobre el cuerpo
1-ésimo es igual al producto de la masa de dicho cuerpo y la aceleracion que sufre. Matemdticamente:

—

F, = m;T; (1.1.1)
donde

n
F; = E Fij
=L

donde F’i<_j es la fuerza que el cuerpo j ejerce sobre el i.

Teorema 1 (Primera ley de Newton: Ley de inercia). Sea C' un cuerpo cualquiera. Las siguientes situaciones
son equivalentes:

1. La fuerza total que actia sobre C' es nula: F=0.

2. La aceleracion que sufre C' es nula: @ = 0.

3. La velocidad del cuerpo C es constante: ¥ = Eé
Alternativamente:
F=(odi=0s7=—ce (1.1.2)
Demostracion. Supongamos que el cuerpo C' tiene masa m # 0. Por la segunda ley de Newton:
ﬁ:6@m5:6@d:6¢>/ddt:/(_)'dt:(?c%@ﬁ:(?é
Q.E.D.
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Axioma 2 (Tercera ley de Newton: ley de accion y reaccion). Sea S un sistema de n cuerpos. La fuerza que el
cuerpo j-ésimo ejerce sobre el cuerpo i-ésimo tiene mismo mddulo y direccion que la fuerza que ejerce el cuerpo
1-ésitmo sobre el cuerpo j-ésitmo; pero tiene sentido contrario. Matemdticamente:

— —

Fj=—F (1.1.3)

Observacion 1. En general, la fuerza entre dos particulas ¢ y j serd funcién de sus posiciones y velocidades
relativas.

Fij = § (75,75, 7,0;) = § (Ti5, Uij)
De esta forma, definimos la distancia relativa entre ¢ y j:
Tij =Ty —T5
Y, como consecuencia:
Uij = V; — Uj
Nota 2. Usualmente usaremos la notacién Fj; para referirnos a la fuerza que ejerce el cuerpo j-ésimo sobre el
i-ésimo. Es decir:

—

Fij = Fiej

1.1.4. Principio de superposicion

Proposicion 1. FEl principio de superposicion afirma que cuando las ecuaciones de comportamiento que rigen
un problema fisico son lineales, entonces el resultado de una medida o la solucion O de un problema prdctico
relacionado con una magnitud extensiva asociada al fendmeno, cuando estdan presentes los conjuntos de factores
causantes Iy,... I con k € N, puede obtenerse como la suma de los efectos de cada uno.

Demostracion. Sea f : R" — R™ una aplicacion lineal que relaciona dos magnitudes fisicas I (input) y O
(output). Supongamos, ademés, que contamos con k € N subsistemas tales que cada uno produce una magnitud
fisica de entrada I,. Queremos calcular cuél es el valor de O. Para ello:

k
O:f(11+-~-+1k):f<21u>
u=1

Y, como f es lineal por hipotesis:

Q.E.D.

1.1.5. Definicién de masa y propiedad aditiva

Definiciéon 1. Llamamos masa inercial de un cuerpo C' a la resistencia que presenta dicho cuerpo ante un
cambio de velocidad (una aceleraciéon), medido desde un sistema de referencia inercial.

Observacion 2. Esta definicion sélo tiene sentido dentro del ambito de la mecanica clasica.

Ejemplo 1. Imaginemos que contamos con dos cuerpos de masas m1 y ms que se chocan entre si:

Licencia: Creative Commons 9


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 1. PRINCIPIOS DE MECANICA
Lain-Calvo 1.1. INTRODUCCION

mi mo

A\
AN\

F F

Tenemos, entonces, por la tercera ley de Newton:

. . 71
F:mlrl = Mol < Moy = M1
T2
Proposicion 2. Sea Sy un sistema con n cuerpos de masas my,...,my tales que todas sufran la misma
n
aceleracion A := 7, = --- = 7,. Sea Sp un sistema con un unico cuerpo de masa M = E m; que sufre una

i=1

aceleracion A. Si Fr es la fuerza externa total que sufren las particulas del sistema Sya, entonces la fuerza
total que actia sobre el sistema Sp también es Fr, y viceversa. En otras palabras, los sistemas Sa y Sp son
equivalentes.

Demostracion. La fuerza total que actiia sobre el sistema S 4 es, por el principio de superposicion:

n n
FT,SA = Zm,LA = AZml = MA = FT,SB
i=1 i=1
N—_——
=M

Q.E.D.

Ejemplo 2. Cambiemos ahora a la siguiente situacion:

mi

A

mi M = my + ms
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Supongamos en ambas situaciones Fr = 0 < mad = 0; es decir, que no actiian fuerzas externas.

= Situacion A:

Entonces, las fuerzas netas que actiian sobre cada una de las masas de A son:
Fri=mid;

Fro = mads

Fr 3 =mads

Usando el principio de superposicién:
mydy + mods + msdsz =0

Si suponemos A = dy = d3, la expresion de arriba queda:
mlc_il + (TTLQ + mg)A =0

= Situacion B:
Las fuerzas que actian son:
Fri=mid;
Fry=MA
De nuevo, principio de superposicion:
mq dl + MA = 0
De la ultima ecuacion se sigue:
1
M:m1 (—X) = mo + ms3

1.2. Preliminares matematicos
Definicién 2. Sea € un conjunto abierto de R? y sea ¢ : Q — R una funcién escalar tal que Elg—‘; (¥) Vj =

x,y, z; Vi € ). Llamamos gradiente de ¢ a la funcion vectorial:
gradgpz%gpz?gp: Q — R3
0 9 0 —
— (2@.2®.%®)

G () Vi, j =

—

7

Definicién 3. Sea 2 un conjunto abierto de R? y sea A : Q —» R3 una funcién vectorial tal que 3

x,y, z; Vi € . Llamamos rotacional de A ala funcién vectorial:
R?)

rotA=VxA: Q —
Pk
0,0 2) X (A Ay A0)) (M = |2 & 2|0
A, A, A,

r ((%’ay’az

85;_1' Vi,j = x,y,2 Y Sea

Teorema 2 (Teorema de Stokes). Sea A : R® — R3 una funcion vectorial tal que 3
(1.2.1)

S una superficie abierta. Entonces la integral del rotacional de Aalo largo de la superficie S tiene el mismo

valor que la integral de Aalo largo de la curva C que delimita la superficie abierta S.

//S(ﬁxg).dgzyﬁcg.df

11
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—

dS| /A

—

C d

Teorema 3 (Teorema del gradiente). Sea Q un conjunto abierto en R™ y sea ¢ : R — R una funcion
diferenciable. Sea, ademds, v cualquier curva que une dos puntos p,q € R™. Entonces, la integral a lo largo de
la curva vy del gradiente de ¢ es igual al valor de la funcion ¢ en § menos el valor de la funcion ¢ en p.

@(Q')—w(ﬁ):/ Vo (7) - dif

7(P.9)

Proposicién 3. Sea Q un conjunto abierto en R® y sea ¢ : Q@ — R una funcion escalar de clase C? (Q,R).
Entonces el rotacional de su gradiente es la funcion nula en R3:

ﬁx(ﬁqﬁ):@

Demostracion. Aplicamos la definicion:

9 0 9\ (00 96 09\ _
ox’ Oy’ 0z ox’ oy’ 0z )

Como la funcion es de clase C'?), sus derivadas parciales conmutan y, en consecuencia:

Oydz 020y’ 020w  0xdz’ Bxdy  Oydx

(Zo o Fo o o)

S

sesle ~
sigglon

v x (%) = (0,0,0) =0
Q.E.D.

1.3. Fuerzas centrales y fuerzas conservativas (12 parte)

1.3.1. Fuerzas centrales
Definicion 4 (Fuerza central). Decimos que una fuerza es central cuando siempre esté dirigida hacia un punto

O llamado centro del movimiento. Es decir, sea R cualquier punto de R?, entonces:

F es central & F (E) =3! (1@)
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Nota 3 (Terminologia relacionada con §). Sean f una funciéon arbitraria, n € Ny ¢1,...,t, variables cuales-
quiera. Sean a,b,c € [1,n] NN; definimos la siguiente «tabla de equivalenciasy:

=5 (ta,ts) +— f es funcion de t, y de t;. Puede ser funcion de mas variables.
f=38(ta,ts,tc) +— f es tnicamente funcion de t,, t, y te.
f#T(t) — f no es funcion de t,.

Usaremos indistintamente la terminologia anterior para referirnos a funciones vectoriales o escalares. Siempre
podremos deducir del contexto de qué tipo se trata.

1.3.2. Fuerzas conservativas

Proposicion 4. Sea F:R3 — R3 una funcion vectorial y ¥ € R3. Entonces las siguientes propiedades son
equivalentes:

1. Existe una funcién escalar diferenciable V : R? — R tal que:

F(7) = -VV (¥

2. Para cualquier trayectoria cerrada C' se tiene:

yﬁ F(F)di =0
c
3. L B
VxF(r)=0
Demostracion.
n 3= 2

Sea S cualquier superficie abierta cuya frontera es la curva C.

ﬁxﬁ(ﬁzﬁé//(ﬁxﬁ(F))-dgzﬁ
S

Ahora, por el teorema de Stokes (ver |2 en la pagina 11)), tenemos que lo anterior es equivalente a:

yﬁﬁ(ﬁdﬁ:ﬁ
C

n 2= 10
Definamos la funcion V (7) como:

vy -- [ F@dp

con 7 algin punto de R3. Nétese que la funcién anterior esta bien definida por la propiedad 2: si la integral
a lo largo de un camino cerrado es nula, la integral entre dos puntos no depende del camino escogido (en
otras palabras, es tnica). Ahora, por el teorema del gradiente ([3 en la pagina anterior)

F(7) = -9V (7

s 1 =3
ﬁxﬁ(?’):ﬁx<—ﬁv>:—ﬁx<§V)

Y por la proposicion [3 en la pagina anterior] el rotacional de un gradiente es siempre cero, asi que:

—V x (ﬁV) =0

Q.E.D.
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Definicion 5 (Fuerza conservativa). Decimos que una fuerza es conservativa si cumplen las propiedades
~
mencionadas en la proposicion |4 en la pagina anter10r| y es unicamente funcién de la posicion F' = F! (7).

Observacion 3. Las fuerzas centrales y conservativas son funcion de las distancias relativas de los cuerpos
(conservativas) y que van en la direccion de las lineas que unen las particulas (centrales). Es decir, son de la
forma:

Fij = 3§ (rig) 3y
1.3.3. Ejemplos de fuerzas centrales conservativas

Tenemos estos tipos:

» Gravitatoria (Ley de Newton de gravitacion universal):
Sean my, mo dos masas y 712 el vector que va de la masa 1 a la 2, entonces la fuerza que 1 ejerce sobre 2

es:
- G
Fo = 77m21m27212 (1.3.1)
T12

donde G = 6,673 - 10~ 11 Ii?“

= Electroestatica (Ley de Coulomb):
Sean q1, g2 dos cargas y 712 el vector que va de la carga 1 a la carga 2, entonces la fuerza que 1 ejerce

sobre 2 es: 0o
For = K—5=712 (1.3.2)
12
donde K = 8,99 -10° Ni*,
Podemos verlo graficamente en:
12 mo

q2

mi
qi1

Nota 4. jOjo! Con Fi5 nos referimos a la fuerza que 2 hace sobre 1.

= Oscilador armoénico isétropo:

F = —ki=—kr# (1.3.3)

Graficamente:
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il

1.4. Ligaduras

Consideremos un sistema de particulas. Asi tenemos fuerzas internas y externas, como podemos ver en el
dibujo:

Externo { Interno

O
O

“

SNeNe

Definicion 6. Llamamos fuerzas externas a las ejercidas por cuerpos ajenos al sistema que estamos conside-
rando, mientras que llamamos fuerzas internas a las que ejercidas entre las particulas del sistema estudiado.
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Definicién 7. Una ligadura es una condicién que limita el movimiento relativo de las particulas. Normalmente,
éstas vendran dadas por ecuaciones mateméticas de la siguiente forma:

G(q,4,t) =0

donde G es una funcién que depende de una variable ¢ (una coordenada generalizada, veremos lo que significa
eso mas adelante), de su derivada y del tiempo.

Definicion 8. Llamamos fuerza de ligadura a aquella que impone una ligadura en el movimiento de una
particula.

Ejemplos de fuerzas de ligadura son las siguientes:

= La normal, que en nuestro ejemplo impone la condiciéon y = yy donde yy € R:

AN

N

» La fuerza de rozamiento estatica:

—

b

il

AN
2\ 2

con la ecuacién de ligadura:

= La tension:
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con la ecuacion de ligadura:
T =T

= Una articulacion: Consideremos el caso de un sélido rigido (una varilla que cuelga del techo):

cuyas ecuaciones de ligadura son:

L
yfgcosﬁz()

L
m—gsenezo

= Movimientos de rodadura:
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&l

W

R

En todos los movimientos en los que se rueda, se cumple:

-

Ta=7+3xR
donde A es el punto de contacto del cuerpo que gira con el suelo. Sin embargo, si no hay deslizamiento,
sabemos que ¥4 = 0; de esta forma, obtenemos la ecuaciéon de ligadura:

O=vq4g=v—wR<&v=wR

Integrando, obtenemos:

r—60R=0

En cada instante de tiempo, el punto que esta tocando el suelo (el punto A) es el eje de giro.

1.5. Momentos

1.5.1. Momento lineal
1.5.1.1. Definicién y primeras propiedades

Definiciéon 9 (Una particula). El momento lineal de una particula es una magnitud fisica que describe la
tendencia de una particula a continuar con su estado de movimiento, indicando la direccion y el sentido de
aquél. Matematicamente, el momento lineal de una particula de masa m y posicion 7 se define como:

7 i=mr (1.5.1)

Corolario 1. La fuerza que actia sobre una particula coincide con la derivada de su momento lineal con respecto
al tiempo.

Demostracion.

Q.E.D.

Definicién 10 (n particulas). Definimos el momento lineal total de un sistema de particulas como la suma
de los momentos lineales de cada una de las particulas que lo forman.

P .= zn:ﬁz:zn:mlﬁ:Mﬁ (1.5.2)
i=1 i=1
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donde R representa la velocidad del centro de masas, siendo Rla posiciéon del centro de masas:

5 Qi T
R==5——
D i1 M

y M= imi.
i=1

Proposicion 5. La suma de las fuerzas externas que actian sobre un sistema constituye el cambio del momento
lineal del sistema:

FO =S FO - p

i

Demostracion.
P,:Zmzﬁlzzﬁzzz F}(e)+ZEej :Zﬂ(e)"‘zzﬁiej:
i=1 i=1 i=1 j=1 i=1 =15 -1
JF j#i
—ZF(e +ZZ (z<—j+F]<—z>
1=1 j=1+1

Por la tercera ley de Newton (|2 en la pagina 9)), Fi<_j = —F;-(_,- y, por consiguiente:
n
P = ZF(e +Z Z ( s +F]H) - ZFi(e) )

i=1 jmit] ——— =1
=0 Vi,j

Q.E.D.

1.5.1.2. Teorema de conservaciéon

Teorema 4 (Teorema de conservacion del momento lineal). El momento lineal se conserva si y sélo si la suma
de las fuerzas externas que actian sobre un sistema es cero.

F© =0e P=cte (1.5.3)
Demostracion. La demostracion es trivial a partir de la proposicion Q.E.D.

1.5.1.3. Impulso lineal

Definiciéon 11 (Impulso lineal). El impulso lineal es una magnitud fisica que representa la variacion de
momento lineal que se produce en un intervalo de tiempo (normalmente pequeno). Resulta tutil para estudiar
los choques.

. t+AL
I:Aﬁ:/ F; (r)dr
¢

Un dibujo para representar estos conceptos:
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o O

M m

1.5.2. Momento angular

Definiciéon 12 (Una particula). Llamamos momento angular de una particula de masa m situada en la
posiciéon 7y con momento lineal p’ desde un punto O a la magnitud fisica:

Lo:=FXp=mFx7 (1.5.4)

Uno puede escoger el punto desde el cual calcular el momento angular. Graficamente:

m

sl

0,

Definicion 13 (n particulas). Definimos el momento angular de un sistema de n particulas respecto al punto
O como la suma de los momentos angulares de cada uno de sus integrantes respecto al punto O:

n
Lo = Z Lo =
i=1 2

n

n
Mt X 7 =Y X Py (1.5.5)
1 i=1
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Observacion 4. Como podemos ver, el momento angular de un sistema de particulas no se puede calcular
mediante la posicién y velocidad del centro de masas junto con la masa total:

Lo#MBxFR

Eso se debe a que L* £0 (veremos lo que esto significa mas adelante).

1.5.3. Momento de fuerzas
1.5.3.1. Definicién y primeras propiedades
Definicién 14 (Una particula). Llamamos momento de fuerzas de una particula situada en el punto 7, sobre
la que actta una fuerza F', desde un punto O a la magnitud fisica:
No:=FxF=¢Fxp (1.5.6)

Proposicion 6. El momento de fuerzas de una particula medido desde el punto O es igual a la variacion de
momento angular medida desde el punto O:

No =Lo

Demostracion. Por la definicion de momento angular para una particula ([12 en la pagina anterior]):

5 d . . . . . o o

Lo=—([FXp)=7TX p +FXpP=mPFXF+rxXp=7xF =

0= (Fxp) P P P o)
=’rm;' :6

Q.E.D.

Definiciéon 15 (n particulas). Definimos el momento de fuerzas para n particulas como la suma de los
momentos de fuerza de cada una de las particulas que componen el sistema:

n

VG =3 x B9 = Lo (1.5.7)
=1

1.5.3.2. Teorema de conservacion del momento angular

Teorema 5 (Teorema de conservacion del momento angular). El momento total de las fuerzas externas que
actuan sobre un sistema es nulo si y solo si el momento angular del sistema permanece constante.

= - o —
N(()e) =0« Lo = cte
Demostracion. La demostracion es inmediata a partir de la proposicion [6] y de la definicion Q.E.D.

Ejemplo 3. En este caso, se conserva el momento angular desde el punto O:

O

4
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1.5.3.3. Resultados sobre fuerzas centrales y conservativas

Proposicion 7. El momento angular de una particula de masa m respecto de un punto O se conserva si y solo
si la fuerza total F' que actia sobre ella es central respecto de O.

- — —
Lo = cte< F es central

Demostracion. Recordemos que el momento de fuerzas de una particula era (ver definicion 14 en la paginal
anterion) -
NO =7rxF

Por el teorema [5 en la pagina anterior] tenemos que:

- — - .
Lo=cte s No=0

No=0&7FxF=0&7| F
Bien, si la fuerza es central respecto de O, entonces F' llevara la misma direccién que 7 (sera paralelo a 7)
y por lo visto arriba, el momento angular se conserva. Reciprocamente, si el momento angular se conserva F'y

7 deben ser vectores paralelos. En otras palabras F' debe tener la misma direcciéon que 7y, en consecuencia, es
central. Q.E.D.

Corolario 2. Si la fuerza total F que actia sobre una particula es central, entonces su movimiento serd
unidimensional si Eo =0 y bidimensional si l_:o #* 0, pero nunca serd tridimensional. En el caso bidimensional,
la trayectoria de la particula estard contenida en el plano formado por su posicion T (to) y su velocidad 7 (tg) en
cualquier instante tg.

Demostracion. Por la proposicién anterior, sabemos que si la fuerza es central, el momento angular es constante
Lo = cte. Por definicién de momento angular de una particula con respecto al punto O (ver definicion (14 en la)

pagina anterior|), tenemos:

Lo=mrxr

Sies Lo = 0, como es m # 0, necesariamente seré 7 x F=0a7 | 7. Es decir, el vector posicion y el vector
velocidad de la particula tendran la misma direccién. En ese caso, como la velocidad es la variacion de la posicion
y la velocidad tiene la misma direccién que la posiciéon, la variaciéon de la posicion se producird unicamente en
la direccion de la posicion. Es decir, el movimiento tiene lugar inicamente a lo largo de la direccion de 7.

Si es I_:O #* 0, entonces, si fijamos un ty tenemos:

Lo = mi (to) x 7 (to)
- —
Pero, como es Lo = cte, debe darse:
mi (t) x 7 (t) = mi (to) X 7 (to) Vi
Por tanto, necesariamente, 7y 7 deben estar contenidos siempre en el mismo plano para cualquier . Q.E.D.
Lema 1. El gradiente de una funcion escalar ¢ : Q C R? — R en coordenadas esféricas (1,0, ¢) viene dado por

la expresion:

o 00, 100, 1 00
Vgp_arr_‘_ra@e—i_rsenﬂ&pgp

Proposicion 8. Una fuerza F es central y conservativa si y sdlo si existe una funcion escalar V : R? = R
diferenciable que permite expresar F' como sigue:

para algin origen de coordenadas O.

Demostracion.
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Si F = —%ﬁ entonces el momento de fuerzas de la particula respecto al punto O es:
- ~ oV ov
No=rxF=7rx|—7F|=———7x7=0
o= For () =G

1.5.3

=0

En consecuencia, por el teorema [5 en la pagina 21L el momento angular Lo se conserva. Y, ahora, por la
it

proposicion |7 en la pagina anterior] como el momento angular se conserva, F' es central.

Por otra, parte F' es trivialmente una fuerza conservativa ya que existe una funciéon escalar V tal que

F=-VV.

=
Como F es una fuerza conservativa, sabemos que existe una funciéon escalar V : R? — R diferenciable que
permite expresar F' como:

F=-VV
que, segun el lema |1 en la pagina anterior] en coordenadas esféricas puede expresarse como:
ov . 10V 4 1 oV,
P+ -0+

or r 00 rsenﬂ%@

Ahora, como F' es una fuerza central, por la proposicion |7 en la pagina anterior| y el teorema |5 en la

el momento de fuerzas de la particula debe ser cero:
S - - ov 10V 4 1 oV
O:N =7 F:— V:—_’ p—4 776 - D =
o=rx TV rx(@rr—’—ra& +rsen98<p(p)
*—gfxf—la—vfxé—il a—vfx A*—la—vfxé— 1 a—vfx 7
N Or ~~~ 1 00 rsenf Op LY rsenf dp v
=0
L . . ov ov )
La tnica forma de que lo anterior sea cero para todo 7 es que 90 = 0= 5y &1 consecuencia:
¥
Fe v
or

y, asi, la fuerza debe tener la forma descrita en el enunciado.

Q.E.D.

.4. Impulso angular

Definiciéon 16 (Impulso angular). El impulso angular es una magnitud fisica que representa la variacion de
momento angular que se produce en un intervalo de tiempo (normalmente pequefio).

1.6.

= t+AL
ALgp = / No (1) dr
¢

Energia

1.6.1. Energia cinética F¢, T

Definiciéon 17. Llamamos energia cinética a la que posee un cuerpo debido a su movimiento. Matematica-
mente, definimos la energia cinética de un cuerpo de masa m y posiciéon 7 como:

1 .
T:= 5mr*2 (1.6.1)

Observacion 5. En coordenadas cartesianas la expresion de la energia cinética queda:

Licen
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1.6.2. Trabajo de una fuerza

Definicién 18. Sean 7,7 € R?. Llamamos trabajo de una fuerza Fala energia que transfiere la fuerza al
cuerpo para desplazarlo entre la posicion inicial 7 y la posicion final 75 :

T2
Wr, S, ;:ﬁ F . dF (1.6.2)
1

Teorema 6 (Teorema de la energia cinética o teorema de las fuerzas vivas). El trabajo realizado por la fuerza
neta que actia sobre una particula entre una posicion 7y y una posicion 7 es igual al incremento de energia
cinética de la particula entre las posiciones 11 y 7a:

Wa om =15, — Tr, = AT (1.6.3)
Demostracion.

WFﬁFQ:/Fizﬁ.d,?:/:m%.df:m/:i(?)dfzm/:2d<?)é2:

1

L 1] 1 . 1
=m rd(r):m -7 :§m7"2—§mr1:TT~2—TF1

Q.E.D.

1.6.3. Energia potencial E,, /

Definicion 19. Llamamos energia potencial a la energia asociada a la posiciéon de un cuerpo dentro de un
campo de fuerzas conservativo. Mateméticamente viene dada por una funcién que depende tnicamente de la
posicién y denominamos energia potencial V' (7) con referencia en 7 a:

V() = —/fﬁ(ﬁ) -dp (1.6.4)

Observacion 6. Notese como la funcion V (7) de la definicion anterior solo esta bien definida si la fuerza F es

. . = . . PR s )
conservativa. Si la fuerza F' no fuese conservativa, el valor de la integral f7 - F'-dr no serfa tnico, dependeria del
camino escogido.

Observacion 7. En la definicién anterior hemos tomado el punto 7y como punto de referencia y F no depende
ni de ¢t ni de v. Notese que V () no es un incremento; es una funciéon que definimos como el resultado de la
integral, cuyo extremo inferior esta siempre fijo y viene con la definiciéon de V. Hacemos esto para poder decir
que la funciéon V toma un valor para cada punto de R?; lo cual no tendria sentido si fuese un incremento.

Observacion 8. La energia potencial asociada a una fuerza conservativa no es tnica. Pero todas ellas difieren
unicamente en una constante que depende del 7y tomado para la definicion de la energia potencial.

Corolario 3. Sean 7,7 dos puntos de R® y sean F una fuerza conservativa y V uno de sus potenciales
asociados. La diferencia de energia potencial entre los puntos T y 71 coincide con el opuesto del valor del
trabajo que realiza la fuerza F asociada al potencial V' para desplazar el cuerpo de la posicion 7 a la posicion
75 y también coincide con la diferencia entre la energia cinética inicial (posicion 71) y final (posicion s ).

V() =V (") = —Wrom =Tr — T,
Alternativamente, se usa la notacion resumida:
AV = -W = —-AT
Demostracion. Por definicién de energia potencial, tenemos:

def To . 1 . 0 . 1 o L T2
V(Fg)—V(Fl):—/ F.df+/ F-dF:/ F~df’+/ F~dF:/ F-dF:—/ Fdr

0 To 2 To
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Ahora, por la definicion de trabajo (|18 en la pagina anterior)):

7o .
*/ F-dr=—-Ws_5,
7

1

Por tultimo, por el teorema de la energia cinética ([6 en la pagina anterior)):

—Wrsim =—Tr, —Tr) =Tn, —Tx,
Q.E.D.

1.6.4. Energia mecéanica F,,, £

Definiciéon 20 (Energia mecéanica). Llamamos energia mecanica a la capacidad de un cuerpo de producir
un trabajo mecénico debido a su posicién o su velocidad. Mateméticamente, es la suma de la energia cinética y
potencial de dicho cuerpo.

Ep:=T+V (1.6.5)

Teorema 7 (Teorema de conservacion). La energia total de un cuerpo no varia con el tiempo si y solo si la
fuerza total que actia sobre él es conservativa.

‘13 es conservativa & E = cte (1.6.6)

Demostracion. Q.E.D.

LEESS
Sean 7,7, dos puntos de R? y sea V el potencial asociado a F. Por el corolario |3 en la pagina anteriorL
sabemos que si una fuerza es conservativa, se cumple:

V(i) =V (i) = Tr, — Tr, V1,72 € R? &

S V(7)) +Tr, =V (71) + Tr, V1,7 € R® & En, = Eq Vi, 7 € R® & E = cte

=E, =Er

=
Definimos:
Vz, = E —Tx,
Vi = E—Tr,
Si estudiamos:
Vi, = Vi, = =T, + T, = — (T, — Tr,)

Por el teorema de la energia cinética (|6 en la pagina anterior):

7
V;sz,a.l:f/ F - dr

T1

Ahora bien, como la resta Vz, — V unicamente depende de 7 y 71, la integral también debe depender
danicamente de 75 y 71. En consecuencia, la mencionada integral no puede depender del camino escogido.

En cuyo caso es:
95 F-di =0
c

para cualquier curva cerrada C'y, por consiguiente, la fuerza F' es conservativa.

Corolario 4. La energia total de un sistema de particulas S con n particulas se conserva si todas las fuerzas
totales que actian sobre cada una de las particulas son conservativas. El reciproco no es cierto, en general.
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Demostracion. Por el principio de superposicion (ver proposicion [l en la pagina 9)), puede tratarse un sistema
de varias particulas como la suma de varios subsistemas de una particula. Por tanto, la energia total del sistema
es:

Er=> E
=1

Ahora, estudiamos:

B =3B
i=1

Como todas las fuerzas totales que acttian sobre cada una de las particulas del sistema son conservativas,
tenemos por el teorema anterior que E; = cte = E; = 0; y esto se cumple Vi = 1,...,n. En consecuencia:

E;=0Vi=1,....,n= E;r =0« Ep = cte
Q.E.D.

Observacion 9. En general, no es necesario que todas las fuerzas que actiian sobre una particula sean conserva-
tivas para que la fuerza total que actiia sobre la particula sea conservativa. Por ejemplo, si tenemos un cuerpo
que se desliza en un plano inclinado sin rozamiento, sobre él actian dos fuerzas, el peso y la normal, la primera
es conservativa, pero la segunda no. Sin embargo, su suma es conservativa, pues la normal no hace trabajo.

1.6.5. Fuerzas conservativas (2? parte)

Proposicion 9. La energia potencial V' asociada a una fuerza conservativa F no puede depender explicitamente
del tiempo t.

Demostracion. Demostramos que es condicién necesaria para que la fuerza sea conservativa que la funcién V
no dependa explicitamente del tiempo. Supongamos que se cumple V x F = 0. Ahora bien, supongamos que
nuestra funcion V' es de la forma V (x () ,y (t), z (¢) ,t). Entonces, su derivada con respecto del tiempo es:

Hyztaj PR PR Ve e T ot
Por otra parte:
T = mid +myj+mzi =mi'-r=7"F
Calculemos E,, = T+ V. Si la fuerza es conservativa, debe ser cero:
A R av. . 4 - JV oV
T =7 - F+7- P F_p. F4 =2
+V=r-F4r V‘f—i—at T 7 +6t En
—-F
Por tanto:
oV
En=0T+V=0s =0
ot
Es decir, nuestra funciéon V no puede depender directamente del tiempo para ser conservativa. Q.E.D.

Conclusion 1.

F' es conservativa < { (1.6.7)
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1.6.5.1. Ejemplos
Ejercicio 2. Ver si la siguiente fuerza es conservativa y calcular su potencial asociado (si existe):

F = 6xyi + 3225 + 42k

Solucidén. Para ello, calculamos su rotacional:

ik
VxF=|& & &|=(62-61)i+(0-0)j+(0-0)k=0
F, F, F,
oF _ 0, ‘Z—f = %—Z = %—f = 0; en consecuencia F 1o depende explicita-

El rotacional es nulo y obviamente ;
mente ni del tiempo ni de la velocidad, luego la fuerza es conservativa.

Nuestro siguiente objetivo es calcular el potencial. Para ello, sabemos:
F=-VV

Hacemos la «integral» a ambos lados y obtenemos:
(z,y,20) (z,y,2)
Fydy — / F.dz =
(

G (z,y0,20)
V(F)Z—/ Fdf'z—/ Fmdl‘—/
70 (z0,Y0,20) (,90,20) Z,Y,20)
(z,90,20) (z,9,20) (z,y,2)
= —/ 6zydx — / 3z2dy — / dzdz =
(z0,Y0,20) (2,90,20) (z,9,20)
(%,90,20) 2 1(z.y,20) 27 (@,y,2)
[3x y] (x,90,20) [ ](Iyy»zo) o

— _ 2 _
o [333 y] (z0,Y0,%0)
= 39:%3/0 — 322y + 32%yo — 322y + 228 — 227

Observacion 10. Podemos descomponer la integral vectorial en tres integrales escalares, pues al ser la fuerza
conservativa, el trabajo no va a depender del camino escogido; eso quiere decir que podemos escoger el camino

que hace que realizar la integral sea més sencillo.
Alternativamente, podemos hallar el potencial a través de las ecuaciones:

av
— =6y = V = 32y + k (20, Y0, 20)

F, =
av
F, = —= 32% = V = 32%y + k (20, %0, 20)
dV
F, = = =4y =V =222 + k (20, Y0, 20)

Luego si hacemos zg = yg = 29 = 0, obtenemos una solucién:
V = —32%y — 222

Ejemplo 4. Tenemos una particula de masa m, que sufre una fuerza:
F=—c2®

donde ¢ > 0. También conocemos @ (z = a) = 0. Nos piden hallar la velocidad de la particula cuando = 0.

Calculemos la energia potencial:
_ ’ I A C 4 N _ C 4
Vz)=—- [ Fdx= cxdx—4(a: —xo)—4x +C
xo x

0

1 cxt
E, = imch + — =cte

donde C' es una constante. Como la fuerza es conservativa, sabemos que:
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Si evaluamos en x = a, podemos hallar el valor de la energia:

4
ca
Em =
Queremos calcular la velocidad cuando x = 0:
1, ca* 9 | cC
—-mvyg+0=—&vg=a"/ —
270 4 0 2m
Veamos la situacion graficamente:
v
1 1 x
—a a

Ejemplo 5. Tenemos un péndulo simple; es decir una varilla con masa nula y de longitud L. De la varilla
cuelga una particula de masa m.
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Ejemplo 6. Tenemos un alambre rigido sin masa de longitud L. Nos piden determinar los tipos de movimiento
en funcion de v. Estudiamos la energia potencial:

V =mgh =mg (L — Lcos§)
Vemos que:

0=0=V=0
0=35=V=mglL

Si pintamos la grafica V' en funcién de €, obtenemos un funcién sinusoidal.
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2mglL |

Examinamos el intervalo [—m, 7]. Calculemos la energfa total:

1 - 1
E = Emf’z +V(r)=E0=0)= §mv2 =V (Omax) = mgL (1 — cos Onmax) <
1, 1, v2
& —v® =gL — gLcosOpax < gLcosbpsx = gL — —v° & cosblpax =1 — —
2 2 2gL

Si la energia es justo E = 2mgL, la bola llegara arriba con v = 0. Si E > 2mgL, entonces la bola llegara
con v > 0 y continuara girando.

Examinemos qué ocurriria si el alambre fuese una cuerda. En ese caso, tendriamos una tensién. Visto de
otra forma, la distancia entre el punto de anclaje y la bola es constante en el caso del alambre mientras que
puede variar en el caso de la cuerda. Es decir:

alambre: 7 =0
cuerda: 7 <0

Ejemplo 7. Tenemos:
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V9 = wol
El momento angular se conserva:
12
mL*wy = mriw < w(r) = ~ZWo
Sacamos la tension:
4
T (r) = mw?r = mr—ng
Ahora tenemos que comprobar que AT = Wr.
T(r)—T(L) = %mr2f—:w3 — %m[ﬂw% = %mszg <f§ — 1)
Wi = /f(p)dp = —/LT mf,}f“‘%dw [mQL:fg]L = %mLQwS (fj - 1)

Ejemplo 8. Tenemos una bola que cuelga de una varilla de longitud L y otra bola que impacta contra la varilla
a distancia % del punto de anclaje.
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L
2

m
®o—
U1

m

Se conserva el momento angular desde el punto de anclaje, porque todas las fuerzas externas actian alli.
Hallemos el momento inicial y final:

L
Loi =muo

I\ 2
Loy = mw (2> + mwL?

De esta forma, como se conserva el momento angular:

L L\’
mvozmw( ) +mwl? <

2 2
L L
Swe gt = 2%
WESTOL T 5L

Si la varilla tuviera masa, seria un sélido rigido y tendriamos que usar momentos de inercia. Ahora calculemos
el momento lineal inicial y el final y veamos si ha ganado o perdido momento el sistema:

Pi:mvo
L 3 3 2y 3

Es decir, el momento lineal ha disminuido. Esto implica que la fuerza que ha actuado sobre el punto de
anclaje iba hacia la izquierda. Veamos la pérdida habida en energfa cinética:

1 P? 1
EZ = 5% = imvg

Luego:
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1 1 2
AT = <10 — 2) mvg = —5mv§

1.7. Calculo de variaciones. Ecuaciones de Euler-Lagrange

1.7.1. Expresion de la posicion, la velocidad y la aceleracién en coordenadas ci-
lindricas y esféricas (ejercicio para casa)
1.7.1.1. Coordenadas polares r, ¢

Recordemos:

T =1rCcosp
Y =Trseny

L2
’R‘ =22 +y* =r’cos® o + r’sen’ p = r?
Luego:

& =71cosp—rsen(p) P
g ="7seny+rcos(p) P

@2 = 72cos?p+r?sen? (¢) p? — 27rsen (@) cos (@) ¢
+ 92 = 7?sen®p+r?cos? () p? + 27rsen () cos (@) ¢

2

V = 7”2 + 7’2¢2

Por ultimo:

i = i cos p — 2 sen (p) ¢ — 1 [cos (p) ¢ + sen () @]
jj = sen -+ 21-cos () ¢+ [—sen () 2 + cos () ¢]

2 _ 72 cos? ¢ + 472 sen? () 2 + r? [COSQ(@)¢4+sen (¢) 3% + 2 cos (¢) p* sen (¢) @ +
+4r7 sen (@) [co&( ) P2 +ben(<p) }—2rcosgp[2rsen( )<p+r[cos(4p)cp + sen (@) ¢]]
v = 72 sen? ¢ + 472 cos? (p )<p + 72 [sen? (¢) ¢* + cos? (p) $? — 2sen (p) ¢ cos( ) @] +
+4r7 cos () ¢ [—sen (p) $? + cos () @] + 2 sen p [27 cos (p) ¢ + 1 [—sen () $* + cos () ¢]]

o
Il

7 +4f2¢ + 72 c,'o +7r? c,b —27“(,0 + 4rrpp
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1.7.1.2. Coordenadas cilindricas r, ¢, z
Recordemos:
T =TCosp
=rsen¢y
z2=z
Z
(. - — - - _ _ _ _ A >
/
L2
‘R‘ =gz +y + 2% = r? cos® <,0+r sen? cp—i—z =724 22
Luego:
T =7cosp—rsen(p)p
gy =rsenp+rcos(p)

2=

2 = 72cos? o +r?sen? () p? — 27rsen () cos (@) ¢

+ 92 = 7Zsen?p+r2cos? (p) 9% + 2¢rsen () cos (p) ¢

2 = 22

12

‘V _ 72 4 202 4 32

Por dltimo:

I =7tcosp—2rsen(p)p—r [COS (¢) @* + sen (p) 85]
§j = i*sen + 27 cos (@) ¢ + r [—sen (p) $? + cos (¢) @]

=2z
wo 2 cos? @ + 472 sen? (@) 2 + 12 [cos? (p) ¢* + sen? () ¢ + 2 cos () P2 sen( ) @]+
z = 2
+4rrsen () ¢ [cos (¢) @* +sen (p) 3| — 2iFcos [27" sen (@) ¢ + 1 [cos () ¢? —I— sen (¢) &]]
o 2 sen? @ + 412 cos? () ¢? + 12 [sen? (p) ¢* + cos? () $2 — 2sen () H* cos ) @] +
+ Y 2
+4ri cos (¢) ¢ [—sen (p) $? + cos () @] + 2 sen ¢ [27 cos (p) ¢ + 7 [— sen () $? —|— cos () @]

32 = 32

oz
A - P2 47237 4 r2ph 4 r2? — 260 + Arppgp + 52

1.7.1.3. Coordenadas esféricas r, ¢, 0
Recordemos:

x = rsenfcosp
y = rsenfsenp
z =rcosf
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=~

X ¥ “

R ’ =22 + 9% + 22 = r?sen? f cos? ¢ + r? sen” O sen? o + r? cos? § = r?
Luego:
i =7senfcosy + 1 |cos (A) 0 cos p — sen fsen (p) @
= rsenfsen ¢ + r |cos (0) O sen ¢ + sen § cos (¢) ¢
% =17cosf —rsen ()0
2 72 sen? 6 cos?  + 12 [Cos2 6 cos? () 62 + sen? 0 sen? () p? — 2sen f cos O sen p cos (p) Gw} +
+27r sen 6 cos ¢ {cos 0 cos () @ — sen O sen (i) gb}
Lo = 72 sen? 0 sen? ¢ + 12 [cos2 O sen? (¢) 62 + sen? 0 cos? (@) 2 + 2sen O cos O sen @ cos () 990} +
+277 sen 0 sen ¢ [cos fsen () 6 + sen d cos (p) gb]
2 = 72 cos? 0 4 r2 sen? () 62 — 271 sen (6) cos (6) 6
‘72 = ¢2+T292+r2sen29¢2

Por dltimo:

& = Fsenfcosp+ 21 [cos 0) 6 cos ¢ — sen O sen () ap] +
+7 [— sen (6) 62 cos ¢ + cos 0 {9 cos ¢ — Osen () go} cos (0) fsen (p) ¢ — sen [cos (p) 2 + sen (p) w]}
i = 'senf sen ¢ + 27 [COb (G)OCObgo —senfsen (p) <p] +
+r [f sen (0) 6 sen ¢ + cos 0 {Hsengo + 6 cos ( )cp} + cos (6) 6 cos (¢) ¢ + sen 6 [—sen () ¢? + cos (¢) gaﬂ
% =icosf — 2isen (0) 0 — [cos (0) 62 + sen (0) 9}

1.7.2. Ecuaciones de Euler-Lagrange
1.7.2.1. Preliminares matematicos

Definiciéon 21. Sea  un abierto en R™ y sea f : @ — R una funcién diferenciable (eso significa que existen
las derivadas parciales con respecto a todas sus variables). Sea @ € €. Entonces, llamaremos diferencial de la
funcién f en el punto d a la aplicacion lineal:
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df (@) : R" — R
S = Of
Z=(z1,...,%,) Z@xi (a) x;

donde df representa «diferencial de la funcion f».
Alternativamente, podemos definir la aplicacion lineal como:

df (@) ::;gi (6)dmi:%(é)dxl—km—k%(d)dxn

donde dz; es el elemento de la base dual canénica correspondiente a la coordenada x;.

Definicion 22. Sea 2 un abierto en R™ y sea f : 2 — R una funcién diferenciable. Llamamos diferencial de
f a la aplicacién lineal:

df : R* — L(R",R)
a — df (@)

donde £ (R™,R) representa el conjunto de aplicaciones lineales entre R™ y R.

Definicion 23. Sea 2 un abierto en R™ y sea f : £ — R una funcién diferenciable que depende de las variables

T1,...,T,. Entonces, llamamos derivada total de f respecto a una variable ¢ a:
df
o = @),z (t) od (21 (), 2 (1) =
[ of of dxy dx, = Of dv;  Of dxy of dxy
n <8x1""’8xn) ( dt OFEERE dt (t)> _;8;@ dt — Oxp dt o Oz, dt

Definicion 24. Sea n € N. Se llama funcional a toda aplicaciéon F' : F,, —> K que lleva una funciéon a un
cuerpo, donde con F,, denotamos el anillo de las funciones con n variables y con K denotamos un cuerpo.

Ejemplos:
A Fl — R
f@) — f(0)
B : Fl — R
F@) — f(0)e
donde con ’ denotamos derivada.
C fl — R
10
fl@)y — > f)
i=1
D: ]:1

— R
5
f@) — [5f<x>dx

E Fi1 — R
fl@) — / 1f (@) da

F Fo — R
a 2
f(z,t) — [ % [f(l’,t)+ <Z{> ] dx

donde con F3 denotamos el anillo de funciones de dos variables.
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Observacion 11. En fisica, vamos a usar en general funcionales de tipo integral como el D y el E. Por ejemplo,
podemos definir un funcional que dada una curva en R? expresada como ¢(z) = (z,y (x)), nos devuelva su
longitud entre dos puntos . = x1 y * = xa:

L: ]:1><]:1 —

R
@) — [TV @k

Z2

dl

Z1

Por ejemplo, creamos un funcional ¢ que, dadas dos funciones y (z) y z (z), de manera que ¥ = (z,y (z) , z (z)),
calcule el tiempo que le cuesta a luz recorrer dicha trayectoria desde el punto #; = (x1,y (21), 2 (1)) hasta el
punto 7 = (z2,y (x2),x (x2)). Conociendo que la trayectoria tiene lugar en un medio de indice de refraccion n,
el funcional buscado es:

t: F1 x F1 — t R
@)2@) — [ L1y @F + [ )P
T \:Z,

En una notacion alternativa, definiriamos ¢ como:

“n ’ 2 ’ 2
ty(2),z(@) = [ —V1+ly @] +[ ()] de
1
Observacion 12. Como puede verse en el ejemplo F', el funcional puede ser todo lo complicado que se quiera.

Definicion 25. Llamaremos extremal de un funcional a aquella funcién que haga que el valor del funcional
sea un maximo o minimo local (en su entorno). Notese que la definicion es equivalente a la de extremo relativo
de una funcién sustituyendo «funcion» por «funcionaly y «extremo» por «extremaly.

Definicion 26. Sea F' : F,, — K un funcional diferenciable y sea f € F,,. Diremos que f es punto critico
de F si dF (f) = 0; en otras palabras, si la diferencial del funcional F' evaluado en f es la aplicacion nula.

Proposicion 10. Sea F' : F, — K un funcional diferenciable y sea f € F,, tal que [ es extremal de F.
Entonces f es punto critico de F. Es decir: dF (f) = 0.

Definicion 27. Sea ) un abierto en R"” y sean f: Q2 — Ry A C . Llamamos norma de f sobre el conjunto
A a:

£ = xS @)

Proposicion 11. Sea B un conjunto cerrado no acotado de F, y sea F : B — K un funcional continuo tal

que  lim  F (f) = 400, entonces F alcanza en B un minimo absoluto.
I1fllg—ro0
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1.7.2.2. Deduccién matematica

Lema 2. Sea (x1,x2) un intervalo de R. Ademds, sean g (x) y h(x) dos funciones continuas en (x1,x2) con
h(x) # 0 para al menos algin x € (x1,x2), entonces:

To
/ g@)h(x)de =0=g(z) =0Vx € (z1,22)
1
Teorema 8 (Ecuacion de Euler-Lagrange). Sea 2 un abierto en R y sea f: Q@ CR — R una funcidn continua
arbitraria tal que f = F (y (z),y (z), z); es decir, una funcion que depende de otra funcion y (z), de su derivada
y de x; si bien implicitamente depende unicamente de x. Por otra parte, sean x1,rs € R tales que x1 # x2,
F = f;f fdx. Toda funcion f € A que sea extremal de F' debe cumplir la condicion:

of d (of
8y_(3y> 0 (1.7.1)

Ademds, si el funcional F' estd acotado inferiormente Vf € A y la solucion de la ecuacion diferencial anterior
es unica, entonces dicha solucion es un punto de minimo de F.

Demostracion. (Requiere leer los preliminares matematicos. Posiblemente incluya errores matematicos. Dificil
de comprender. Hay una demostracion alternativa abajo.)

Sean x1,Z2,y1,y2 € R. Sea FF := {y € F1 t.q. y (1) =y1 ¥y y (22) = y2}. Ahora, sea F un funcional del
tipo:

F: FF — R
y(@) — [7 fdo

con y = g—g v =38 (x),y (z),z). Con §F denotamos una funcion cualquiera que depende explicitamente
de los argumentos suministrados entre paréntesis. Es decir, en nuestro caso, el integrando depende explicitamente
de y, ¢’ y x. Sin embargo, como y = § (x) y ¥’ = § (), el integrando depende implicitamente tnicamente de
2 (es una funcién de una variable); esto es importante para que la integral tenga sentido. Nuestro objetivo es
ahora hallar la funcién f que hace que el valor de F' sea minimo. Un minimo debe ser punto critico, luego, como
hemos visto en los preliminares, debe cumplirse:

0F =0

T2
F= / fdx
T

Si hacemos la diferencial en ambos lados, obtenemos:

6F:6</:2fdx)

Como estamos en fisica, podemos suponer que nuestra funcién f es diferenciable; por lo que la integral y la
diferencial conmutan:

Recordemos:

5F:/ S fda

Por tanto, nuestro problema consiste ahora en resolver:

/ §fdx =0

Para ello, recordemos nuestra definicion de diferencial de una funcién y calculemos 6 f:

3f of of
of = 6 +8,y+%d
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Recordemos que y e 3 son funciones, por eso hemos usado un d; mientras que x es una variable. Ahora bien,

fijémonos en que:
by =46
(&)

Si suponemos que nuestra funcién f es de clase C?, el orden de la diferencial y la parcial no importa y
podemos reescribir:

, d

= dr (6y)

De esta forma,

_ Of 5,4 9F 4 of
cSF—/gC1 <8 6y+8y’d (5y)+8xda:>dm

Ahora, de los tres términos del integrando, sabemos que el tercero se va a anular pues es (d:r)2 =0 En
consecuencia:
2 0f of d 2 9f / of d
/Il (anyray,dx(y))w / 3, Ovde +$18d(y)w

[ s [

Notese que aunque haya desaparecido el dx en la segunda integral, en el fondo la integral depende implici-
tamente de x, luego los limites de integracién no necesitan ser cambiados. Quedémonos con la segunda integral
e intentemos resolverla mediante integracién por partes:

x2

T2 9f - ﬁ _/ af
L oy 0= 1ay 20 21 d(3y> !
N~ dv =[d(sy) -

Si multiplicamos y dividimos por dz en la integral, obtenemos:

2 af af 1" 2.qd (9f
/xl ay V) = [ay‘sy}/ dx(0y>5 dx

Como y € FF, se cumple y (1) = y1 ¥ y (z2) = y independientemente de la forma de y, luego dy en esos
puntos debe ser necesariamente cero (el valor de la funcién y nunca varia en esos puntos); por lo que el primer

sumando es cero. Por consiguiente:
2 8f B 2d (0f
[ aon == [ (57) e

Volviendo a nuestra expresion para §F':

[ of " d (of

Juntando ambas integrales, se obtiene:

_[eler a (o

5F‘/m [ay (ay)]‘s e
_[of 4 [of
0_/m {ay (331 )}6 e

1Esto se debe a que (dx)? = |dz x di| = 0. Més informacion en https://math.stackexchange.com/a/854915,

Recordemos 6 F' = 0; luego:
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Suponiendo que todas las funciones involucradas son continuas (algo normal en fisica) podemos aplicar el
nada trivial teorema que dice que: sean g () y h (z) dos funciones continuas con h (z) # 0 para al menos algin
z, entonces [ g(z)h(z)dz =0 = g(x) = 0 Va. En nuestro caso, como 6y no es necesariamente cero, el otro
factor debe ser nulo. Es decir, obtenemos la condicion:

8f_d(8f)_0
oy dz\oy')

Q.E.D.

Demostracion. (Extraido de Taylor (2013) [2]) Requiere leer los preliminares mateméticos igualmente, pero es
mas facil de comprender. Recomendado estudiar ésta.
Tenemos una integral de la forma:

S:/mf(Y(x),Y’(m),x)dx

donde Y’ = 42X y Y () es una curva desconocida que une los puntos (z1,y1 =Y (21)) y (22,92 =Y (22)).
Entre todas las posibles funciones Y (z) queremos hallar aquella que hace que el valor de S sea minimo. Cabe
destacar que aunque f = F (Y’ (z),Y (z),z) (recordamos que con § queremos indicar una funcién cualquiera
que depende explicitamente de los argumentos entre paréntesis; es decir, se lee «es funciéon de »), el integrando
depende implicitamente tnicamente de z, pues tanto Y como Y’ dependen so6lo de z. En otras palabras, el
integrando es una funciéon real de una variable real.

Bien, ahora llamemos y (z) a la funcién que constituye un extremal de S, aunque desconozcamos cuél es.
Siempre vamos a poder escribir una funcion cualquiera Y (x) como:

Y (z) =y () + an(z) (1.7.2)

donde a € R y 7 (z) es cualquier funcion. Derivando obtenemos:

Y' =9 + o (1.7.3)
Ahora bien:
Y(e) =y [y()+an(z)=u
Y (22) = y2 y(22) + an(22) = yo

Como y (x) es del tipo Y (z) = y (z) + an (x) ,y (z1) debe ser necesariamente y; vy y (z2) debe ser necesaria-
mente y5. Por tanto:

y1+on(z1) =y an(z1) =0
{?/2 + an (z2) = y2 = {an (x2) =0

Como « puede ser cualquier ntimero real (es decir, no siempre es cero), debe ser:

n(z1) =0=mn(xr2)

Con lo hecho hasta ahora hemos conseguido que la integral S dependa del parametro « y de 7 (x), pero ya
no me depende de y (), pues esta fija. Al hacer esto, hemos convertido un problema complicado que requeriria
de mateméticas avanzadas en un problema clasico de calculo elemental de funciones de una variable. Sabemos
que el punto critico Y (z) = y (x) se produce cuando a = 0. Luego debe ser obligatoriamente:

as
do

ds d ¥2 ,
o= 04(/11 f(Y,Y,x))dx

Como f es continua, la derivada y la integral conmutan:

0 (1.7.4)

cuando a = 0. Calculemos, entonces:
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ds _ (" df |
@*/I ooda (1.7.5)

1
Ahora, aplicando la regla de la cadenaEI llegamos a:

df 9fOY _Of oY  9fox

da Y da Y’ da ' dx D
Como z no depende de o, 2%

s 5= = 0y el tercero sumando se anula. Es decir, queda:

df of oy _of oy’

da _ 9Y da 9y’ da
<~ =~

=n =n’

Los valores de las parciales se obtienen al derivar las ecuaciones [1.7.2 en la pagina anterior] y [1.7.3 en la)

pagina anterior] En consecuencia:

d 0 0
a_ o5 n+ ! n' (1.7.6)
da 8Y ay’
En este momento, nos interesaria que en la expresion anterior apareciera ‘35 en vez de g{; Y 3 J, en vez de
aayf,. Para ello, calculemos:

0f _0f 0v o v’ of o
oy OY Oy 9Y' dy Oz Oy
— —~— ——
=1 =0 =0
of _oj oy of oy’ of o
oy Y oy 0Y' Oy  Ox Oy
~— —— —

=0 =1 =0

ox

Notese oy = = 0 porque x no depende de y, aunque es % # (0. Lo mismo sucede con

dy y dac Esto se debe

a que con derivadas parciales no siempre se cumple % = %Z 3| El valor del resto de las derivadas parciales

se obtiene al derivar las ecuaciones [1.7.2 en la pagina anterior|y [1.7.3 en la pagina anterior] En consecuencia
obtenemos:

of _ of
oy oY
of _ 9f
oy oY’
Por tanto, sustituyendo en [I.7.6] obtenemos:
daf 3f of

da oy "oy
A continuacion, sustituyendo en [I.7.5] llegamos a:

s of . of
dO[/z1 (ay +8/77>d35

as [ af af
- = ndx +/ oy 4 (1.7.7)

Z1

Implementemos la integracion por partes para intentar resolver la segunda integral:

28i no queda claro como aplicamos la regla de la cadena, en la pagina http://wwwf . imperial.ac.uk/~jdg/AECHAIN.PDF se explica
de qué manera se debe aplicar la regla de la cadena a las derivadas parciales.

3Mas informacién en la pagina http://wwwf.imperial.ac.uk/~jdg/AECHAIN.PDF.

Licencia: Creative Commons

41


http://wwwf.imperial.ac.uk/~jdg/AECHAIN.PDF
http://wwwf.imperial.ac.uk/~jdg/AECHAIN.PDF
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 1. PRINCIPIOS DE MECANICA
Lain-Calvo 1.7. CALCULO DE VARIACIONES. ECUACIONES DE EULER-LAGRANGE

/mﬁ iaw — |9 12_/” A (O 4,
o 5‘y’n\,_/_ 8y’n o o = oy’
~—

dv
u

Recordemos que era 7 (z1) = 0 =1 (x2), luego el primer sumando es cero. Por tanto:

mof " d(0f
/Il ay’ndxi /Il T (33/ da

Sustituyendo en [1.7.7 en la pagina anterior] obtenemos:

ﬁ— nggdac—/m2 i ﬁ dx =
da 6yn - " oy’ N

X1 1

<[ 1 i ()] o

Recordando [1.7.4 en la pagina 40} concluimos:

_[m=(af 4 [of
o= 5w ()]s

Como 7 (z) no es necesariamente cero, por el lema |2 en la pagina 38 llegamos a:

of d (0f\ _ 0
dy  du (6y’> B
Por consiguiente, hemos conseguido demostrar que el extremal de S se alcanza cuando f cumple la condiciéon
dada arriba.
Ahora, supongamos que Vf € A, tenemos que F estd acotada inferiormente. Entonces, si ||f||, — oo,
necesariamente, debe darse |S| — 400. En consecuencia, por la proposicion [11 en la pagina 37, F' debe tener

un minimo absoluto en A. Ademaés, como, por hipoétesis, la solucion de la ecuaciéon diferencial anterior es tnica,
F tnicamente tiene un extremal. En consecuencia, dicho extremal seré el minimo de F en A. Q.E.D.

Observacion 13. En general, no sera facil saber si la solucién de la ecuacion de Euler-Lagrange es un punto de
minimo, de méximo o silla. Esto es algo a tener en cuenta; si bien es verdad que en lo que atane a este curso,
este no seré el caso.

Observacion 14. Graficamente estamos intentando resolver este problemas:
Imaginemos la siguiente situacion:
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v A

($2,y2)

ya(z) =
= y(z) + dy(x)

($1,y1)

>
X

Yo quiero hallar el camino mas corto entre los puntos (x1,y1) y (22,y2); es decir, mi objetivo es hallar la
funcién y (z) tal que la longitud de la curva ¢ = (z,y (z)) sea lo méas pequena posible (esa longitud era justo el
funcional F' que yo queria minimizar). Aqui podemos entender bien el concepto de diferencial de funcion. Del
mismo modo que al integrar respecto de da uno recorre todos los posibles valores de x, si integramos respecto de
dy recorremos todas las formas posibles de la funcion y. Graficamente, vemos muy bien por qué hemos impuesto
antes o0y (z1) = 0 = dy (x2) = 0. Nuestro objetivo es, por tanto, hallar y () o cuando menos obtener alguna
condiciéon que debe cumplir y. Eso es justo la ecuacion de Euler-Lagrange.

Ejemplo 9. Vamos a comprobar que en la geometria euclidea el camino mas rapido entre dos puntos es la linea
recta que los une:

Recordemos que la longitud de una curva ¢ = (x,y (z)) entre los puntos (z1,y (1)) v (x2,y (z2)) viene dada
por:

T2
L (y) :/ V14 y2de
z1

Es decir, nuestra funcion f es:

f=Vity?

De esta forma, llegamos a las ecuaciones:

of o d (o _
ET <8y’>_0

of y
o, = —F/—— =cte:=a
o \1+y?

Esto dltimo es cierto pues al ser la derivada total de % (5%) =0, 86;,

implicitamente de z, luego no puede depender ni de ¢’ ni de y. Por tanto, debe ser constante. De esta forma, la
funcion:

no puede depender ni explicita- ni

y=ax—+b

es solucién de la ecuacion.
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1.7.2.3. Ecuaciones de Euler-Lagrange en fisica

Observacion 15 (Notacién que vamos a usar en fisica). Para nosotros las funciones que aparecen en el funcional
van a ser ¢ (t),...,¢gn (t), del mismo modo que la variable independiente no va a ser z sino ¢:

to
I:/ f(q17q2a"'7qn7q.laq'27"'7q.nat)dt
ty

La ecuacién de Euler-Lagrange quedara expresada de esta forma:

of d(af

— = :1. 1..
o0 i 8@-) 0 Vi N 1) (1.7.8)

una ecuacion diferencial de segundo orden.

1.8. Coordenadas generalizadas y ligaduras

Definicion 28. Sea S un sistema arbitrario de N particulas. Llamamos coordenadas generalizadas a un

conjunto de parametros qi, ..., q, (longitudes, angulos, magnitudes de cualquier tipo) independientes tales que
la posicién de cada una de las particulas del sistema puede expresarse como una funcién de qi,...,q, y del
tiempo t.

7:;:3'(611»,(]717@ Vl:l”N

Notese que en general N # n; de hecho, al conjunto {qx},_, se le llama sistema o conjunto de

coordenadas y n es el nimero de grados de libertad del sistema.

Observacion 16. El maximo grado de libertad de un sistema es 3N, ya que todos los cuerpos viven en R3.
Ademiés, si el grado de libertad no es 3N, entonces es que hay al menos una ligadura; de hecho, todo sistema
tiene 3N — n ligaduras.

Definicion 29. Sea S un sistema arbitrario de N particulas y sea {qx},_, , un conjunto de coordenadas
generalizadas. Llamamos velocidades (generalizadas) a las magnitudes ¢; V¢ = 1,...,n. Notese que estas
velocidades pueden ser tanto «lineares» como «angulares».

Definicion 30. Sea S un sistema arbitrario de N particulas y sea {gx},_; , un conjunto de coordenadas
generalizadas. Llamamos espacio de configuraciéon a un espacio vectorial con n dimensiones en el que cada
posicion del sistema se representa como un punto. La curva determinada por las funciones ¢ (¢),...,q, (t) en
el espacio de configuraciéon se llama trayectoria, 6érbita, camino o itinerario del sistema.

Ejemplos:

= El péndulo: aqui s6lo tenemos un grado de libertad, el angulo 6§ que puede variar de 0 a 27, pues el radio
esté fijo.

0 27T

= Un péndulo cuyo punto de anclaje se puede mover en una direcciéon: en este caso,
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Vv

N

1.8.1. Ligaduras

Recordemos la definicion de ligadura dada en [6 en la pagina 15|

Definicién 31. Se llama condicién de ligadura holénoma a toda ligadura G (¢;,t) = 0 tal que en ella no
aparecen velocidades.

Por ejemplo G (g;, i, t) =0, G (¢;,t) <0y G(¢;,t) > 0 no serian holénomas.
Definicion 32. Se llama ligadura reolégica a toda ligadura G (¢;, ¢;, t) en la que aparece el tiempo.
Definicion 33. Se llama ligadura esclerémina a toda ligadura G (g;, ¢;) en la que no aparece el tiempo.
Veamos unos ejemplos:
= G (g,t) = 0 holénoma reolégica.

= G (¢;) = 0 holénoma esclerémina.

1.8.2. Coordenadas naturales y forzadas

Definicion 34. Sea S un sistema de N particulas. Un conjunto de coordenadas {qi},_; ,, del sistema S se
dice natural si la relaciéon entre la posicion de cada una de las particulas y las coordenadas generalizadas es
independiente del tiempo. Es decir, si:

=3 (a1. o an) Yi=1,...m
En este caso, la energia cinética T es funcion cuadratica homogénea cualquiera de las velocidades ¢, . . ., G-

Definicion 35. Sea S un sistema de N particulas. Un conjunto de coordenadas {qi},_,; ,, del sistema S se
dice forzado si el tiempo aparece en la relacion entre la posicion de alguna de las particulas de S'y {qx},_;

7 =3 (1)
para al menos algin 7 € [1, N]NN.

Definicion 36. Llamamos sistema mecanico ideal a aquel que o bien es aislado, o bien su entorno influye
de forma despreciable en él. En ambos casos es necesario, ademaés, que el sistema no tenga grados de libertad
internos.
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1.9. Principio de Hamilton. Ecuaciones de Lagrange

Definicién 37. Llamamos lagrangiano o funcién lagrangiana de un sistema ideal S (con n particulas y tal
que todas las fuerzas totales que actian sobre cada cuerpo del sistema son conservativas) descrito mediante las
coordenadas generalizadas ¢1, ..., g, a la funcion:

L(q1,- s G1yeeesGn) =T =V (1.9.1)
Observacion 17. La condicién de que las fuerzas sean conservativas es necesaria para que exista la funcion V.

Observacion 18. Notese que el lagrangiano es unicamente funcién de las posiciones, de las velocidades y del
tiempo.

Axioma 3 (Principio de Hamilton o principio de minima accién). Sea S un sistema con n grados de libertad

y sean 71,75 € R3;t1,ts € R 3ty < to. Las trayectorias reales que siguen las particulas de dicho sistema entre
dos puntos 71 y T2 en un intervalo de tiempo (t1,t2) son tales que la accion:

to
S = Ldt

t1
es estacionaria cuando se toma a lo largo de los itinerarios reales.

Corolario 5. Por la ecuacion|[1.7.8 en la pagina 44| tenemos que el lagrangiano expresado en funcion de las

coordenadas generalizadas qi,...,q, de un sistema ideal S (tal que las fuerzas totales que actian sobre cada
una de las particulas son conservativas) debe cumplir:
oL d (0L
05=0«& - = =0vVi=1,..., 1.9.2
8(]1‘ dt (6%) ! " ( )

Proposicion 12. Para el caso de una particula sobre la que actia una fuerza conservativa, la sequnda ley de
Newton y el principio de Hamilton son equivalentes.

Demostracion. Por el corolario sabemos que el principio de Hamilton es equivalente a las ecuaciones de
Euler-Lagrange para el lagrangiano. Si representamos la posicion de la particula a través de las coordenadas
generalizadas x, y, z, obtenemos:

OL (LY 0L 0L\ 0L d (0L
ox dt \ox /) oy dt\oy) dz dt \09z)
LOL_d(0Ly oL d(ocy oL _d (oc
or  dt \ 0 dy  dt \ 9y 0z  dt \ 9z

Por otra parte:

En consecuencia:

%—mjc 8—E—m' 6—'C—m'
o g Y 5z ™

docy _ . d oL\ _ . d(OL\ .
a\oz) - "™ w\ey) ™™ w\ez)”"™

oL__ov_, oc_ov_ . oL v _,
ox ox dy Jy Y y Oy
Lo anterior es cierto si y soélo si:
mi = F},
my=F, & F=mr
mz=F,

Q.E.D.
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Observacion 19. El lagrangiano va a resultar una forma muy tutil de resolver los problemas de mecénica ya que
nos va a permitir trabajar con escalares (las coordenadas generalizadas), pudiendo olvidarnos de los vectores.
Ademas, tampoco tendremos que descomponer las fuerzas, lo que evitari errores en ese aspecto. La tunica
desventaja que tiene el método del lagrangiano es que incluye una gran cantidad de derivadas.

1.9.1. Momentos y fuerzas generalizadas
1.9.1.1. Definiciones

Definicion 38. Sea S un sistema ideal tal que las fuerzas totales que actiian sobre cada una de sus particulas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas

q1,--->qn- Se llama momento generalizado i-ésimo a la derivada parcial del lagrangiano con respecto a la
variacion con respecto al tiempo de la coordenada i-ésimas:
oL
;= 1.9.3
DPi 34, ( )

Observacion 20. Notese que no se distingue entre momento angular y momento lineal.

Definicion 39. Sea S un sistema ideal tal que las fuerzas totales que actian sobre cada una de sus particulas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1,---,qn- Se llama fuerza generalizada i-ésima. a la derivada parcial del lagrangiano con respecto a la
coordenada i-ésima.:

oL
Qi = 94,

Observacion 21. Tanto el momento generalizado como la fuerza generalizada son escalares, no vectores.

(1.9.4)

1.9.1.2. Propiedades

Proposicion 13. Sea S un sistema ideal tal que las fuerzas totales que actian sobre cada una de sus particulas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1,---,qn- La fuerza generalizada i-ésima es la derivada con respecto al tiempo del momento generalizado i-
€s1mo.

Qi = pi

Demostracion. Por el corolario 5 en la pagina anterior] es:

oc d oL
0q; S odt 0¢;
~—~
=Q; =Pi
Q.E.D.
Observacion 22. Noétese que:
oL _ 0= oL _ cte
dq; o4
~— ~—
=Q; =Pi

Proposicion 14. Sea S un sistema ideal con N particulas tal que las fuerzas totales que actian sobre cada una
de las particulas son conservativas. Entonces la fuerza generalizada j-€ésima puede expresarse como:

N —
= 37'7;

J— E;
Q; ; 5
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Demostracion. Por la definincion de fuerza generalizada (|39 en la pagina anterior):

_ ot
8q]'

Ahora, por la definicion de lagrangiano ([37 en la pagina 46}):

Qj

o 0@ -V)_or _ov
J 8(]]’ a(]j 8qj
~~

=0

donde el primer término se anula, dado que por la definicién de energia cinética ( [L7 en la pagina 23)), ésta solo
puede depender de las velocidades y nunca de las posiciones. Asi:

Ahora, por la regla de la cadena, podemos expresar ¢; en funcién de las posiciones de todas las particulas
de mi sistema (pues la relacion tiene que ser biyectiva). Asi:

N
oV or;
Q; = Z T 0 Z
=1 i 0Qj
Notese que —% = —ﬁfiV = F,. En consecuencia, llegamos a:
N
_ OF,
© z,: ' 9g;

Q.E.D.

1.9.1.3. Generalizaciones y coordenadas ciclicas
Lo anterior motiva la siguiente definicion:

Definiciéon 40 (Definicion generalizada de fuerza generalizada). Sea S un sistema ideal con N particulas y
sea {qx } k=1, un conjunto de coordenadas generalizadas. Independiente de si las fuerzas que actan sobre las
particulas de S son conservativas o no, llamamos fuerza generalizada (generalizada) a j-ésima a:

N

- OF;
Q; = ZFi@q
i=1 J

Observacion 23. La definicién anterior no es més que una generalizacion de la definicién de fuerza generalizada
para fuerzas conservativas. De esta forma, el concepto de fuerza generalizada adquiere sentido aunque no exista
el lagrangiano de un sistema. Veremos la utilidad de esto mas adelante.

Definicion 41. Sea S un sistema ideal tal que las fuerzas totales que actiian sobre cada una de sus particulas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1,---,qn- Sl el lagrangiano £ no depende de ¢;, se dice que g; es una coordenada ciclica.

q; es coordenada ciclica < L # § (¢;)

Proposicion 15. Sea S un sistema ideal tal que las fuerzas totales que actian sobre cada una de sus particulas
son conservativas y sea L el lagrangiano asociado a dicho sistema S descrito con coordenadas generalizadas
q1,---,qn- S q; es una coordenada ciclica, entonces el momento generalizado asociado p; se conserva. En otras
palabras:

p; =0
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Demostracion. Como el lagrangiano no depende de ¢;, necesariamente, la fuerza generalizada i-ésima debe ser
nula por la definicion [39 en Ia pagina 47]

75%70

Qi

Ahora, por la proposicion [13 en Ta pagina 47}

Qi=0&p; =0
Q.E.D.

1.9.1.4. Ejemplos

Ejercicio 3 (el péndulo (2 coordenadas generalizadas)).

Y

|
|
|
|
|
|
1
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
v

Solucién (Mediante el lagrangiano del sistema). Lo primero es encontrar la ecuacion de ligadura:

2 4+9y? —L*=0

Es decir, nuestro sistema tiene un grado de libertad. Podemos expresar x e y como:
x = Lsenf y = Lcosf

&= Lcos(0)0 y = —Lsen ()0

De esta forma:
T=—-mv*= 1m (9'62 +y2) = 1mL29-2
2 2

V = —mgy = —mgL cos 6

Por tanto:

1 .
L= imL292 + mgL cosf

Calculamos las parciales que aparecen en la ecuacion de Euler-Lagrange (corolario [5 en la pagina 46)):

B—E = —mgLsenf

o0
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i <8E) = mL?0
dt \ 90
Aplicando el corolario [5 en Ta pagina 46] se llega a:

mL*0 = —mgLsenf < 0 = —% sen 6
Solucion (Mediante Newton). Sabemos que la aceleracion tangencial es:

ay = LH
Aplicando la segunda ley de Newton, llegamos a:

—mgsen = mLl < 0 = —%sen@
Solucién (Por momento angular medido desde el punto de anclaje del péndulo).

No = Ioéﬁé:—gserw
—~ ~— L
—mgL sen 6 mL20

Resolucion (parcial) de la ecuacion diferencial resultante:

Primero, debemos notar que:
sod N d o dd db
0=—(0)=—(0)—=—0
dt ( ) de ( ) dt  do

De esta forma:

dé._ g g
@0——Zsen9(:)0d6‘— Zsenﬁd@@
; .70
6 0 2
& @d@:—ﬁ/ sen0d0 o | | = Los0)’ o
90 L 0o 2 . L 0
0o
L\ 9 _
b (9 90) =7 (cos® — cosbp)

1.9.2. Fuerzas de ligadura Q)
1.9.2.1. Definiciones y propiedades

El lagrangiano normal nos es til para obtener las ecuaciones de movimiento, pues uno puede dejar de lado
las fuerzas de ligadura. Sin embargo, en ocasiones necesitaremos conocer dichas fuerzas. En la practica, por
ejemplo, un disenador de una montana rusa necesita conocer el valor de la fuerza normal de la via sobre el coche
para poder construir dicha via.

Del mismo modo que para resolver el problema de hallar extremos de una funcién f condicionados a una

M
variedad diferenciable trabajamos con la funcién ¢ = f — Z AiGi donde {G;},_, ), son las ecuaciones que
i=1
describen la variedad de ligadura de la variedad y los A; son los multiplicadores de Lagrange; aqui vamos a
hacer algo similar con el lagrangiano.
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Definicién 42. Sea un sistema ideal S con N particulas y M ligaduras holénomas Gy, (¢,t) =0Vk=1,..., M.
Supongamos, ademéas que las fuerzas totales que actiian sobre cada una de las particulas del sistema son
conservativas. Llamaremos lagrangiano modificado o «langrangiano primay a:

M
L=L+Y MG
k=1
donde Ay son los multiplicadores de Lagrange y hemos obtenido el lagrangiano £ respecto a un sistema de
coordenadas qi,...,q3n. Es decir, hemos desarrollado el lagrangiano para el mayor grado de libertad posible
(con 3N coordenadas), independientemente de cuél sea el namero de grados de libertad real. De esta forma,
tendremos 3N ecuaciones de Lagrange, M ecuaciones de ligadura, 3N aceleraciones y M multiplicadores \g.

Teorema 9. Sea S un sistema ideal (tal que las fuerzas totales que actian sobre cada una de sus particulas
son conservativas) con M ligaduras holonomas {Gr},_, Y sean qi,...,qsn las coordenadas con respecto a
las cuales hemos hallado el lagrangiano del sistema L. Entonces, se cumple:

0G|, d (0L oL . .
= — — =1,...,3N
; Moq  dt <3Qi> 0q; vi=1...,3

Demostracion. El lagrangiano modificado cumple las ecuaciones de Euler-Lagrange por el teorema de los mul-
tiplicadores de Lagrangeﬂ En consecuencia, por el corolario |5 en la pagina 46}

a oy oL
94 oq;

d(o M 0 M
@@ <aqz (ﬁ—F;/\ka)) — oa: (ﬁ—F;)\ka) =0

Como la derivada parcial es una aplicacién lineal:

aGk aGk_
<3qz kz:: k8(]i>_8‘h_z " oq

k=1

Notese que qu = 0, pues Gi (q,t) # F(¢:) Vi, ya que las ligaduras son holonomas. De esta forma, la

ecuacion queda:
d (oL
dt \ 0q; (’9ql

Pasando el tercer sumando al otro lado, obtenemos:

$o 20 _ (9L 0L
— "¢ dt \9q; 9

oGy,
Z "og

k=1

Q.E.D.
Definicion 43. Sea S un sistema ideal (tal que las fuerzas totales que actiian sobre cada una de sus particulas
son conservativas), cuyo lagrangiano £ hemos hallado mediante las coordenadas ¢z, . . ., g3y . Entonces, llamamos
fuerza de ligadura en la coordenada ¢; a
0G d (0L oL
Zk ’“—( .)— (1.9.5)
dg;  dt \ 9g; 9q;

4Este teorema no es nada facil de demostrar; requiere un estudio profundo del analisis funcional que esta muy fuera del alcance
de este curso. Por ello, simplemente nos creeremos este resultado.
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1.9.2.2. Ejemplos

Ejemplo 10 (El péndulo). Tenemos dos coordenadas:

x =rsenf
y =rcosf
Y una ecuacién de ligadura:
Gl =7r— L= 0

Desconocemos, por ahora, el valor de A\;. Calculemos el £'. Para ello:

1 )
T= 5™ (7’“2 + r292)

V = —mgrcost

1 :
L= 5m (7"2 + r292) +mgrcosf + Ay (r— L)

Calculemos las parciales:

/
%ﬁ = mré? + mgcosd + A\
oc! =mr
or
dafory _
a\aor )"
oL _ mgr sen 6
00
/
%ﬁe = mr20
A
% (8(;9 ) = mr20 + 2mri0

Por el corolario |5 en la pagina 46}

mi = mré? + mgcos + A\

—mgrsenf = mr26 + 2mrid

Usando las condiciones r = L, 7 = 0 y ¥ = 0, llegamos a:

mLf% +mgcosh + A\ =0 A\ = — (mL92 +m90059)

mL*0 = —mgLsenf < 0 = f% sen 6

Aplicando la definicion 43 en la pagina anterior] llegamos a:

Q. = )\1% =M= (mLé2 +mgcos€) =-T
r
0G1
/ = >\ _—
Qo= 5 =0
~—~—
=0
Notese que Q). = —T donde T es la tension a la que se ve sometida la masa. El hecho de que @) = 0 indica

que la tensiéon no tiene componente en el eje 6.
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1.10. Principio de d’Alembert y principio de los trabajos virtuales

1.10.1. Definiciones previas

Vamos a establecer unas equivalencias entre el uso de ecuaciones de Lagrange y las leyes de Newton para la
resolucién de problemas.

’ Lagrange \ Newton
oL _ d (oL _ _
9 _d (a—q) —0 AE =0

AL\ & 3Q; & T ligaduras | subsistemas

Definicion 44. Llamaremos desplazamiento virtual a aquél que no depende del tiempo.

Observacion 24. El lector no debe centrarse en intentar encontrar sentido fisico a un desplazamiento indepen-
diente del tiempo. Es una creacién mateméatica que usamos porque nos es ttil; pero no tiene sentido fisico. La
idea es que el aparato matematico de la mecanica clasica permite ese tipo de desplazamientos y dichos despla-
zamientos tienen propiedades que nos pueden ayudar a resolver problemas reales. Como en un desplazamiento
virtual la variaciéon de posiciéon no depende del tiempo, su derivada respecto al tiempo es cero.

Notacion 1. Usaremos d para indicar un cambio en la posicién respecto al tiempo, mientras que usaremos ¢
para referirnos a desplazamientos virtuales (cambios de posicion «instantaneos» en los que el tiempo no juega
ningan papel).

Definicion 45. Llamaremos trabajo virtual a aquél que realiza una fuerza F sobre un cuerpo C' de manera
que el desplazamiento que le produce es virtual, es decir, éste no depende del tiempo.

Definicion 46. Decimos que una fuerza de ligadura F’ es ideal si no realiza trabajo virtual.

Proposicion 16. Una fuerza de ligadura F' es ideal si y sdlo si es perpendicular al movimiento de la particula
en todo momento.

Demostracion. Para todo t tenemos:
AW =F - di =0< F' L dF
Q.E.D.

Observacion 25. Es importante recordar que las fuerzas de ligadura no son siempre ideales. Resulta tutil recordar
el enunciado de la proposicién anterior para reconocerlas.

Definicion 47. Llamamos fuerza aplicada a aquella que no es una fuerza de ligadura.

1.10.2. Principio de D’Alembert

Teorema 10 (Principio de D’Alembert). Sea S un sistema de N particulas, de manera que sobre cada una de
ellas actia una fuerza F, (la fuerza total que actia sobre la particula i-ésima eliminando las fuerzas de lzgadum
ideales) y una fuerza de ligadura ideal F’ Entonces la diferencia entre la fuerza F, y la fuerza inercial p; no
hace trabajo virtual. En otras palabras, szendo 07; un desplazamiento virtual cualquiera, tenemos:

SW,; = (ﬁi—ﬁi) 6T =0Vi=1,...,N
Demostracion. Partimos de la segunda ley de Newton (ver axioma|l en la pagina 8):
ﬁT7¢ :mﬁ Z];;* Vi = 1,...,N

donde ﬁT,i es la fuerza total que actta sobre la particula i y 7; es la fuerza inercial, que coincide con la fuerza
total. Pasando términos al otro lado, tenemos:

Fri—pi=0Vi=1,...,N

Multiplicando escalarmente por un desplazamiento virtual arbitrario d7;, obtenemos:
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S, — (F'T,i—ﬁi)-5ﬁ:5'5ﬁ=0Vi:1»~--’N

Si ahora sustituimos la fuerza total que actiia sobre cada particula por la suma de la fuerza F, més la fuerza
de ligadura F] que actuan sobre dicha particula; es decir, Fp; = F; + F, obtenemos que Vi = 1,..., N:

5Wi:(ﬁﬁé’—ﬁi)-5@:0@(E—ﬁi)-5ﬂ+ﬁi’-5ﬁ=0
=0

Por hipotesis, las fuerzas de ligadura F! son ideales y, en consecuencia, por la proposicion |16 en la paginal

no realizan trabajo virtual. Por consiguiente, llegamos a:
SW; = (ﬁi—ﬁi) 67 =0Vi=1,...,N
Q.E.D.

Observacion 26. Notese que la §W es una diferencial virtual inexacta. Es virtual, porque es «imaginaria» y no
depende del tiempo y es inexacta puesto que no representa una variacion del trabajo; simplemente indica que
el trabajo es «pequenoy.

1.10.3. Principio de los trabajos virtuales (estatica)

Corolario 6 (Principio de los trabajos virtuales). Sea S un sistema con N particulas. Sean {ﬁz} v las
i=1,...,
fuerzas que actian sobre cada particula, excluyendo toda fuerza de ligadura ideal. En condiciones de estdtica, el

trabajo virtual de cada una de las fuerzas {E} es nulo:
i=1,...,N

(R3]

SW,=F, -6, =0Vi=1,...,N

Demostracion. Por el principio de D’Alembert (teorema anterior), tenemos:
SW; = (ﬁ—ﬁ) S =0Vi=1,....N
En condiciones de estatica es ;5; =0Vi=1,... , N, luego tenemos:

§W,=F, -6f,=0¥i=1,...,N
Q.E.D.

1.10.4. Reelaboracion del principio de los trabajos virtuales

Proposicion 17. Sean i y j dos particulas de un sistema S sobre las que actia una fuerza de ligadura, cuya

s AN
ligadum asociada satisface que 301,05 € R® (dos puntos cualesquiera) tales que ‘Ole ’02]?;’ = cte,

particula j, erj =—FO1R; y Fjel = —FO2R;. Entonces, el trabajo virtual total que realiza F sobre ambas
particulas es nulo. En otras palabras:

’L(—j ](—'L

donde R; € A = R? es la posicion de la particula i y R;c A= R3 es la posicion de la

Fij - 0F + Fjy - 675 =0

. - - J
Demostracion. Llamaremos 7 = O1R; y 75 = O2R;, ast:

17| + [|75]] = cte = 8 (||75]| + ||75]]) =0 <6 (\/FTQJr ﬁ) =0

1 1 7 &
& —=27 - 6 + —=2; - 67y =0 & ST+ 2 07 = 0 & 7y 0T 7y - 07 = 0
2/ e TR IR R

a ambos lados, obtenemos:

Fj;

Multiplicando por F' := ‘
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Fry- 01 + Fry - 075 =0
Como F;Fj =—Fr;y F"jei = —I't; por hipétesis, tenemos:

— —

~Fyej - 07 = Fjey - 07 = 0 Fij - 67 + Fjey - 675 = 0
Q.E.D.

Observacion 27. Las fuerzas de ligadura mas habituales en mecanica cumplen las condiciones de la proposiciéon
anterior. Por ejemplo, si tenemos una varilla recta, cualquier punto O = O; = O; de ella va a cumplir las
condiciones requeridas; en consecuencia, palancas y varillas no realizan trabajo total sobre el sistema. En el caso
de una cuerda con varios dobles, si tomamos O; como el punto més alejado de R; tal que la cuerda entre O; y
R; es una linea recta y tomamos Oy como el punto mas alejado de R; tal que la cuerda entre Oy y R; es una
linea recta, obtenemos que los puntos O; y O satisfacen las condiciones anteriores.

En otras palabras, cuerdas, varillas y palancas no realizan trabajo total sobre el sistema. Esto nos serd muy
atil en la practica.

Ejemplo 11 (Un caso particular de la proposicién anterior). Consideremos esta situacion: Tenemos dos bolas
unidades por una varilla rigida.

AS
=

. La tension realiza trabajo al desplazar el conjunto de dos bolas? Por la proposicion [I7 en Ia pagina anterior]
ya sabemos que no; pero veamoslo de otra forma. Si realizamos una traslacién, vemos que el la tensiéon hace el
mismo trabajo en ambas particulas, pero al ser las tensiones de signo contrario, el trabajo total realizado sobre
el sistema es cero. Nos quedaria una duda sobre las rotaciones. No obstante, aqui ofrecemos la demostracion
completa.

Sabemos:

—

l:'FQ_T

Ju—

Ahora bien, la longitud de la varilla que une ambas masas no varia, es siempre constante. En consecuencia:

Ct6212:l~l:772~'f_"2+_’1-_'1—27’1-7'_'2

Por tanto, también:
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§(1*)=0

De lo anterior, se sigue:
6 (12) =06 (I-1) =2l o=

= 27 - 0Ty + 27 - 0Ty — 27 - 0o — 207 - T = 2 (Ty — 71) (07 — O7)
Asi pues, vemos que:
=0« 0r1 = 0y & traslaciéon

0& o)
{14l &< rotacion

5 (1) =208l

Luego, en las traslaciones y las rotaciones el trabajo neto es nulo.
En la traslacion de nuestro sistema de dos bolas, suponiendo que actuara la fuerza f; sobre la bola 1 y la
fuerza fo sobre la particula 2, llegamos a:

— —

N o SF=67 o P =
f1-0m1 4+ fa-0m2 =0 T1<:>T2f1+f2:0
Es decir, ambas fuerzas deben ser iguales, pero de signo contrario.

Teorema 11 (Principio de los trabajos virtuales [propiedades de la sumal). Sea S un sistema de N particulas.

Sean {Fz} las fuerzas que actian sobre cada una de las particulas, excluyendo las fuerzas como las de la
i=1,..N

proposicion 17 en la pagina 54| y las fuerzas de ligadura ideales. Entonces, en condiciones de estdtica, el trabajo
virtual total cumple:

1!

N
5W:Z L6 =0
=1

Demostracion. Por el principio de los trabajos virtuales (ver corolario [6 en la pagina 54)), tenemos que para
cualquier desplazamiento arbitrario 67; se da:

F. 67, =0V¥i=1,...,N

donde F; contiene todas las fuerzas que acttian sobre la particula ¢ menos las fuerzas de ligadura ideales. A
continuacién, descompongamos F; como:

F“i:ﬁi/_’_ﬁ"i//

donde el término F;” es la suma de las fuerzas que actian sobre i que cumplen las condiciones de la proposicién

en la pagina 54|y el término ﬁz’ contiene el resto de fuerzas. Entonces, tenemos:
(E’H@”) OF =0Vi=1,...,N
Sumando la ecuacién anterior entre ¢ =1 e i = N, llegamos a:

N N N
5W:Z(F?’+ﬁ;').m:omwzzlﬁg.amZﬂ“m:o

i=1 =1 =1

N
Recordando que F; = Z P_;“_j, tenemos:
Jj=1
J#Fi

N N N N N N
sw=S"Fon 43 S L on=0eaw =Y F.m+> Y (ﬁ;;j.m+ﬁ;;i-5@):o
i=1 =1

i:1j =1 i=1 j=i+1

JFi

=0
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Por la proposicion [17 en la pagina 54] el término marcado entre llaves es nulo. Asi, llegamos a:

N
oW = E F! -6, =0
i=1
Q.E.D.
Observacion 28. Es decir, el teorema anterior nos asegura que en condiciones de estatica, uno puede obviar

todas las fuerzas que cumplan las condiciones de la proposicion [17 en la pagina 54| y las fuerzas de ligadura
ideales.

Ejemplo 12. Tenemos la siguiente situacion (el problema de la escalera sin rozamiento):

Tenemos una varilla de masa m y longitud L apoyada en la pared y en el suelo. Imaginemos que nos piden
hallar cuél es el modulo de la fuerza F' para que la escalera esté inclinada un dngulo 6 en condiciones de estética.
Supongamos que la base de la varilla sufre un desplazamiento §7; y el centro de masas de la varilla sufre
un desplazamiento en vertical 07j. Vemos que las normales son fuerzas de ligadura ideales, pues su direccién
es perpendicular a la direccion de 67 y 67;. Por otra parte, podemos ignorar la tensién ejercida por la varilla
porque cumple las condiciones de la proposicion [17 en la pagina 54} En consecuencia, por el teorema

pagina anterior] tenemos:

W = F - 0F +mg- 67, =0
Llamando dzp = |67;] y dyp = |07;|, tenemos:

& Férp —mgéyp =0

Como las dos particulas 4, j (los extremos de la varilla) estan ligados por una fuerza de ligadura, el desplaza-
miento 07; depende del desplazamiento 67;. Si tomamos el angulo 6 como coordenada generalizada, obtenemos:
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xp = Lcosf = dxp =|—Lsend 06| = Lsenb 0

up = gsenﬁ = Syp = ’5005059‘ _ gcosﬂée

Asi, sustituyendo, llegamos a que:

L L
FLsen&tFGfmggcoséM:O@ <FLsent9m92cos€) 50 =0°2°

L
<=>FLS€H9=m950089<=>Ftan9= % s F = ZZiG

1.10.5. Fuerzas generalizadas en funcion del trabajo virtual

Proposicion 18. Sea S un sistema ideal con N particulas. Sean {Fi} las fuerzas que actian sobre
i=1,...,N

cada una de las particulas, excluyendo las fuerzas de ligadura ideales. En condiciones de estdtica, la fuerza
generalizada j-ésima es igual al cociente entre el trabajo realizado por la fuerza F; asociada y la variacion de la
coordenada q;; es decir:

ow

Q=5

Demostracion. Mediante la regla de la cadena, podemos expresar un desplazamiento virtual cualquiera 07; en
funcién de las variaciones virtuales de las coordenadas que usamos para estudiar el sistema {¢;},_, , como:

ory
ory = 24, —0q;
j=1
La regla de la cadena queda como un sumatorio porque la funcién que relaciona las coordenadas generalizadas
. f: R™ — R3 . . ] o7 a7 )
_ con 7; es de la forma _, cuyo jacobiano seria J f = ( Lo 2 ) Notese
{Qk}ka...,n i (qrs-- qn) — T Yo f 9q1 9qn

que

or; (87"2” or? or?
an' ﬁqj ’ qu ’ an
expresion hallada para d7; en el corolario |6 en la pagina 54] obtenemos:

) es un vector, donde los superindices indican las coordenadas. Sustituyendo la

Mz

Za:;(?q] =0&

i=1 j=1

& W = ZZF or 911 =0

Jj=11i=1
\—,—/
=Q,

Por la definicion generalizada de fuerza generalizada (|40 en la pagina 48) @, es lo indicado entre llaves en la
formula. Por consiguiente, debe ser:

SW =Y Q;6¢; =0

j=1

Ahora, si dividimos con respecto a d¢; a ambos lados, obtenemos:

Z Q304

oW j=1 -
= ;de

0q;
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0q;
Como las coordenadas generalizadas ¢y, ..., q, son linealmente independientes entre si, es 5—?; = ;5. Por
tanto: ’
W
i Z Qjdi; = Qi
% j=1
Q.E.D.

1.11. Ecs. de Lagrange para sistemas con fuerzas no conservativas

1.11.1. Sin ligaduras

Lema 3. Sea S un sistema ideal de N particulas y sea {qk}kzl...‘,n un sistema de coordenadas generalizadas
del sistema S. Entonces, si 07; es un desplazamiento virtual cualquiera, se cumple:

N n

. d (0T oT
Shor =3 |5 (o) — o | by
¢:1pl ' j [dt <an'> aqjl &

*Demostracion (No entra). Por la definicion de momento lineal y al ser ‘Z—T = 0, tenemos:

Ny Yd oy "L d

> g om =Y (mit) 0T =Y m S o7
‘ — dt : dt ~~~
i=1 i=1 i=1 ~~ —u

=dv

En la ecuacion anterior aplicamos: d (uwv) = du-v+u-dv < u-dv = d (uw) — du - v, de forma que obtenemos:

s N[ A s e
;pi-c;ri:;[mdt(én-m)—mri-dt(éri)}

Ahora, expresemos 07; en funcion de las coordenadas generalizadas. Recordemos que era:

oT; = oqg; Vi=1,...,N
T . an q; Vi , )
En consecuencia:
N N n n
. d |- or; . d or;
Sopiom=>"|m— | 1) 20q; | —mii— ——4q;
P P dt = 6(]]' dt = aq]'
Como la derivada es una aplicacion lineal:
N N n n
. d (. 0r; - d (0r;
i - 67 = R sgy ) —m > e (b
Soiien=2 w3 (o) i (5 )

_Z i mi f@(; —mf""i @5
o dt l@qj 4 ldt 8qj K

i=1 | j=1

Por la propiedad distributiva, tenemos:

de manera que:
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Jj=1

iy " [ g or; a or;
3 ann 35 (migan) - S (G )|
=1 =1

Asombrosamente, por el teorema de la funcién inversa, se cumple:

or;
or,  omdt  OF dt g O
8q]' B 8q]‘ dt — dt 8qj B aQJ 8q]
dt

Ademaés, como dg; es un desplazamiento virtual; es decir, por defincién, no depende del tiempo, llegamos a:

N o7,
;ﬁi.éf’i = Z Lz: pm (mrl >5qj Zmrldt <8T )5%]

Toda funcién posicion en fisica debe ser al menos de clase C'(2) (para que tenga sentido hablar de acelera-

ciones); en particular 7; € C® V¥i=1,... N, de manera que su parcial respecto a g; y su derivada respecto al
tiempo conmutan:

Vi=1,...,N:j=1,....n

PNRLEDY [Z T (mngn> 0¢; — Zmﬂ 877 5%‘1
i= Jj=1 1 94;

Ahora, nétese que por la regla de la cadena, tenemos:

Por tanto:

Y & d o Yo
Zpi-érizz Zdt mri@ 5%—27”7%'8*%5%‘

Como la derivada es lineal, se puede meter el sumatorio dentro de la derivada en el término de la izquierda.

Asi:
[ _or _or
_8qj _aqj
N o
sz oF; = Z <Z mrl ) dqj — z:mﬁa—qZ 5q; | =
j=1 i=1 J

i {dt (6%) } )

J Jj=1

ory _or|..
dt 9q;) gy ) Y

Teorema 12. Sea S un sistema ideal de N particulas y sea {qi},_, , un sistema de coordenadas generalizadas
del sistema S. Entonces, se tiene la siguiente relacion:

d (01 01
—(=)-=—=0Q,|Vj=1,...,n 1.11.1
dt (8%) Jq; v Y ( )

Q.E.D.

donde Q; es la fuerza generalizada j-ésima.
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Demostracion. Por la segunda ley de Newton (ver |1 en la pagina 8)), tenemos:

Fo=p,oF—p=0Vi=1,...,N

Multiplicando escalarmente por un desplazamiento virtual arbitrario d7; y sumando a todas las particulas,
obtenemos:

Por el lema 3 en la pagina 59|y recordando como podemos expresar el desplazamiento virtual en funcién de
las coordenadas generalizadas:

o =Y s Vi=1,...,N
el

obtenemos:

Mo o ar\ oT
2 iga% le[dt <8qj> 8%}5% '

n

d (0T oT
o WY I P
= dt \ 94; dq;
Por la definicion [0 en la pagina 48] @; es lo indicado entre llaves en la férmula. Asi, obtenemos:

Sam£[() - 2]a-$lo [4(0) 2]

Jj=1

=0
El término con la llave por debajo debe ser forzosamente cero, pues la igualdad debe ser cierta para cualquier
variacion virtual dg;. Q.E.D.

Observacion 29. Notese que lo anterior es equivalente a lo siguiente en Newton:

W = AT

Corolario 7. Sea S un sistema ideal de N particulas tal que las fuerzas totales que actian sobre cada una
de las particulas son conservativas y sea {qi},_, , un sistema de coordenadas generalizadas del sistema S.
Entonces, debe cumplirse:
d <8T> oT ov .
— == -——=—=Vj=1,...,n
8qj 3qj an'
Demostracion. Como las fuerzas totales que actiian sobre cada una de las particulas son conservativas, sabemos
que existe una funcion V (7, ...,7n) tal que:

ov
or;

Entonces, aplicando la proposicion 14 en la pagina 47] llegamos a:

Fi=-VV(F) =— Vi=1,...,N

N — N

= OF; oV Or; av .
=) Fi—=) ———=——Vj=1,...,n
QJ z:zl 8%‘ z:zl 67‘1' (9(]j an' J

6 D oV 07
pues 5t =0Vi#jy o aq; aq Por consiguiente, aplicando el teorema anterior, debe cumplirse:
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d (0T oT ov
R —_— _7:Q‘:——V':1,...,n
dt (5%) dq; ! dg; 7
Q.E.D.

Ejemplo 13. Tenemos el péndulo de siempre:

La energia cinética es:

T = —mi%6?

Calculemos el trabajo virtual:

O0W = mg - 07, = —mgsen (6) 156
De esta forma por la proposicion

oW
Qo = S0 = —mgl sen

Obtengamos las siguientes derivadas parciales:

o _
00

or _
o0

4 <6T> = mi%f
dt \ 99

Aplicando el teorema [12 en la pagina 60] llegamos a:

0 ml?6

En consecuencia:
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mi?0 = —mglsen § <

@éz—%sen@

Teorema 13. Sea S un sistema ideal de N particulas y sea {Qk}kzl,...,n un sistema de coordenadas generalizadas

del sistema S. Consideramos Q; = Q;O"“”’““”“ + QF° conservativa \jj — 1. .. n. En este caso, la siguiente
propiedad debe satisfacerse:

d < oL > oL i .
— | == | — == = Qo comservavalyi — 1. ...,n (1.11.2)
dt (’9qj 8q]‘ J
b av .
donde L =T —V es tal que Q57" = —a Vi=1,...,n.
J
Demostracion. Sea V (q1,...,q,) tal que:
. ov
qunservatlva —__ 7 VJ — 1’ !
J g,
Debe ser:
ov
—=0Vj=1,....n
8qj‘

en consecuencia;:

4 (or\ _d (or OoV\N . _,
it \og; ) ~dt\oag o) 7" 0"

Como la derivada parcial es una aplicacién lineal, se sigue:

d/or ov\ d [ o
e oV _ 2 (9 ip_ =1
dt (aq'j aq'j) dt (aqj< V)> Vi=l...n

Y, por la definicion de lagrangiano ([37 en la pagina 46), se sigue:

d 0 d (0L .

Recordemos, que, por hipétesis, era:

Qj _ Q;OIlservativa + Q;_IO conservativa V_j _ 17 )
) ov
Ahora bien, por la proposicion [14 en la pagina 47| sabemos que Q;onser"amas =5 de forma que:
q;
Q] — _g;j Q;IO conservativas vj — 1’ L ’n
Utilizando el teorema [12 en la pagina 60|y todo lo hallado anteriormente, tenemos:
d (8T) oT
=) = = Q; Vi=1,...,ne
dt \9q¢; ) 0q; , —
—_7V_+Ql?o conservativas
9q ;
N i (M) _ al _ _87‘/ +Qr'lo conservativas vj =1.... ne
dt q] 8qj 8Qj 7 ’ ’
d ( oL > or oV :
<:> Bl hdad _ + R — QHO conservativas VJ — 1 7 <:>
dt \ 9¢; dq;  0q; J B
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d (oL oT IV i .
— = = _ 2| = (Qno conservativas \/; _ 1’.“7”’
((9%' ) (561; dq; ) @ /

De nuevo, al ser la derivada parcial una aplicaciéon lineal:
d (0L 0 .
el Bhdad T_-V _ (Hno conservativas Vi=1....
() - (Grr-v) =@ j=1oem

De nuevo, por la definicién de lagrangiano (|37 en la pagina 46)), tenemos:

d aﬁ a£ no conservativas
o () - =Q Vji=1,...,n

8qj aqj
Q.E.D.
Observacion 30. Lo anterior es equivalente en Newton a:
Whe = AE
1.11.2. Con ligaduras
Teorema 14. Sea S un sistema ideal con M ligaduras holonomas {Gk}kzl,“.,M Y Sean qi,-..,qsN las coorde-
nadas con respecto a las cuales hemos hallado el lagrangiano del sistema L. Consideramos Q; = Q;‘msermma +
Q7° conservativa \jj — 1. . n. En este caso, la siquiente propiedad debe satisfacerse:

M

8Gk no conservativa __ i oL _ oL -
Z)\kTi+Qj = <6q1> 90 Vi=1,...,3N
oV Vj=1,...,3N.

8q]

Demostracion. El lagrangiano modificado cumple las ecuaciones de Euler-Lagrange por el teorema de los mul-
tiplicadores de Lagrangeﬂ En consecuencia, por el teorema [13 en la pagina anteriort

d aﬁl aﬁ, no conservativa
(%) -5 - ”

donde L =T —V es tal que Q;‘O’nservativa _

d 9 M ) M
—_ _ — (Ono conservativa
=4 ar (aql (ﬁ + E /\ka>> 90 <£ + E )\ka> Q]

Como la derivada parcial es una aplicacion lineal:

M

oL aGk oL aGk no conservativa
T ( Z " Bd: ) -5 Ak 34 = @5 ti

K2

Notese que %C;f = 0, pues Gk (¢,t) # F(¢:) Vi, ya que las ligaduras son holénomas. De esta forma, la
ecuacion queda:

M

d oL oL G, __ ,Hno conservativa
il5) "2 MGy O

Pasando el tercer sumando al otro lado, obtenemos:

M
dG, ; d (oL oL
)\ no conservativa - _
,; g T dt (aqi> d4;

Q.E.D.

5Este teorema no es nada facil de demostrar; requiere un estudio profundo del analisis funcional que estd muy fuera del alcance
de este curso. Por ello, simplemente nos creeremos este resultado.
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1.12. Hamiltoniano

1.12.1. Definicién y primeras propiedades

Definicion 48. Sea S un sistema ideal de N particulas tal que las fuerzas totales que actiian sobre cada una
de las particulas son conservativas y sean {gy},_, , un sistema de coordenadas generalizadas del sistema S y

{pr},_; ,, un conjunto de momentos generalizados de S. Llamamos funcién hamiltoniana o hamiltoniano
a:

7'[((]1a~~~7CImp1>~~~apmt) = ZPJQJ_E(CIM,QmC]h,th)
' =T-V

Proposicion 19. S un sistema ideal de N particulas tal que las fuerzas totales que actian sobre cada una
de las particulas son conservativas y sean {qr}t,_, , un sistema de coordenadas generalizadas naturales del
sistema S y {pr}p_y , un conjunto de momentos iqenemlizados de S. Entonces, el hamiltoniano del sistema
coincide con la energﬁ’a?

H=T+V=FE

Demostracion. Por la definicion de energia cinética ( [L7 en la pagina 23), tenemos:

N
1 9
=3 E m;r;
i=1

Por la regla de la cadena, podemos expresar 7; en funcion de las velocidades ¢1, ..., ¢, como sigue:

Z@n@q] 87“1_"@,‘_'_@
<Dy 0t O = 0g, " ot
=0

—

87“2-
Como las coordenadas son naturales, debe ser — = 0. De esta forma:

ot

Zarz.

8(]]

En consecuencia:

. or; . or; i or; .
= Z 0q; 9g; Z 3(1; (Z 5% )

j=1
Asi:
1 or; or;
1 . 7 .
3y (S5 ) (3 o)
Por la definicién de momento generalizado (ver [38 en la pagina 47), tenemos:
oL T 1 OF; o~ OF; or . on | & "rar
pu:7:7:7zml 2 z. z.J 7 Z Z ) z.
Gu  OGu 24 qu = 8Qk 9qu -~ =
, : : . . ) or;
Para hallar la derivada anterior hemos tenido en cuenta lo siguiente: lo primero, nétese que 2% \3 =0
qu qj
Vi=1,...,N;j =1,...,n. Ahora, para realizar la derivada hemos aplicado la regla del producto. Notese que
0 " oF or
(i) -
8Qu j=1 an GQu

A continuacion, tenemos:
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n

zpuqu YT

u=11i=1 j=1

81"z 87“1 . or; . " 07
QJQU ZmL (Z > 87(1-% =2T
. j=1 j

Finalmente, aplicando la definicién de hamiltoniano (ver [48 en la pagina anterior]) y la de lagrangiano (ver

en la pagina 46|), tenemos:

H=> pugu—L=2T—(T-V)=T+V=E

Q.E.D.

Corolario 8. S un sistema ideal de N particulas tal que las fuerzas totales que actian sobre cada una de las
particulas son conservativas y sean {qi},_, , un sistema de coordenadas generalizadas naturales del sistema
S y{pr}i_q , un conjunto de momentos generalizados de S. Si, ademds, el sistema es conservativo, tenemos:

E = H = cte

Observacion 31. Si no se cumplen las condiciones mencionadas en la proposicion [19 en la pagina anterior]
podemos intentar conseguir un término 7’ que contenga la dependencia respecto a la velocidad de V' y un
término V'’ que contenga la dependencia respecto del tiempo de T. Es decir, conseguir un H = 7" + V' que
cumpla los requisitos anteriores. Notese que en ese caso H # E.

1.12.2. Conservacion del Hamiltoniano

Teorema 15. Sea S un sistema ideal de N particulas tal que las fuerzas totales que actian sobre cada una de
las particulas son conservativas y sean {qr},_, , un sistema de coordenadas generalizadas del sistema S y
{pr}r_1 , un conjunto de momentos generalizados de S. Sea H el hamiltoniano del sistema. Entonces, si el

lagrangiano no depende explicitamente del tiempo, el hamiltoniano se conserva.

dH oL
— =0 —=0
dt ot
Demostracion. Estudiamos como varia el hamiltoniano en funciéon del tiempo:
H = ijQj - L
j=1
Aplicando la regla de la cadena, tenemos:
dH & a/: oL . oL
— = (B4 +psdy) — Z ket Rl
j=1 j=1 J, N
71)3 =Pj
LN - oL oL
=D (sd +pids) = 3 (Pids +sdy) = 5 = =5/
j=1 j=1
0q; 04
Quizas sea importante recordar ¢; = % y §; = % Por tanto:
oL dH
—=0& —=0&H=ct
ot dt = cte

Q.E.D.
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1.12.3. Ecuaciones de Hamilton

Teorema 16. Sea S un sistema ideal de N particulas tal que las fuerzas totales que actian sobre cada una

de las particulas son conservativas y sean {qi},_, , un sistema de coordenadas generalizadas del sistema
Sy {pk}k:L,

. un conjunto de momentos generalizados de S. Sea H el hamiltoniano del sistema. Entonces
Vi=1,...,n se cumple:

1. Primera ecuacion de Hamilton:

oH
= 1.12.1
op ¢ ( )
2. Sequnda ecuacion de Hamilton:
oH
= —p; 1.12.2
9q, ~ P ( )

n
Demostracion. Sea ¢; una coordenada concreta y recordemos H = E pjg; — L, entonces:

=1

1. Como L =35F(q1,---,qn,4q1,---,Gn), tenemos por la regla de la cadena:

n

ap] aqj " | ac ag; oL dg
31% Z Z Pig Z dq; Op; * dq; Opi
Jj= =1 | <o ~—

=pj =0

n

_QZ—’_ZpJa Z]a(b:.i
j=1

Ip; 0 si i#j
;= ¢; pues —> = 0;; = L es los momentos generalizados no depende o de
Zaplq] q; pues Bpl ij 1 si ’L:] pu momen gnr 17 S 1L pen 1 un

op; oL

Di . _ g;.- Por otra parte, —— = p;
Op; 8Qj
porque esa es justo la definicion de p;. En el ultimo sumando de la primera linea hemos aplicado la regla
de la cadena para derivadas parciales, sin embargo como las posiciones no dependen de los momentos

% = 0. En consecuencia:
Ipi oH
Ip; T
2.
oH B n aq] n apj oL oL 8%
dq ; 7 0q ; 9q; 7 Oai 2 94; 9qi
=0 =pi =pj
n aq] n aqj
=D Pt =D Pigl —Pi= b
= 5q1 J=1 8 7
apj

9 0, pues los momentos generalizados nunca dependen de las posiciones. % = Dj, porque esa es la
di qi

oL
propia definicién de p;. Por dltimo, —— = Q; = p; por la deﬁnicién y la proposicién De esta forma,
9g;

llegamos a la segunda ecuacion de Hamilton:

Q.E.D.
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Observacion 32. Las ecuaciones de Hamilton se dicen candnicas conjugadas.

Observacion 33. El hamiltoniano resulta especialmente ttil si las coordenadas son ciclicas. Cabe resaltar que
siempre se pueden realizar transformaciones de Jacobi de manera que todas las coordenadas sean ciclicas (algo
que queda fuera del alcance de este curso). En ese caso, por el corolario |5 en la pagina 46}

oL d | oc

T 0q;  dt | 94
—

=Ppi

0

=0 <& p; = cte

Ahora, por la primera ecuaciéon del teorema [16 en la pagina anteriort

on =q'i<:>qi=0+/qidt
31%‘

1.12.4. Ejemplos
Ejemplo 14 (El péndulo). Tenemos:

Hallamos el lagrangiano:

1 .
L= 5m1292 + mgl cos
Y el momento generalizado:

oL :
- — = l26
Po Y, m

Escribimos el hamiltoniano:

. . (1. 1,
H=pel— L (9, 0) — mi%6? — (2ml292 + mgl cos 9) = Smi*? —mgl cos §

HEW_/ -

Notese que en este caso H = E. Tenemos que conseguir expresar el hamiltoniano de manera que no dependa
de la velocidad, haciendo que aparezca el momento en su lugar:

2
H(0,pp) = 2717)512 — mgl cos 0

Ahora podemos aplicar la primera ecuacion del teorema [16 en la pagina anterior}
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OH ; ; Do
It _ g g= PO
Opg - mi?

Y la segunda ecuacién del teorema |16 en la pagina 67}

oH

90

Notese que al haber obtenido el hamiltoniano a través del lagrangiano, la primera ecuaciéon de Hamilton
nos dice lo que ya sabemos del lagrangiano. En el caso de que hubiéramos podido escribir el hamiltoniano sin

haber escrito el lagrangiano, la primera ecuacién de Hamilton nos habria permitido sacar la velocidad. En este
ejemplo lo siguiente es cierto:

= —pg = —mglsend = pp = mi*0 < 6 = —%sen@

8—£:0:>d—H:0<:>H:cteEéHE:cte
ot dt

Notese como hemos obtenido la ecuacion del movimiento de siempre.

Ejercicio 4. Ecuaciones de Hamilton para una particula en un campo cuyo potencial depende tnicamente de
la distancia al centro.

Soluciéon. Al depender el potencial inicamente de la distancia al centro, sabemos que la fuerza sera:
. av
F=——r
dr

En cualquier caso, aqui tenemos una representacion grafica de la situacion:

Y

><

Vamos a usar coordenadas polares:

T =rcosf

y =rsenf

De forma que:

1 )
T=gm (r‘2 T r292)
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E:TfV:%m<7*2+r29'2)fV(r)

Notese que £ # §F (), de manera que 6 es una coordenada ciclica. Eso implica que pg = cte, como hemos
probado antes. Escribamos el hamiltoniano:

: 1 .
H (r,pr,0,p0) = pri* + potl =L = Sm (¢2 + 7‘292) +V(r)
N— 2

=27
pot + pofl = 2T por lo siguiente:
oL .
r — <~ = r
P or
oL 9
Py = — =mr-f
Y

. ) 1 .
Pt + pof = mi? + mr26* =2 (2m {1*2 + 7‘292}) =2T

Ahora tengo que escribir el hamiltoniano en funcion de los momentos:

1 2
H<p§+p">+v(r)

2m 72

Aplicando la primera ecuacion del teorema [I6 en Ta pagina 67] llegamos a:

7;787{7&7
~Opr m

. OH pe )

0:7:7:0
Opg  mr?

Ahora si usamos la segunda ecuacion del teorema [I6 en la pagina 67] obtenemos:

. OH py OV
—Pr= T =—— 5+ 5
or mr or
OH .
—py = %=0©pg=cte@mr29:cte
De la primera ecuaciéon obtenemos, al ser p,, = mi#:
P2 dv

mr = - —
mr3 dr

Ahora definimos un potencial efectivo U de manera que:

_dU B pa dVv

— ==t &
dr mr3  dr
2
Py
U=V
+2mr2

En consecuencia, yo puedo escribir el Hamiltoniano como:

=cte

L, pZ
HZ%pT‘FW—FV(T):s(T,pT):Cte
—
=T —U

Por consiguiente, al ser H = E, podemos escribir la energia como:
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1 .
F = im’f‘z —+ Ucﬁ' (7“)
Podemos combinar las ecuaciones anteriores y obtenemos:
2

—= = mré?
mr

que es la ecuaciéon de una fuerza centrifuga.
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Lain-Calvo

Capitulo 2

Movimiento oscilatorio

2.1. Ejemplos introductorios

= Un muelle con una constante elastica k£ unido a una masa m que no esta inmévil.

= Un péndulo

= Magnitudes fisicas en un circuito. Por ejemplo: la tension en el circuito RLC sufre una oscilaciéon amorti-
guada.

= Una onda
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2.2. Preliminares matematicos

Definicion 49. Llamamos polinomio caracteristico de una ecuacion diferencial lineal de coeficientes constantes
al polinomio que se obtiene al intercambiar derivadas por potencias.

Proposicién 20. Sean n € N ey (t) : I € R — R una funcion de clase C™. Si y(t) cumple la ecuacion
diferencial lineal homogénea de coeficientes constantes:

Y™ () + an_1y" T () + -+ agii () + a1 () + agy () = 0

donde a; € RVi=0,...,n— 1. Entonces la solucion general y (t) debe ser de la forma:

,
y(t)=>_ eMpi(t)
i=1
donde A1, ..., A\ € C son las raices distintas del polinomio caracteristico:
p(s)=s"—ap_18" "'+ +ars+ag
y pi (t) € C[t] es un polinomio complejo arbitrario de grado menor que m; (la multiplicidad de la raiz \;).

Proposicion 21. Seann €N, y(t) : I C R — R una funcion de clase C™ y f (t) : I C R — R una funcion
continua. Sty (t) cumple la ecuacion diferencial lineal no homogénea de coeficientes constantes:

Y™ () + ap_1y™ Y () + -+ aof () + a1y () +aoy () = £ (2)

donde a; e RVi=0,...,n— 1. Entonces la solucion general y (t) debe ser de la forma:

y (@) =yn () +yp (1)

donde y, (t) es la solucion general de la ecuacion homogénea asociada y™ (t) + an_1y™=D (t) + - +axii (t) +
a1y (t) + aoy (t) =0 ey, (t) es una solucion particular de la ecuacion no homogénea:

t

w) = [ A¢-n s
to

para un tg € I cualquiera donde v (t —7) es la solucion de la ecuacion diferencial homogénea ¥ (1) +

U1y "V ()4 Faod () +a15 (t)+aoy (t) = 0 con condiciones iniciales y (0) = 0,...,4"=2 (0) = 0,y~D =

1.

Proposicion 22 (Metodo de los coeficientes indeterminados). Sean n € N, y(t) : I C R — R una funcion
de clase C™ y f(t): I CR — R una funcion continua. Supongamos que y (t) cumple la ecuacion diferencial
lineal mo homogénea de coeficientes constantes:

Y (1) + an_1y @Y () + - azii () + aag (8) + aoy (1) = £ (1)
donde a; ERVi=0,...,n—1. Si f(t) es de la forma:

F)=> e"'P(t)
=1

donde P; (t) € Clt] es un polinomio complejo de grado r; y p; € C. Entonces, una solucion particular de la
ecuacion no homogénea es:

n
vy (£) = D™ R () e
=1

donde m; es la multiplicidad de u; como raiz del polinomio caracteristico dey (t) y R; (t) € C[t] es un polinomio
de grado r;.
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Proposicion 23. Se dan las siguientes igualdades trigonométricas:

elI _|_ e—’L(L‘ elll) _ e—zm

cosx = ——— seny = ————
2 21

et +e " et —e "

coshr = ——— senhy = ———
2 2

e =cosx+isenzw

Proposicion 24. Cualquier ecuacion diferencial de la forma:
T4+at+fx=C

C C
donde a, 3,C € R admite un cambio de variable x =y + E Sy=x— E que transforma la ecuacion en una

homogénea:

i+ay+By=0

donde o y B son las mismas que en la ecuacion original.

C
Demostracion. Haciendo el cambio de variable z = y + B, llegamos a:

d? C d C C
(10 5) v (v 5) +a (v 5) =0

C
<ﬁ>jj+ay'+6y+ﬂ§:C¢>@+ay+6y+0:0@

Si+ay+pPy=0
Q.E.D.

Definicién 50. Decimos que una soluciéon z (t) de una ecuacion diferencial cualquiera es asintéticamente
estable si:
lim x (t) =0

t—o0

2.3. Conceptos previos
Hecho 1 (Ley de Hooke). La fuerza recuperadora de un medio eldstico en un movimiento unidimensional es:
F(z)=—kzx

donde k € R > k > 0 es la constante recuperadora del muelle y x representa el desplazamiento del muelle desde
su posicion de equilibrio xcq.

Definicion 51. Decimos que una magnitud fisica x describe una oscilaciéon armoénica simple si puede
expresarse como combinacion lineal de un seno y un coseno. En otras palabras, si x (¢) es de la forma:

x (t) = Acos (wt) + Bsen (wt)

para algunos A, B,w € R 3 w > 0 donde w recibe el nombre de frecuencia angular o pulsacién. Sus unidades

en el sistema internacional son %.

Definicion 52. Llamamos periodo de una oscilaciéon armoénica simple a:

T::Q—ﬂ-
w

Se corresponde con el tiempo transcurrido entre dos méximos (o dos minimos) de la magnitud fisica x.
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Definiciéon 53. Llamamos frecuencia de una oscilacién armoénica simple a:

1
v=f=—
T
cuyas unidades en el sistema internacional son s~ = Hz.

Definicion 54. La oscilacién de una magnitud fisica = se dice lineal si satisface la ecuaciéon diferencial:

I+ ai+ Br = f(t)
para algunos «a, 5 € R y para alguna funcion f (¢) continua en su dominio.

Definicion 55. Una oscilacion lineal de una magnitud fisica x se dice libre si satisface la ecuacion diferencial:

T+ at+ Bxr=0
para algunos «, 3 € R.

Definicion 56. Una oscilacion lineal de una magnitud fisica x se dice forzada si satisface la ecuacion diferencial:

&+ ad + Br = f(t)
para algunos «, 8 € R y para alguna funciéon f (¢) # 0 continua en su dominio.

Definicion 57. Llamamos energia potencial elastica a la asociada a una particula que sufre una fuerza con
la forma matematica de la ley de Hooke (ver hecho |l en la pagina anterior) por el hecho de estar desplazada
una cierta distancia con respecto al punto de equilibrio.

Proposiciéon 25. La energia potencial eldstica de una particula puede expresarse como:

1
Ve (2) = 5]4:3524—0

donde k € R 3 k > 0 es la constante recuperadora y C € R es una constante.

Demostracion. Partimos de la ley de Hooke (ver hecho [I en la pagina anterior) y de la definicién de energia
potencial (ver definicion |19 en la pagina 24). De esta forma, tenemos:

1
Ve(x):—/Fdx+0=—/—k:xda:+C:§kx2+C’

donde C es una constante. Q.E.D.

2.4. Oscilaciones lineales no amortiguadas (armonicas)

Definicion 58. Decimos que una oscilacion lineal de una magnitud fisica x es no amortiguada si satisface la
ecuacion diferencial:

i+ wiz = f (1)
donde w € R 3 w > 0 es la frecuencia angular o pulsacion.

Definicion 59. Se dice que un oscilador lineal no amortiguado tiene posicién de equilibrio no nula si
satisface la ecuacion diferencial:

i4+wlr=C
donde w € R 3 w > 0 es la frecuencia angular o pulsacion y C' € R.

Proposicion 26. La posicidn x de una particula de masa m # 0 sometida a una fuerza eldstica (ley de Hooke,
ver hecho |1 en la pdgina antem’oﬁ) describe una oscilacion lineal libre no amortiguada con w? = £

g
Demostracion. Partimos de la segunda ley de Newton (ver axioma|l en la pagina 8):
k
mi=F=—kemither=04L2 i+ —x=0
m
Por analogia con la definicién debe ser w? = % Q.E.D.
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2.4.1. Solucién de la ecuacion diferencial
2.4.1.1. La solucién como exponenciales complejas

Proposicion 27. Cualquier oscilacion lineal libre no amortiguada de una magnitud fisica © puede ser expresada
de la forma:

z(t) = Ae™" + Be ™t
donde A, B € C.

Demostracion. Partimos de la ecuacion diferencial de la definicion [58 en la pagina anteriort

Ft+wlr=0

Obtenemos el polinomio caracteristico (ver definicion 49 en la pagina 73 de la ecuacion diferencial anterior:

/\1:iw

2.2 : =
p(s)=s"4w’=0& (s+iw) (s — iw) 0@{)\2@

En consecuencia, por la proposiciéon [20 en la pagina 73| tenemos que la solucién general de nuestra ecuacion
diferencial es:

x (t) = Ae™' 4 Be™ ™!
donde A, B € C. Q.E.D.

2.4.1.2. La solucién como seno y coseno
Lema 4. Las funciones e’ y e~ son linealmente independientes Vt € R.
Demostracion. Si e™! y e~** son linealmente independientes V¢t € R, entonces debe darse:
e+ BT =0 a=8=0
El sentido <« es trivial. Para el sentido = supongamos inicialmente «, 5 # 0, entonces llegamos a:
aeiwt T ﬁe—iwt =0 aeiwt _ _ﬁe—iwt
Evaluando en t = 0, llegamos a:
a=—pf
Luego deberia ser:

aezwt:ae iwt vtEROHé ezwt:e wt V€ R

lo que es absurdo. Por tanto, necesariamente es « = 0 = 8 y las funciones e** y e~™?' son linealmente
independientes. Q.E.D.

Proposicion 28. Cualquier oscilacion lineal libre no amortiguada de una magnitud fisica © puede ser expresada
de la forma:

x (t) = Acoswt + Bsenwt
donde A, B € R.

Demostracion. Partimos de que toda oscilacion armoénica libre no amortiguada admite una solucién como la
dada en la proposicion

z(t) = Ae™' 4 Be™ ™t

Ahora bien, z (t) € RVt € R. En consecuencia, x (t) debe coincidir con su complejo conjugado:

z(t) =T (t) & Ae™' + Be ! = Aeiwt + Be—iwt = Aeiwt 4 Be—iwt = Aeiwt 4 Be—iwt =
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=A™t + Be ™ = Ae~™! 4 B! & Ae™! + Be ™ — Aem™t — Bt = 0 &

& (A-B)e'+ (B-A)e ™ =0

Por el lema |4 en la pagina anterior] ¢! y e~ son linealmente independientes. En consecuencia, debe ser:
b

A=B =
{ B_A® A=B
Asi, obtenemos que podemos expresar x (t) como:

x(t) = Ae™t + Aem ™t

Tomando A = a + bi con a,b € R, tenemos:
x(t) = (a+bi)e™ +(a—bi)e ™ =q (ei“’t + e_i”t) + b (ei‘”t — e‘“’t) =

ezwt + e—zwt ezwt _ e—zwt

=2 ——— 42— = 2qcoswt — 2bsenwt
2 21
[ — |y —
=cos wt =sen wt

por las igualdades dadas en la proposicion [23 en la pagina 74} De esta forma, tomando A’ = 2a y B’ = —2b,
llegamos a:

x (t) = A coswt + B’ sen wt
donde claramente A’, B’ € R, pues a,b € R. Q.E.D.

Corolario 9. Toda oscilacion libre lineal no amortiguada es armdnica simple.

Demostracion. Trivial, ya que la solucién dada en la proposicién anterior es armonica. Q.E.D.
2.4.1.3. La solucién como coseno desplazado en fase

Lema 5. Las funciones senwt y coswt son linealmente independientes YVt € R.

Demostracion. Las funciones sen wt y coswt serén linealmente independientes si y s6lo si:

asenwt + feoswt =0 a, =0

El sentido <« es trivial. Para el sentido = supongamos inicialmente «, 5 # 0, entonces llegamos a:

asenwt + fcoswt = 0 < asenwt = — coswt

Evaluando en ¢ = 0, llegamos a:

0=-8

Pero 8 # 0 por hipétesis. Por tanto, llegamos a un absurdo y necesariamente debe ser 5 = 0. Entonces nos
queda:

asenwt =0Vt e R

Y asi, necesariamente debe ser oo = 0. Q.E.D.

Lema 6. Sean o, € R, entonces se cumple:

cos (a+ ) = cosacos f — senasen
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Proposicion 29. Cualquier oscilacion lineal libre no amortiguada de una magnitud fisica © puede ser expresada
de la forma:
x (t) = Acos (wt + @)

donde A € R> A >0 es la amplitud y ¢ € R recibe el nombre de desfase o fase inicial, wt + ¢ recibe el
nombre de fase.

Demostracion. Partiendo de la proposicion [28 en la pagina 76}, estudiemos si 314, ¢ € R tales que:

x (t) = Beoswt 4+ Csenwt = A cos (wt + )

= Si B=C =0, entonces claramente es A = 0 y la igualdad se cumple.

m Sies A =0, como coswt y senwt son linealmente independientes por el lema [6 en la pagina anterior]
tenemos que B =0 = C y la igualdad se cumple.

= Sies A # 0, podemos dividir a ambos lados de la ecuacion por A y obtenemos:

C
— coswt + 1 senwt = cos (wt + ¢)

A

B C
Supongamos que existe un ¢ tal que 1 =Cospy 2 =sen y veamos que ¢ y A estan univocamente
definidos VB, C' € R de esta forma. Entonces, tendriamos:

—Z:sengp o

= tany = ——
B B
1 =cosyp

que esta bien definida si B # 0. Por otra parte, despejando de la segunda ecuaciéon y usando que
— 1 .
cosarctanr = i |I|, tenemos:

1+x2
B B B / C?
cos¢  cosarctan (— §) B

V1+Ss

que también esté bien definida si B # 0.
Si B =0, entonces cosp =0 ¢ = 5 V¢ = —7. Como en ese caso serfa sen p = —%, tendriamos:

g>0¢ =z
A L

C<O: =X
A L
Por otra parte, trivialmente tendriamos C' = A cuando B = 0.

Asi, hemos probado que VB,C € R 1A, p € R (siempre que A # 0) tales que:

A A

Ahora, aplicando el lema [6 en Ta pagina anterior] tenemos que:

B C
x(t) = Beoswt + Csenwt = A ( coswt + senwt> = A (cos p coswt — sen @ sen wt)

z (t) = Acos (wt + )
Q.E.D.

I Este dato puede encontrarse en la paginahttps://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&
01did=876493420#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions
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Definiciéon 60. Diremos que dos funciones f; (t) = Acos (wt + ¢1) y fa (t) = Acos (wt + p2) estan en fase si
Ap = 3 — @1 =27k con k € Z.

Definiciéon 61. Diremos que dos funciones f; (t) = Acos (wt + v1) v fa (t) = Acos (wt + p2) estan en oposi-
cion de fase si Ap = o — 1 =7+ 27k con k € Z.

Definicién 62. Diremos que dos funciones f; (t) = Acos (wt + ¢1) v fa (t) = Acos(wt + ¢3) estan en cua-
dratura de fase si Ap = 3 — 1 = § + 7k con k € Z.

Observacion 34. Consideremos la solucion del oscilador libre lineal no amortiguado dada por la proposicion
len la pagina anterior] Tenemos:

x (t) = Acos (wt + )

& (t) = wAcos (wt—i—np—i— g)

#(t) = w?Acos (wt + ¢ + )

Por tanto, podemos ver que = y & estan en cuadratura de fase, mientras que z y & estan en oposicion de fase.
Graficamente tendriamos:

w?A

—wA -

—sz-

2.4.1.4. La solucién como la parte real de una exponencial compleja

Proposicion 30. Cualquier oscilacion libre lineal no amortiguada de una magnitud fisica © puede ser expresada
de la forma:

z (t) = Re (Ae™")
con AeC.
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Demostracion. Partiendo de la proposiciéon 29 en la pagina 78] tenemos que:

x (t) = Acos (wt + @)
Sea z (t) = Ae’@i9) | veamos que x (t) = Re (2 (t)):

Re (2 (1)) = Re (4c'+9))

Por la formula de Euler (ver proposicion [23 en la pagina 74)), tenemos:

Re (z(t)) = Re (A cos (wt + o) + isen (wt + ¢)) = Acos (wt + @)
Luego, efectivamente, = (t) = Re (Ae’“+#)). Ahora:
Py (t) _ Aei(wt+<p) _ Aeithrin _ Aeigoeiwt
Tomando B = Ae’#, tenemos:
z(t) = Be™!
tal que z (t) = Re (Bei“’t) donde, claramente B € C pues e? € C. Q.E.D.

Observacion 35. Si consideramos la solucion del oscilador libre lineal no amortiguado dada por la proposicién [30]
len la pagina anterior], tenemos:

z (t) = Re (Ae™")

Si llamamos z (t) := Ae™?, vemos que:
i = Re (%) = Re (iwAe™") = Re (iwz) = Im (—wAe™") = Im (—wz)
i = Re (%) = Re (—w®Ae™") = Re (—w?z)

Ahora, descomponemos z como:

z:=x+ 1wy
De forma que:

z=a+ 1y

Z=2+1y

De esta forma, obtenemos una representacion en el plano complejo.
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Imaginemos, ahora, que tenemos dos oscilaciones z; y 22 que difieren en una fase Agg, graficamente su suma
seria:

« 2 = 21+ 22

Esto se llama superposicion de osciladores.

2.4.2. Solucién del oscilador lineal no amortiguado cuya posicién de equilibrio no
es nula
Proposicion 31. Un oscilador simple lineal no amortiguado con posicion de equilibrio no nula admite un
c
cambio de variable v =y + — <y =x — — que lo transforma en un oscilador simple lineal no amortiguado
w w

con posicion de equilibrio nula.

4w xfC’—Cﬁ'erw y=0
=Y+ —
w
Demostracion. La demostracion es trivial al aplicar la proposicion [24 en la pagina 74] Q.E.D.

2.4.3. Comnservacion de la energia mecanica

Proposicion 32. La energia mecdnica de un oscilador libre lineal no amortiguado se conserva y es:

1
E,, = imAzw2
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donde m es la masa del cuerpo que oscila, A es la amplitud y w es la frecuencia angular de la oscilacion.

FE
Eméx

1.00 <

0.800 A

0.600

0.400

0.200

t

L e B L L R R A L R B R A L |
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Demostracion. Vamos a trabajar con la solucién de un oscilador arménico dada por la proposicion

Asi, tenemos:

x (t) = Acos (wt + )

Z (t) = Awsen (wt + ¢)

De forma que la energia cinética y la energia potencial quedan:

1 1
V= Qk;z: t)?* = ikA2 cos? (wt + )
Lo o2 L oo o
T= omd ) = §mA w” sen” (wt + )

Sumando, obtenemos:

1 1
E,=T+V= 5kA2 cos? (wt + @) + imA2w2 sen? (wt + )

Por la proposiciéon 26 en la pagina 75| sabemos:

k
W= ok =mw?
m

Sustituyendo en la ecuacién anterior, se tiene:

1 1
E, = §mA2w2 cos? (wt + @) + 5mA2w2 sen” (wt + ) =
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1
= §mA2w2 (cos? (wt + ) + sen® (wt + ¢))

=1

Y ese tltimo término es uno por la identidad fundamental de la trigonometria. Q.E.D.

2.4.4. Ejemplos

Ejemplo 15. Tenemos un muelle como el que se ve en la figura:

Si llamamos z a lo que se ha alargado el muelle, entonces, por la segunda ley de Newton (ver axioma [1f) y
por la ley de Hooke (ver hecho [1)) debe cumplirse:

—kr=mi& i=—

Alternativamente, si llamamos = a la posicion de la particula y z., a la posicion de equilibrio (donde la
fuerza que actia es cero), podemos expresar la fuerza que actia sobre la particula como:

Por la ley de Hooke, debe darse:

Por otra parte, si examinamos la energia potencial:

L I 1 9
V=—| F-d{=|zkx = —k(z —x)
Zo 2 xo 2

Recordando k = mwg, llegamos a:

1
V= 5mw2 ( — Teg)’
De manera que se cumple:
. av .
F=———1
dx ‘

y la fuerza elédstica es conservativa. Por tanto, se conserva la energia: E = cte.

Ejemplo 16. Consideremos esta otra situacién, un muelle colgando de un techo:
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Llamamos = a la posicion de la masa m y [y la longitud natural del muelle. Entonces la fuerza que actaa
sobre la masa m puede escribirse como:

FZ[mg—k(x—lo)]ﬁ'Z—k(—%ﬂr—lo)j:—k [x—(loJr@)p:

k
i e (052

La idea es que siempre que tengamos una fuerza constante o una fuerza lineal con x, vamos a ser capaces
de llegar a una expresion del estilo —mwg (z — z¢,) por complicado que sea el término z., mediante transfor-
maciones mateméticas (como vimos en la proposicion [31 en la pagina 81)).

Bien, ahora vamos con la energia potencial:

1 1 kl ?
V:2k‘(x—lo)2—mga:+cte:2k:(x—O_;;mg> + cte

De forma similar a lo que ocurria antes, siempre que la fuerza que actiie sobre la particula sea constante o
lineal con x, podremos expresar el potencial con dos términos: uno sera del estilo %k (x — xeq)” y €l otro término
serd constante y lo podremos suponer cero para facilitarnos los calculos.

Ejercicio 5. Tenemos la siguiente situacion: un masa unida a dos paredes mediante un dos muelles de constantes
recuperadoras ki y ko y con la misma longitud natural para ambas [g.
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AN
Y
AN
N

Solucién. Es importante que a la hora de poner las fuerzas elasticas debemos ser consecuentes con el siguiente
criterio: o bien supondremos que todos los muelles se estiran o bien supondremos lo contrario. Si hemos aplicado
el criterio escogido correctamente, el signo del desplazamiento nos dira si es una contraccién o una extension.
En nuestro caso, supondremos que todos los muelles se estiran.

Sea x := x1 la posicién de la masa con referencia en la pared izquierda. Como la masa no cambia de altura,
su energia potencial gravitatoria es constante. De manera que podemos suponer suponer que es cero. Entonces,
la energia potencial queda:

1 1 1 1
V=gk (Az1)? + Sk (Azy)? = Sk (z— 1) + Sk (L—z—1p)?

Para el resto del ejercicio, supondremos [y = 0. Estudiemos la energia potencial:
1 1 1 1
V= §k1x2 + ke (L — z)? = 5 U1+ k2) a? — kyLx + §k2L2 =

1

L (s

2

1 2 IL?

_ k2 + 7k2L2 _ k2 = _
k1 + ko 2 ki+ky 2

koL >2 L2 kiko

1
— Sk Lk _ il
2@@ oy + ko 2 oy + ks

— 2
_mwo

Extrayendo factor comtun hemos hallado la posicion de equilibrio. Alternativamente, podriamos haber hallado
dicha posicion de equilibrio a partir de la fuerza:

F1=k1$:F2=k2(L—$)<:>

koL
k1 4 ko

Notese que lo que nos dice este ejercicio es que tener estos dos muelles es equivalente a tener un tinico muelle
cuya constante recuperadora asociada es la suma de la constantes k.q = k1 + Ka:

k1 + ko
wo =1/ ———
m

<> T =
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2.4.5. Muelles en serie y en paralelo

Definicion 63. Decimos que dos muelles estan en paralelo cuando ambos tienen un extremo en un objeto A
y el otro extremo en un objeto B. Es decir, dos muelles estan en paralelo cuando los dibujamos «uno encima
de otro».

Definicion 64. Decimos que dos muelles 1 y 2 estén en serie cuando un extremo de 1 estd unido a un objeto
A, un extremo de 2 est4 unido a un objeto B y los extremos restantes de 1 y 2 estan unidos entre si. Es decir,
dos muelles estan en serie cuando los dibujamos «uno tras otro» en una linea recta.

Proposicion 33. Sea S un sistema con n muelles de constantes recuperadoras ki, ..., k, y con longitudes
naturales ly, ..., 1, dispuestos en paralelo, entonces el sistema S es equivalente a un inico muelle de constante
n

kil
i=1

n
recuperadora keq = Z ki y de longitud natural l.q = =

i=1 Z k; '

AN
N

—>
Ax,,

Ln

AN

Demostracion. Podemos suponer, sin pérdida de generalidad, que los n muelles que tenemos estédn atados a una
pared en un extremo y a un cuerpo de masa m en el otro extremo. De esta forma, por la segunda ley de Newton

(|1 en la pagina &), tenemos:

i=1

donde Az; = z; — l;. Sin embargo, como la posicion de la particula medida desde la pared debe ser la misma
independientemente del muelle es 1 = - -+ = z,,. Asi, tenemos:

Z—k7A£Z}1 = —kqj (xz—ll) :Z—lﬂ (I—li) = —CCZki‘i‘Zkili
i=1 i=1 i=1

i=1 =1

NE
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Nuestra k.4 sera el opuesto del término que acompaiie a x, en este caso:

keq = zn: ki
=1

Unicamente nos queda hallar la posicion de equilibrio. Sabemos que ésta se produce cuando la fuerza total

€S cero.
—CL’Z]CZ‘ +Zkili =0 x= 1:71
=1 =1

>
i=1

En consecuencia:

n
> kil
leg = 1‘:;

>k
=1

Q.E.D.

Corolario 10. Sea S un sistema con n muelles de constantes recuperadoras ky, . . ., kn, y con longitudes naturales
nulas dispuestos en paralelo, entonces el sistema S es equivalente a un iunico muelle de constante recuperadora
n

keqg = Z k; y de longitud natural nula.
i=1

Demostracion. Trivial, obvio, evidente, manifiesto. Q.E.D.

Observacion 36. En la practica al resolver ejercicios, supondremos con frecuencia que la longitud natural nula.
Esto se debe a que, como acabamos de probar, las longitudes naturales no aparecen en el calculo de la k¢q.

Proposicion 34. Sea S un sistema con n muelles de constantes recuperadoras ki,...,k, y con longitudes
naturales lq,...,l, dispuestos en serie, entonces el sistema S es equivalente a un unico muelle de constante

n
recuperadora keq = —L— y de longitud natural leg = Zli'

1 —

Az,

—
ACL’l

(4

L] Ln

AN

N

Licencia: Creative Commons 87


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 2. MOVIMIENTO OSCILATORIO
Lain-Calvo 2.4. OSCILACIONES LINEALES NO AMORTIGUADAS (ARMONICAS)

Demostracion. Haremos la demostracion por inducciéon. Primero, veamos que se cumple para n = 2. En este
caso, por la tercera ley de Newton (ver axioma |2 en la pagina 9)), tenemos que la fuerza que ejerce el primer
muelle sobre el segundo debe tener el mismo moédulo que la que ejerce el segundo sobre el primero. En otras
palabras:

klel = k‘gAZ‘g

Analogamente al caso en paralelo, podemos suponer, sin pérdida de generalidad, que el conjunto de muelles
en serie esta atado a una pared en un extremo y a un cuerpo de masa m en el otro. Llamemos x a la distancia
entre la pared y la masa m. Claramente:

r=bU+Ari+h+Avo=b+r1—lLh+h+ar—hb=x1+r282x2=0—124

Si sustituimos x5 en la primera ecuacion llegamos a:

kl (l‘l—ll) :kg (l’—xl—lg)

De la ecuacion anterior, podemos obtener la relaciéon entre x; y x; hallémosla:
]4)1 (1‘1 — ll) = ]CQ (l‘ — X1 — lg) <~ k‘lxl — klll = k‘QJ? - k‘gl‘l — k‘QlQ =4

- kgx + ]4)1[1 - ]4)2[2

RN =
o Ky + ks
Ahora, sustituyendo, tenemos:
kzx + klll — kzlz
F=kAx; =k — )=k A B
1T 1 (71 1) 1 by + ko 1t1
k1k k3l — kykol k3ly + k1kol k1k kik
_ Mk Rl 1Rale Kyl ol Rike 12(ll+lg)
k1 + ko k1 + ko k1 + ko k1 + ko k1 + ko
El término que acompaiia a la x serd nuestra keq:
b kiko 1 1
eq — - -
k1 + ko k,;j;ciz Bt

Por otra parte, la posicion de equilibrio sera aquella que anule la fuerza, asi:

0= F = k1 Azy = keg — kog (11 + 1) 4223 2 = 1) + 1,
En consecuencia:
leq =11+

y, asi, el enunciado se cumple para n = 2.

Supongamos que se cumple para n y probemos que es cierto para n 4+ 1. Podemos interpretar la situacion
como la combinacién en serie de un conjunto de n muelles, por un lado, y otro muelle, por otro lado. Por
hipétesis de induccién, sabemos que los n muelles primeros son equivalentes a un tinico muelle de constante

n

kegn = %1 y longitud natural l.q,, = E ;. De manera que ahora nuestro problema se ha reducido a la
il i=1
k.
i=1 "
combinacién en serie de dos muelles. Hemos probado antes que la proposicién se cumplia para n = 2 y asi,

obtenemos que el muelle equivalente a nuestro sistema completo tiene constante recuperadora:

) 1 1 1 1
egntl = 77 T~ 1 1 ~— = =
+ + 1 1 1

k k1 —— kny1 7.+ 1.
eq,n n+ Z_Zlk% n+ = k; knt1 pn k;

y longitud natural:
n+1

leq,n+1 = leq,n + ln+1 - le + ln+1 == Z lz

i=1 i=1
Asi, hemos probado que si el enunciado se cumple para n, se cumplird para n 4+ 1 y, en consecuencia, por
induccién, el enunciado es cierto para todon € N2 n > 2. Q.E.D.
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Corolario 11. Sea S un sistema con n muelles de constantes recuperadoras ky, . .. , k, y con longitudes naturales
nulas dispuestos en serie, entonces el sistema S es equivalente a un unico muelle de constante recuperadora
keqg = =1 1 1 y de longitud natural nula.

25,

=1
Demostracion. Trivial, obvio, evidente, manifiesto. Q.E.D.

Observacion 37. Al igual que en el caso de muelles en paralelo, en la practica al resolver ejercicios, supondremos
con frecuencia que la longitud natural nula. Esto se debe a que, como acabamos de probar, las longitudes
naturales no aparecen en el calculo de la k.

2.4.6. Estudio de las condiciones iniciales

Proposicion 35. Si expresamos la solucion en la forma dada por la proposicion|[28 en la pdgina 76 en funcion
de las condiciones iniciales x (0) = z¢ y & (0) = vy, obtenemos:

vo
x (t) = xp coswt + — senwt
w

Demostracion. Derivamos la posiciéon para obtener la velocidad:
x (t) = Acoswt + Bsenwt

& (t) = —Awsenwt + Bw cos wt

De forma que llegamos al sistema de ecuaciones:

Q.E.D.

Proposicion 36. Si expresamos la solucion en la forma dada por la proposicion|[29 en la pdgina 78 en funcion
de las condiciones iniciales x (0) = z¢ y & (0) = vy, obtenemos:

2 () = m (Wt T <w>>

Demostracion. Derivamos la posicion para obtener la velocidad:

x (t) = Acos (wt + @)

Z (t) = Awsen (wt + ¢)
De manera que llegamos al sistema de ecuaciones:

xo =2 (0) = Acosyp
vo =1 (0) = —Awsen ¢

Dividiendo la segunda ecuacién entre la primera, obtenemos:

Awsengp vy o 0 V) V)
——— = — & —wtanp = — & tanp = —— & @ = arctan | ——— | = —arctan (| —
Acosp ) ) wxo wxo

Por otra parte, es facil ver que la segunda ecuacion es equivalente a:

Vo
— = —Asengp
w

Ahora, si cogemos la primera ecuacion y la elevamos al cuadrado y le sumamos el cuadrado de la ecuacion
anterior, obtenemos:
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2 2
T3+ (%o) = A%cos? p + A%sen’ p & A? (cos2 © + sen? <p) =23+ (%) &
| S ——

wd= i+ (2)
Q.E.D.

Observacion 38. En la practica nos sera mas comodo trabajar con el sistema de ecuaciones:

vo
tan<p = —rxo

2
#oie (2)
w

Ejercicio 6. Tenemos una particula de masa m = 10 g = 0,01 kg unida a un muelle de constante k = 36%.

_ ]{,lo m

\
4

X

En t = 0, sabemos que la elongacién del muelle es g = 50 mm = 0,05 m, y que se mueve a una velocidad
de vo = 1,7 7. Calcular el periodo, la amplitud, la fase inicial, la energia y la posicion en funciéon del tiempo;
escribiendo también la expresion compleja de la misma. ;Para qué ¢ pasara por el reposo © = 0 por primera
vez?

Solucién. Por la proposicion [26 en la pagina 75}

Y, en consecuencia:

7= 2" _104,7 ms = 0,1047 s
w
Sabiendo:

x (t) = acos (wt + @)
@ (t) = —awg sen (wt + @)

x(0) =29 =acose
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% (0) = vp = —wasen ¢

Aplicando la proposicién |36 en la pagina 89 obtenemos:

U2
2+ -9 =0,05747 m
w
0

a = IO
tan g = — Yo _ —0,56 = p = —29,5° = —0, 5155 rad
Towo

Llegamos a la siguiente «abominaciony:
x (t) = 0,05747 cos (60t — 0,5155)

La energia es:

1 1 1
E=-kEA? = —mw?A? = 236 -0,05747> = 0,059 J
2 2 ‘\2/" 2

Y la expresion compleja:
y = 0, 0574767;(601570,5155)

Para hallar el tiempo transcurrido hasta que la velocidad es nula por primera vez, hacemos:

i = —awp sen (wt + ¢)

t=0=2wt+ep=0,1&

o ot = 0—p&t=2806ms
T \m— ¢ &t =609 ms

Por tanto, transcurren 8,6 ms hasta que la particula alcanza el reposo.

2.4.7. Aproximaciones de un desplazamiento cualquiera a una oscilacién armoénica

Repasemos lo que sabemos sobre una fuerza como la ley de Hooke (ver hecho [l en la pagina 74): sabemos

que su representacion gréfica sera de la forma:
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F,

Y la representacion de su energia potencial asociada sera de la forma:

v

I T

Teg

. Qué sucede si contamos con una fuerza que es no lineal pero que corta al eje x en algin punto? Para
responder esta pregunta tenemos el siguiente teorema:
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F: ICR — R
= )
- F(2) de clase C\V) tal que xeq € 1

tal que F (zeq) =0 y % (2eqg) < 0 admite una aprozimacion lineal mediante Taylor que permite hallar una
solucion aprozimada de la ecuacion diferencial mi = F (x) en un entorno de x¢q y el error cometido en dicha
aproximacion estd acotado. La frecuencia angular de la aproximacion satisface:

Teorema 17. Toda fuerza representada por una funcion

dF
W2 = “dz (meq)
m

Demostracion. No ofrecemos una demostracion del hecho de que el error cometido en la solucion de la ecuacion
diferencial esté acotado, pues, por desgracia, esta fuera del alcance de este curso.

Lo que si ofrecemos es una demostracion de la tltima afirmacion del teorema. Hacemos un desarrollo en
Taylor a primer orden de la fuerza entorno a x4, obteniendo:

F(z) ~ F(7eq) “‘Zj (Teq) (T — Teq)
T X

donde F (z,) = 0 por hipétesis. Asi, tenemos:

F (@)~ 4 (o) (2~ 2e0)

Por analogia con la ley de Hooke (ver |l en la pagina 74) debe ser:

dF dF
F(r)~ dr (Teq) T — dr (Teg) Teq
———

=k

Ahora, por la proposiciéon 26 en Ta pagina 75| tenemos que:

dF dar (.
Iy (Tea) =~k = mw? & w? = i (Teq)
v m
s clmmente 2 > 0l see 4 () <0 05D

Corolario 12. Toda fuerza que tenga asociada una energia potencial representada por una funcidn
Ve ICR — R

x — Vi(x)
cion lineal mediante Taylor que permite hallar una solucion aproximada de la ecuacion diferencial mi = F (x)
en un entorno de T.q y el error cometido en dicha aproximacion estd acotado. La frecuencia angular de la
aproximacion satisface:

de clase C® tal que ZTeq €5 un punto de minimo local de V admite una aproxima-

d*v
W2 — dz (meq)
m

Demostracion. Por la definicion de energia potencial (ver [19 en la pagina 24)), es:

_av
dx

y dicha funcién es de clase CV) porque V es de clase C'?). Por otra parte, como Zeq €5 un minimo local, se da
2
—‘Z (Teqg) =0y —(fh‘;,/ (Zeq) > 0. Como F = ——‘2::

F =

1%
F(xeq) = Tz ($eq) =0

dF ?V
& () = gz <0

Asi, podemos aplicar el teorema anterior y se cumple la primera parte del corolario. Por otro lado por la
altima ecuacién anterior:
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=42y
dx
d—F d’v
W2 =  dx (weq) _ &% (Teq)
m m
Q.E.D.

Observacion 39. El corolario anterior nos garantiza que podemos trabajar con la energia potencial en vez de
con la fuerza y hacer su desarrollo de Taylor hasta orden dos, también centrado en x4, donde z, serd un punto
de minimo de la energia potencial, obteniendo:

dVv 142V
Vi(z)=V (xeq) + dr (meq) (z — JUeq) + 2 dr2

=0

(Teq) (@ — xeq>2 A

1d%V
S Vi(z) =V (rey) + 2 a2 (Teq) (v — JL‘eq)Z

Por analogia con la ley de Hooke (ver |l en la pagina 74) y por la proposicion |26 en la pagina 75| obtenemos:

d’v
W2 = da” (erq)
m

que es lo que habfamos obtenido en el corolario.

Ejercicio 7. Sean z, k, c € R tales que x, k,c > 0. Tenemos una fuerza dada por:
c
F(x)=—kx+ —
x

Obtenemos la posicion de equilibrio:

Hallamos la derivada:

dF c c
E(Z'eq):—k—xigq:—k—gk’:—Qk

Ahora, por [17 en la pagina anterior] lo anterior debe ser igual a —mw?. De forma que:
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Fz)
——kx+%
— =2k(x — x¢y)
X
Leg

Podemos obtener lo mismo con el potencial. Hallémoslo:

V(m)—V(xo)z—/deX@

x

& V(x) =V (x) + Ek;ﬁ — clnx}

zo
Suponiendo V (zg) = 0:
s _1

1
o 2kx2—§kxg—clnx+clnx0:

1 1
= ikxz —clnx — §kx(2) + clnxg

Ahora, si quisiéramos hallar la frecuencia de oscilacion, simplemente usariamos el corolario[I2 en Ta pagina 93|
y obtendriamos:

d*v
) (€eq) = mw?
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Leg

2.5. Oscilaciones amortiguadas

2.5.1. Primeros conceptos
Definicion 65. Decimos que una oscilacion lineal de una magnitud fisica x es amortiguada si satisface la
ecuacion diferencial:

i+ 2y +wiz = f (1)

donde v recibe el nombre de constante de amortiguamiento y w; es la frecuencia natural del sistema.
Esta seria la frecuencia de oscilacion del sistema si fuese y =0y f (¢) = 0.
Claramente, un oscilacion lineal libre amortiguada satisfara la ecuacion diferencial:

&+ 2y +wir =0

Ejemplo 17 (Un ejemplo introductorio). Supongamos que tenemos un muelle de constante recuperadora k
que une un cuerpo de masa m con la pared. Dicho cuerpo de masa m se introduce en un pistén que ejerce
sobre la masa una fuerza proporcional a su velocidad con constante de proporcionalidad A y que se opone a su
desplazamiento. Gréaficamente, tendriamos:
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kx
b

Aplicando la segunda ley de Newton (ver axioma|l en la pagina 8)), llegariamos a la ecuacion diferencial:

—kxr — A\t = mx
Definiendo:

A 2 _ k

llegariamos a:

&+ 2y +wir =0
donde que es justo la ecuaciéon de un oscilador lineal libre amortiguado.
Notese que, en este caso, la potencia de la fuerza de amortiguamiento es negativa, por lo que la energia
disminuye con el tiempo:
dF _,
E:P:F~U:—)\i2<0:>E¢

Ejemplo 18. Las oscilaciones de la carga ¢ en un circuito eléctrico que contiene una inductancia L, una
resistencia R y un condensador C' en serie, vienen descritas por la ecuacion:

1
Li+R¢+ =qg=0
q+ Q+C(J

que se corresponde con una oscilacién amortiguada libre.
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Proposicion 37. Las raices del polinomio caracteristico asociado a una oscilacion lineal libre amortiguada

vienen dadas por la expresion:
s1= =7+ -wi  sa=—v— /12w

Demostracion. Partimos de la ecuaciéon diferencial:

i+ 2vi+wir =0

Cambiando derivadas por potencias, obtenemos el polinomio caracteristico (ver definicion 49 en la pagina 73)):

p(s) = s> +2ys +

Las raices del polinomio anterior son:

o VRTLE | VIGTS L2 i
2 2 2 ’
z—vim

Observacion 40. Noétese que resulta algo dificil dar una solucién general de la ecuacion diferencial asociada
a un oscilador lineal libre amortiguado, debido a las posibles variantes en la factorizaciéon de su polinomio
caracteristico: dos soluciones reales distintas, dos soluciones complejas conjugadas o una solucién doble. En
todos estos casos, la expresion general varia ligeramente como puede verse en la proposicion [20 en la pagina 73|
Por ello, vamos a ir estudiando caso por caso.

S

Q.E.D.

Definicion 66. Llamamos factor de calidad @ de una oscilacién lineal libre amortiguada al cociente:
)
Q: 2
donde wy es la frecuencia natural y «v es la constante de amortiguamiento.
2.5.2. Amortiguamiento débil, amortiguamiento subcritico o subamortiguamiento

2.5.2.1. Definicién y expresion de la solucién

Definicion 67. Decimos que una oscilacion lineal libre de una magnitud fisica = esta sometida a un amorti-
guamiento débil, amortiguamiento subcritico o subamortiguamiento si satisface la ecuacion diferencial
de un oscilador lineal libre amortiguado y ademas la constante de amortiguamiento es menor que la frecuencia
natural v < wyp.

Proposicion 38. La solucion de una oscilador lineal libre sometido a amortiguamiento débil (v < wp) puede
expresarse como:

1.
x(t) = e " (Csenwt + D coswt)

x (t) = ae” 7 cos (wt + @)
donde w = \/wi —~? y a,C, D € R son constantes.

Demostracion. Partiendo de la proposicion 37} sabemos que las raices del polinomio caracteristico de la ecuacion

diferencial son:
s=—yE4/72—wi

Si es v < wp, entonces necesariamente como 7, wp > 0, tenemos 72 < w3 y, en consecuencia:
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¥ -wi<0

Por tanto las raices de nuestro polinomio caracteristico son complejas conjugadas:

s=—y+iy/wi—9?

Llamaremos w := \/wZ — 2, de forma que las soluciones quedan:

§=—7+iw

Usando la proposicion 20 en la pagina 73] obtenemos que la soluciéon general de nuestra ecuacion diferencial
es:

T (t) _ Ae(wariw)t + Be(f'yfiw)t

donde A, B € C. -
Como la solucion tiene que ser real y las exponenciales son linealmente independientes, obtenemos que A = B
y expresando A en forma binémica A := a + bi con a,b € R, llegamos a:

2 (t) = (a+ bi) e 4 (g — bi) el T =
— ae_’Yteitw 4 bz’e—’}’teitw + ae—'yte—itw _ bie—’yte—itw —

=qe ! (6““’ + 67”‘*’) +bie (e”‘” - efm*’) = 2ae 7 coswt — 2be™ " sen wt
| — |

=2cos wt =2isenwt

Llamando C' := 2a y D := —2b, obtenemos:

z(t) = e " (Ccoswt + Dsenwt)

Con esto, hemos probado (1). Por otra parte vemos que (1) no es méas que una exponencial que multiplica
a una solucién de un oscilador armonico. Por tanto, por la proposicion [29 en la pagina 78| sabemos que existen
FE, ¢ € R tales que permiten que el segundo factor pueda expresarse como:

C coswt + Dsenwt = E cos (wt + ¢)

Asi, sustituyendo, tenemos:

z(t) = Ee " cos (wt + )
0.E.D.

Corolario 13. Una oscilacion lineal libre subamortiguada es asintdticamente estable.

Demostracion. Simplemente, vemos si se cumple la definicion [50 en la pagina 74| tomando la forma (2) de la
solucién.

. _ 1 —~t _
tlg(r}ox (1) t11>1r010a € cos (wt+ ) =0

t— oo 0 acotado

donde la exponencial tiende a cero porque vy > 0.
Por tanto, se cumple la definicién y cualquier oscilacion lineal subamortiguada es asintéticamente estable.
Q.E.D.

Observacion 41. El aspecto grafico de una oscilacion lineal libre subamortiguada es el siguiente:
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donde la posicion esta representada en azul y las funciones en rojo son las exponenciales decrecientes que
«encierrany la solucion.

Definicion 68. Llamamos amplitud A de una oscilacion lineal libre amortiguada por amortiguamiento débil
al factor que multiplica el coseno en la expresion de la proposicion [38 en la pagina 98|

2.5.2.2. Propiedades

Definicion 69. Llamamos tiempo de relajacién, vida media o parametro de extinciéon 7 de una osci-
lacién libre lineal subamortiguada a la inversa de la constante de amortiguamiento:

1
T=—

5

Proposicion 39. El tiempo de relajacion de una oscilacion lineal libre subamortiguada es el tiempo que tiene

a
que transcurrir desde t = 0 para que la amplitud de la oscilacion sea —.

Demostracion. Estudiamos la amplitud:

Cuando t = 7, tenemos:

Q.E.D.
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Proposicion 40. Fl factor de calidad Q) de una oscilacion lineal libre subamortiguada es siempre mayor que
%. En otras palabras, @ > %

Demostracion. Trivial a partir de la definiciéon de factor de calidad (ver |66 en la pagina 98)) al aplicar v <
wo- QED

Proposicion 41. El nmimero de periodos de una oscilacion lineal libre subamortiguada en el intervalo [0, 7]
expresado en funcion del factor de calidad viene dado por la expresion:

1
n=-—4/4Q% -1
21

Demostracion. Notese que el periodo de la oscilacion esta perfectamente definido, pues tnicamente depende del
factor del coseno en la solucion de la proposiciéon [38 en la pagina 98| que no es mas que una oscilacién armonica.
Por tanto, por una regla de tres (proporcion) sabemos que debe cumplirse:

T 1 - T
I ol aep= -
T n T
Como es T = %’T, tenemos:
T TW
n=or =5
s 27
w
Ahora, sustituyendo w = /w3 — 7%
_ 2
n=g-y\/wh - ~?

De la definiciéon de factor de calidad (ver definicion |66 en la pagina 98) podemos despejar wy:

Q=22 w =20y
g
Sustituyendo en la ecuacion anterior, obtenemos:
T T T
n=_—VAQ>? —? = —/1?(4Q* — 1) = —yV/4Q* - 1
27 27 27
Por altimo, como 7 = %, nos queda:
1
= —/4Q?% -1
" 21 @
Q.E.D.

Corolario 14. El nimero de periodos de una oscilacion lineal libre subamortiguada en el intervalo [0,7] ex-
presado en funcion del factor de calidad cuando este es mucho mayor que la unidad Q > 1, puede aprorimarse
como:

n%QSiQ»l
0

Demostracion. Partimos de la proposiciéon anterior:

n= %\/4622 -1

Como Q > 1, serd 4Q? >> 1y, en consecuencia:

1 1
n~ —1/4Q2% = —2Q = Q
2 21 T
Q.E.D.
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2.5.2.3. Energia mecanica

Proposiciéon 42. La energia mecdnica de un oscilador lineal libre subamortiguado viene dada por la expresion:

1
E= amdsz + §mw8x2 =
1
= imaze_?yt [wg + 77 cos (2wt + 2¢) 4 2wy sen (2wt + 2¢)]
donde w = \Jwg — 2.

Demostracion. Podemos suponer, sin pérdida de generalidad, que la oscilaciéon subamortiguada se produce
como consecuencia de dos fuerzas: una fuerza elastica (y, por tanto, conservativa) y una fuerza proporcional a
la velocidad (como en el ejemplo 17 en la pagina 96]). De esta forma, la energia mecanica de mi sistema tendra
un término de energia potencial proveniente de la fuerza eléstica conservativa y un término de energia cinética.
A priori, igual que en el caso del oscilador armonico. La diferencia es que la expresion de la posicion y de la
velocidad es bastante distinta en nuestro caso. Asi:

1 1
E=T+V = §mj:2 + imngQ

Ahora, recordando que podemos expresar x segin la proposicion [38 en Ta pagina 98] obtenemos:

z(t) = ae” " cos (wt + ¢)
& (t) = —awe " sen (wt + ) — aye 7 cos (wt + ¢)

T (t)2 =a’e " cos? (wt + )

i (1)° = a’w?e " sen? (Wt + @) + a’~y2e 2 cos? (wt + @) + 20’ wy sen (wt + @) cos (wt + ) =

=a’e™ " [w?sen® (wt + ¢) + 7* cos® (wt + ¢) + 2wy sen (2wt + 2¢)]

1
T = imaQe_M [w? sen® (wt + @) + 77 cos® (wt + @) + 2wy sen (2wt + 2¢)]

1
V= imaze_%twg cos? (wt + ¢)

Sustituyendo w? = w2 — 72 en la energfa cinética (en el término del sen?), obtenemos:

1
T = imaQe_Qvt [wg sen” (wt + @) + 77 [cos® (wt + ¢) — sen® (wt + )] + 2wy sen (2wt + 2¢)] =

1
= imaQe_ht [w§ sen” (wt + @) + 7% cos (2wt + 2¢) + 2wy sen (2wt + 2¢)]

Asi:
1
E=T+V = imaQefzﬁ [wg + 72 cos (2wt + 2¢) + 2wy sen (2wt + 2¢)]
Q.E.D.

Lema 7. El teorema de Taylor-Young aplicado a la funcion h(x) = /14 x de primer orden cuando x — 0 nos
dice que:

h(x):1+%x+0(x)

cuando x — 0.
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Corolario 15. La energia mecdnica de un oscilador lineal libre subamortiguado que cumple v < wqy puede
aprorimarse por:

1 _
Ex 5 —mwia®e

.. . .. . Y . .
Demostracion. Partimos de la proposicion anterior y definamos r := — < v = rwg. En términos de r y wy, la
Wo
expresion anterior queda:

E=T+V = 2ma26_27“0t [wg + wir? cos (2wt + 2¢) + 2wwor sen (2wt + 2¢)]

donde w = /w2 — 12w = wy/1 — r2. Sustituyendo en los términos de fuera del seno y el coseno, obtenemos:

1
E= Qma2672m°t {w + wir? cos (2wt + 2¢) 4 2wi /1 — 727 sen (2wt + 290)}

Inspeccionemos los términos uno a uno y veamos su orden en r:

—2rw0t orden 1
w? orden 0
wir? orden 2

2031 —r2r orden ?

Para obtener el orden del dltimo término, podemos usar el lema [7 en la pagina anterior] podemos hacer un
desarrollo de Taylor cuando r — 0 a primer orden de la raiz y obtenemos:

203/ 1 —r2r &= —2wir’r = —2wir® = orden 3
Despreciando los términos de orden 2 o superior en r, obtenemos:

E:E 2,,—2rwot, 2

5ma’e wg
Recordando v = rwy, llegamos a:
1
E= §ma26_2'yfw§
con lo que queda probado el enunciado. Q.E.D.

Corolario 16. La potencia de un oscilador lineal libre subamortiguado que satisface v < wq puede aproximarse
por la expresion:

P~ -2+vE
Demostracion. Partimos del corolario anterior:
E~ 1 2 2 24t

N —mwgja’e
2

La potencia es:

Q.E.D.
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2.5.3. Amortiguamiento fuerte, amortiguamiento supercritico o sobreamortigua-
miento

Definicion 70. Decimos que una oscilacion lineal libre de una magnitud fisica = esta sometida a un amor-
tiguamiento fuerte, amortiguamiento supercritico o sobreamortiguamiento si satisface la ecuacion
diferencial de un oscilador lineal libre amortiguado y ademés la constante de amortiguamiento es mayor que la
frecuencia natural v > wy.

Lema 8. Las funciones senhwt y coshwt son linealmente independientes Vt € R.
Demostracion. Las funciones senh wt y cosh wt seran linealmente independientes si y sélo si:

asenhwt + fcoshwt =04 a,5=0

El sentido < es trivial. Para el sentido =, supongamos inicialmente «, 8 # 0, entonces llegamos a:

asenhwt + B coshwt = 0 < asenhwt = —f coshwt

Evaluando en ¢t = 0, llegamos a:

0=—p

Pero 8 # 0 por hipodtesis. Por tanto, llegamos a un absurdo y necesariamente debe ser 5 = 0. Entonces nos
queda:

asenwt =0Vt e R

Y, en consecuencia, debe ser necesariamente o = 0. Q.E.D.
Lema 9. Sean «,f € R, entonces se da:

1.
cosh (a + B) = cosh acosh 8 + senh avsenh
senh (a + ) = senh accosh 8 + cosh asenh 3

Proposicion 43. La solucion de una oscilador lineal libre sometido a amortiguamiento fuerte (v > wo) puede
expresarse como:

1.
x(t) = Ae” 7t + Be 0+t
2.
z(t) = e 7" (Csenhwt + D coshwt)

3.

x (t) = ae” " cosh (wt + ) wvdlida si |7 (0) + vz (0)| < w |z (0)]
4.

x (t) = ae " senh (Wt + ¢) wdlida si |#(0) + vz (0)] > wlz (0)]

donde w = \/7? — w3, - =7 —w, 7+ =y +w y a € R es una constante. Preste el lector especial atencion a

cudndo es posible usar las formulas (3) y (4).

Demostracion. Partiendo de la proposicién|37 en la pagina 98| sabemos que las raices del polinomio caracteristico

de la ecuacion diferencial son:
s=—y+/72—wd

Si es v > wy, entonces necesariamente como 7y, wy > 0, tenemos 2 > w3 y, en consecuencia:
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V¥ -wi>0

Por tanto las raices de nuestro polinomio caracteristico son ambas reales:
s=—y+/7?—wd
Llamaremos w := /72 — wg, de forma que las soluciones quedan:

§s=—7tw

Ahora, definimos:

V-=y—w Y=y tw

de manera que podemos expresar las soluciones como:

Usando la proposicion 20 en la pagina 73] obtenemos que la soluciéon general de nuestra ecuacion diferencial
es:

x(t) = Ae VW L Bem Wt = Ae V-t 4 Be !

donde A, B € R. Asi, hemos probado (1).
Para probar (2) vamos a ver que la solucion propuesta en (2) es una combinacion lineal de los sumandos de

(1):

wt _ —wt wt —wt
e " (Csenhwt + D coshwt) = e~ (Ce 26 + D¢ +2€ ) =

C

C D D
— 7ef'ytewt _ 767’yt67wt 4 767’ytewt + 7ef'ytefwt _

C D D C C D D C
— (= - =t wt =z v At ,—wt _ [ X il —vyt+wt =z v —~yt—wt
<2+2>e € +<2 2)6 e <2+2)e +<2 2)6
N————

—_———
=A =B

De esta forma, claramente la expresion (2) es combinacion lineal de los sumandos de (1) y, por tanto,
es solucion de la ecuacion diferencial. Ahora, tenemos que ver que ambos sumandos de la expresion 2 son
linealmente independientes:

e~ (Csenhwt + D coshwt) = 0 < Csenhwt + D coshwt = 0

Pero como el senhwt y coshwt son linealmente independientes por el lema |8 en la pagina anterior] tenemos
que los dos sumandos que conforman (2) son linealmente independientes. Por consiguiente, (2) es una solucién
general de la ecuacion diferencial.

Para probar (3) vamos a estudiar en qué condiciones existen Jla, ¢ € R tales que:

C'senhwt + D coshwt = a cosh (wt + ¢)

= Si C'= D =0, entonces claramente es a = 0 y la igualdad se cumple.

= Sies a =0, como senhwt y coshwt son linealmente independientes por el lema |8 en la pagina anterior]
debe ser C' =0 = D y la igualdad se cumple.

= Sies a # 0, podemos dividir a ambos lados de la ecuacién por a y obtenemos:

D
¢ senh wt + — cosh wt = cosh (wt + ¢)
a a
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Supongamos que existe un ¢ tal que % =senhy y % = cosh ¢ y veamos en qué condiciones estan bien
definidos. Entonces, tendriamos:

C

— =senhyp

a C
= tanhp = —

D D

— =coshyp

a

que estd bien definida siempre que —1 < £ <1« |C| < |D|
Por otra parte, si elevamos al cuadrado en ambas ecuaciones y restamos, obtenemos:

D?  (?
?—ﬁ:costho—senh2<p:1(:)D2—C’2:a2

=1

lo cual solo estd bien definido (es un namero real) si [D| > |C|. Obtenemos, de esta forma, que debe
cumplirse |D| > |C| para que tanto ¢ como a estén definidas. A continuacién, intentemos convertir
|D| > |C| en una desigualdad sobre las condiciones iniciales. En la solucion (2) teniamos:

z(t) = e 7" (Csenhwt + D coshwt)

@ (t) = e "'w (C coshwt + D senhwt) — e~ 7" (C'senh wt + D cosh wt)
z(0)=D

z(0) +~D

#(0)=wC —yD < wC=12(0)+vD < C = "

Ahora, veamos cuando es |C| < |D|:

<|D|

% (0) +~D
w

Como es w >0y D = x(0), lo anterior es equivalente a:
& (0) + vz (0)] <wlz (0)]

Asi, hemos probado que siempre que se satisfaga la condicion anterior entonces 314, ¢ € R tales que:
B~ _a(C D
x (t) = e 7" (Csenhwt + Dcoshwt) = Ae™ " | —senhwt + — coshwt | =
a a

= ae” " (senh ¢ senh wt + cosh ¢ cosh wt)

Por dltimo, aplicando el lema |9 en la pagina 104} tenemos que:

z (t) = ae™ " cosh (wt + ¢)

Para probar (4) vamos a proceder analogamente a (3). Primero, estudiaremos en qué condiciones existen Jla, ¢ €
R tales que:

C'senhwt + D coshwt = asenh (wt + @)

= Si C = D =0, entonces claramente es a = 0 y la igualdad se cumple.

= Sies a =0, como senhwt y coshwt son linealmente independientes por el lema |8 en la pagina 104 debe
ser C =0 = D y la igualdad se cumple.

28Si esto no queda claro, convendria leer algo sobre funciones hiperbélicas en esta pagina https://en.wikipedia.org/w/index.
php?title=Hyperbolic_function&oldid=877577641.
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= Sies a # 0, podemos dividir a ambos lados de la ecuacién por a y obtenemos:
C D
— senhwt + — coshwt = senh (wt + ¢)
a a

Supongamos que existe un ¢ tal que % =coshp y % = senh ¢ y veamos en qué condiciones estan bien
definidos. Entonces, tendriamos:

C

— =coshyp

a D
= tanhp = —

D C

— =senhy

a

que esta bien definida siempre que —1 < % <l<e |D|<|C]
Por otra parte, si elevamos al cuadrado en ambas ecuaciones y restamos, obtenemos:

c? D?
—2—?:cosh2<p—senh2<p:1<:)02—D2:a2

=1

a

lo cual solo esta bien definido (es un nimero real) si |[C| > |D|. Obtenemos, de esta forma, que debe
cumplirse |C| > |D| para que tanto ¢ como a estén definidas. A continuacion, intentemos convertir
|C| > |D| en una desigualdad sobre las condiciones iniciales. En la solucion (2) teniamos:

z(t) = e 7" (Csenhwt + D coshwt)

@ (t) = e "'w (C coshwt + D senhwt) — e~ 7" (C'senh wt + D cosh wt)
z(0)=D

i D

#(0)=wC—9D < wC=10)+vD < C = x(())%

Ahora, veamos cuando es |C| > |D|:
% (0) +~vD
2O +7D > | D

Como es w > 0y D = z(0), lo anterior es equivalente a:
|2 (0) + 7 (0)] > wla (0)]

Asi, hemos probado que siempre que se satisfaga la condicion anterior entonces 34, ¢ € R tales que:
—vt —~t C D
x(t) =e " (Csenhwt + D coshwt) = Ae™ " | —senhwt + — coshwt | =
a a

= ae~ " (cosh p senh wt 4 senh ¢ cosh wt)

Por ultimo, aplicando el lema [9 en la pagina 104} tenemos que:

x (t) = ae” " senh (wt + )
Q.E.D.

Corolario 17. Una oscilacion lineal libre sobreamortiguada es asintéticamente estable.

Demostracion. Simplemente, vemos si se cumple la definicion 50 en la pagina 74| tomando la forma (1) de la
solucion.

lim z(t)= lim | Ae 7! +B ¢ | =0
0 0
t— oo t— oo

donde ambas exponenciales tienden a cero porque v4 = y+w > 0 pues v,w > 0, por una parte,y y— = y—w > 0

pues w = /72 — wg < 7, por otra parte.
Por tanto, se cumple la definicién y cualquier oscilacion lineal sobreamortiguada es asintoticamente estable.

Q.E.D.

38Si esto no queda claro, convendria leer algo sobre funciones hiperbélicas en esta pagina https://en.wikipedia.org/w/index.
php?title=Hyperbolic_function&oldid=877577641.
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Definiciéon 71. Llamamos tiempo de relajacion, vida media o parametro de extincién de un oscilador
lineal libre sobreamortiguado a la inversa de v_. Es decir:

1 1 1
T i= — = =
e e

Observacion 42. El aspecto grafico de una oscilacion lineal libre sobreamortiguada es el siguiente:

T T

t

La grafica de la izquierda es la solucion para las condiciones iniciales z (0) = Zmax ¥ € (0) = 0, mientras que
la grafica de la derecha es la soluciéon con condiciones iniciales 2 (0) = 0y 4 (0) = vmax.

Proposicion 44. FEl factor de calidad @ de una oscilacion lineal libre sobreamortiguada es siempre menor que
%. En otras palabras, @ < %

Demostracion. Trivial a partir de la definicion de factor de calidad (ver [66 en la pagina 98) al aplicar v >
wo- QED

2.5.4. Amortiguamiento critico

Definicion 72. Decimos que una oscilacion lineal libre de una magnitud fisica x estd sometida a un amor-
tiguamiento critico si satisface la ecuacion diferencial de un oscilador lineal libre amortiguado y ademés la
constante de amortiguamiento coincide con la frecuencia natural v = wy.

Proposicion 45. La solucion de un oscilador lineal libre sometido a amortiguamiento critico (v = wy) puede
expresarse como:

€T (t) = (A + Bt) et = (A + Bt) e~ wot

Demostracion. Partiendo de la proposicion|37 en la pagina 98| sabemos que las raices del polinomio caracteristico

de la ecuacion diferencial son:
s=—y+/72—wd

Si es v = wy, entonces el término de la raiz se anula y obtenemos una solucién doble:

§=—

Usando la proposicion 20 en la pagina 73] obtenemos que la soluciéon general de nuestra ecuaciéon diferencial
es:

z(t)=(A+Bt)e " = (A+ Bt)e !
Q.E.D.

Corolario 18. Una oscilacion lineal libre sometida a amortiguamiento critico es asintdticamente estable.

Licencia: Creative Commons 108


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 2. MOVIMIENTO OSCILATORIO
Lain-Calvo 2.5. OSCILACIONES AMORTIGUADAS

Demostracion. Simplemente, vemos si se cumple la definicion [0 en Ta pagina 74}

lim z (t) = lim (A+ Bt)e "' =0
t—o0 t— o0

y la expresion anterior tiende a cero porque, por orden de infinitésimos, las exponenciales «dominany» sobre los
polinomios.

Por tanto, se cumple la definicién y cualquier oscilaciéon lineal sometida a amortiguamiento critico es asin-
toticamente estable. Q.E.D.

Definicion 73. Llamamos tiempo de relajacion, vida media o parametro de extincién de un oscilador
lineal criticamente amortiguado a:

Y wo

Observacion 43. El aspecto grafico de una oscilacion linea sometida a amortiguamiento critico es el siguiente:

X

2.5.5. Estudio de las condiciones iniciales

Proposicion 46. La solucion de un oscilador lineal libre subamortiguado en funcion de las condiciones iniciales
2(0) =z y £(0) =wg es:
1.

z(t)y=e" Yo 1+ %o
w

sen wt + xg cos wt)

2
x(t) = 330\/1 + (UO + 7) e cos (wt — arctan (UO + 7))
Tow W Tow  w
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donde w = \Jwg — 2.

Demostracion. Partimos de la primera forma de la proposicion [38 en Ia pagina 98}

z(t) =e " (Csenwt + D coswt)
i (t) = e "w (C coswt — Dsenwt) — ve " (C'senwt + D cos wt)
xo=2z(0)=D

vo+vD  wo+yx0
w o w

vo=%2(0)=wC—-yD s wC=v+vD < C =

De manera que tenemos:

+
z(t)=e " (W senwt + g cos wt)
w

Con esto, hemos probado (1). Vamos con (2); de nuevo, partimos de la segunda forma de la proposicion

en la pagina 98

z(t) = ae” " cos (wt + )
@ (t) = —awe " sen (wt + @) — aye " cos (wt + @)
xg = (0) = acosp

vo = @ (0) = —aw sen ¢ — ay cos p

Dividiendo la segunda ecuacién entre la primera, obtenemos:

Vo %é + Vo Y Vo Y
— =—wtanp -y tanp=—"—=—"-——Sp=arctan | —— — | =
Zo w Tow w Tow w

v

= — arctan (0 + ’y)
Tow W
Ahora, de la primera ecuacién sacamos:
T x T v y 2
To=acosp e a=—> = 0 = 10 = 2 1+<0+)
COS¥Y  (cosarctan (f;fJ—Ow — %) Tow W
2
1+ (25 +2)
donde hemos aplicado que cosarctanx = 1}”2 ﬂ Q.E.D.

Proposicion 47. La solucion de un oscilador lineal libre sobreamortiguado en funcion de las condiciones
iniciales © (0) = xo y 2 (0) = vy es:

1.

Y- Vo] —~ ot Vot V-To _~. ¢
t) = 1 7) 7] Y - =7 Y+
z () [( + 2w o+ 2w ¢ 2w €

v x
z(t)=e" (0"‘70 senh wt + x cos wt)
w

4Este dato puede encontrarse en la paginahttps://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&
01did=876493420#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions,
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2
x(t) = mo\/l - (UO + 7) e~ 7" cosh (wt + arctanh (UO + 7))
ZTow w Tow w

vdlida si vy + yxo| < w|zol.

2
z(t) = Yo + 2oy 1—|{ d e " cosh | wt + arctanh = v
w 0ty z T

vdlida si |vg + yxo| > w|zol.

donde w = /7> —W3, 7= =7 —w Yy v+ =7+ w.

Demostracion. Partimos de la forma (1) de la proposicion [43 en la pagina 104}

x(t) = Ae -t 4 Be v+t
i(t) = —y_Ae 7=t — v, Be 7+t
ro=20)=A+Bs A=2—B

v=2(0)=—-—v_A—~.B

Sustituyendo lo hallado en la primera en la segunda ecuacién, obtenemos:

vo=—7- (o —B) =14 B=—y-20+ By- —Byy = -2+ B(y—w—7-w) =

:_MO_QBW@B:_M
2w
Y asi:
A=z29—-B= (1+£)$0+E
2w 2w
Por tanto:

V- Vo —~_t vo + VY-=To _~. ¢
t) = [(1 —) —] -t ZY T 7Y v
z (1) + 2w o + 2w ¢ 2w ¢

Asi, hemos probado (1). Vamos con (2); partimos de la forma (2) de la proposicion [43 en la pagina 104

x(t) = e 7" (C'senhwt + D coshwt)
@ (t) = e "'w (C coshwt + Dsenhwt) — e~ 7" (C'senh wt + D cosh wt)
zo=x(0)=D

vo+vD  wo+yx0

v=%2(0)=wC—-9D s wC=vy+vD < C =
w w

Asi:

v x
z(t)=e" <0+’70 senh wt 4 x( cos wt)
w

De esta forma, hemos probado (2). Vamos con (3); para ello, partimos de la forma (3) de la proposicion
len la pagina 104}
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x(t) = ae” " cosh (wt + )
@ (t) = ae” "'wsenh (wt + ) — aye " cosh (wt + ¢)

2o =2 (0) = acoshp

vg = & (0) = awsenh ¢ — aycosh ¢
Vo

Dividiendo la segunda ecuacién entre la primera, obtenemos:
Zo

=wtanhy — v & wtanhp = ) + v & tanhp = o +
xo

’Y

— & @ = arctanh <
w

v
0+7>
Tow W

Por otra parte, de la primera ecuaciéon, obtenemos:

xo
To =acoshp & a=

Lo

Zo
Yo i
Tow + )

w

coshe  .osharctanh (

donde hemos usado cosh arctanhx =

2
v
1— (vio
1
En consecuencia:

Tow w
2
Tow + %)
O
V1—z?

2
z(t) = CEO\/l — (vo + 7) e~ 7 cosh (wt + arctanh (
Tow W

v
0_+V))
Tow W
De esta forma, hemos probado (3). Vamos con (4); para ello, partimos de la forma (4) de la proposicion

x (t) = ae” " senh (wt + )

len la pagina 104k

@ (t) = ae”"wcosh (wt + ¢) — aye "' senh (wt + ¢)

xo =2 (0) = asenh

vg = & (0) = aw cosh ¢ — aysenh ¢
Vo - w

Dividiendo la segunda ecuacién entre la primera, obtenemos:
w

= —_ @ _—
ro tanhe 7 tanh ¢

v
=24 v < tanhp =
T
Por otra parte, de la primera ecuacién, obtenemos:

w & tanh w
( = arctan
@t w T

9 =asenhp & a =

2
T 0 < °+7>
0 Lo Lo o
= = = = = =
senh i
¥ senharctanh (ﬁ’) mo Y o+
0ty —_
0 2
11— <—
o+
5Esto puede verse en la pAagina https://en.wikipedia.org/w/index.php?title=Inverse_hyperbolic_functions&oldid=
864677722#Composition_of_hyperbolic_and_inverse_hyperbolic_functions.
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2
:vo—|—x0’y 1_ w
w =t

nde hem nh arctanhy = 2=
donde hemos usado senh arctanhx T

En consecuencia:

2
z(t) = Yo + 2oy 1-| d e~ 7 cosh | wt + arctanh = v
w Nty z T

Proposicion 48. La solucion de un oscilador lineal libre sometido a amortiguamiento critico en funcion de las
condiciones iniciales x (0) = xo y & (0) = vy es:

Q.E.D.

z () = [xo + (vo + yxo) t] €0

Demostracion. Partimos de la proposicion [45 en la pagina 108f

z(t)=(A+ Bt)e "
i (t) = Be "' — e " (A + Bt)
zo=x(0)=A4

vo=2(0)=B—-—vA< B=uvy+v4A=1vy+ 20
Asi:
@ (t) = [xo + (vo +ywo) t] e ™" = [wo + (vo +ywo) t] €™
Q.E.D.

2.5.6. Comparacion entre todo los tipos de amortiguamiento

Vamos a estudiar cuél de todos los amortiguamientos se «extingue» antes. Lo primero es para que el amorti-
guamiento sea méas rapido hace falta que el tiempo de relajacion sea lo méas pequeno posible. En otras palabras,
su inversa % debe ser lo mayor posible. En la siguiente figura, representamos % en funcion de v (la constante
de amortiguamiento).

6Esto puede verse en la pAagina https://en.wikipedia.org/w/index.php?title=Inverse_hyperbolic_functions&oldid=
864677722#Composition_of_hyperbolic_and_inverse_hyperbolic_functions.
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i Y
wo
débil fuerte
Para ello hemos tenido en cuenta lo siguiente:
1 .

1 T=7 si v <wo

i ¥

. 1

T =Y-=Y—w=7- ’y2—wg si oy > wp
y—

Como podemos ver, claramente la «extincion» més rapida se produce en el amortiguamiento critico.

2.6. Resumen (oscilaciones libres amortiguadas y no amortiguadas)

&+ 290 + Wiz = 0]
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1 Tipo \ 0, [ v [ Q[ 7 |
Aeiwt + Be—iwt
sin amortiguamiento Acoswt + Bsenwt w 00 0
g Acos (wt + @) 0
Re (Ae“"t)
amortiguamiento débil e~ (Csenwt + D cos wt) 5 1 1
4t wo =" | >3 5
v < wp ae 7" cos (wt + @) gl
amortiguamiento critico _ vt 111
= w x=ux9(l+t)e 0 =3 |5=>
Ae 7=t 4 Be 7+t
amortiguamiento fuerte | e~ 7" (C'senhwt + D coshwt) 52 | <L 1
v > wo ae~ " cosh (wt + ) * 7T 2 -
ae” "t senh (wt + ) **
donde 7 = v —w, 74 = v+ w, v es la constante de amortiguamiento, w es la frecuencia natural, @) es el

factor de calidad y 7 es el tiempo de relajacion. * Solo es valido si |# (0) 4+ v (0)| < w |z (0)]. ** Solo es valido
si [ (0) + 72 (0)] = w |z (0)],

2.7. Oscilaciones forzadas

Ejemplo 19 (Ejemplo introductorio). Imaginemos que tenemos una masa unida a un muelle y que ejercemos
una fuerza sobre esa masa ademas de la fuerza que le ejerce el muelle. En este caso, la oscilaciéon de la masa es
forzada.

k

A mtE

*afl
Bl

B : m

X

Definicién 74. Una oscilacion de una magnitud fisica x es lineal amortiguada forzada si satisface la ecuacion
diferencial:

i+ 2y +wir = f (1)

donde f (t) # 0, v es la constante de amortiguamiento y wg es la frecuencia natural del sistema.

Observacion 44. En general, supondremos que la magnitud fisica que oscila es la posicién de una particula de
masa m. En ese caso, nos convendra reescribir la ecuacion diferencial de la definicion anterior como:

F(t)

:'1§+2’y:1’7+w(2)x:
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Observacion 45. En el caso de oscilaciones forzadas nos va a ser imposible plantear una solucién general de la
ecuacion diferencial, porque esta depende de la forma funcional de f (¢). A lo mas que podemos llegar es a lo
siguiente:

Proposicion 49. La solucion general de una oscilacion lineal amortiguada forzada puede expresarse como:
z(t) = (1) + zp (1)
donde xy, (t) es la solucion general de la oscilacion lineal libre amortiguada:
i+ 2vi+wir =0
y xp () es una solucion particular de la ecuacion diferencial:
i+ 2yt 4+ wiz = f(t)

y tiene la forma:
t
50 = [ glt=m1@ar

para un ty € I cualquiera donde g (t — 1) es la solucion del oscilador libre lineal amortiguado asociado con
condiciones iniciales x (0) =0 y 4 (0) = 1.

Demostracion. Consiste unicamente en aplicar la proposicion 21 en la pagina 73| Q.E.D.

El hecho de que todas las soluciones del oscilador lineal libre amortiguado sean asintoticamente estables (ver
corolarios [13 en la pagina 99| 17 en la pagina 107|y |18 en la pagina 108) motiva la siguiente definicion:

Definiciéon 75. Llamaremos respuesta natural o transitoria a la componente zj, (¢) de la proposicion [49|y
denominaremos respuesta estacionaria o permanente a la componente z), (t).

Proposicion 50. La solucion general de una oscilacion lineal amortiguada (con v > 0) forzada que satisface
la ecuacion diferencial:

F
i+ 2y + wir = — cos (wit +a) = f (1)
m
puede escribirse, cuando t es lo suficientemente grande, como:

F
£ —2
x(t) = m cos | wst + o+ arctan (ﬂ%)

2 2\ 2 Wo = Wy
(Wo —wf) +472wf
a

=6

donde llamaremos amplitud a y diferencia de fase § a los términos indicados arriba.

Demostracion. Segun la proposicion[d9] lo que tenemos que hacer primero es encontrar una solucién particular de
la ecuacion diferencial del enunciado de la proposicion. Para ello, primero convirtamos el coseno en exponenciales:

f@)= —cos (wit+a) = o (elwrthio | gmiwst=ia)

donde hemos aplicado la definiciéon de coseno dada en la proposiciéon [23 en la pagina 74l Notese que nuestra
funcién f (¢) en el cuerpo de los complejos cumple las condiciones necesarias para aplicar el método de los
coeficientes indeterminados (ver proposicion [22 en la pagina 73)). Por tanto, en vez de tener que resolver una
integral, podemos aplicar dicha proposicién. Entonces una soluciéon particular serd de la forma:

xp (t) — tml Aeiwft+ioz 4 tmg Beiiwftiio‘

donde A y B son constantes cuyo valor determinaremos a continuaciéon y mq y meo son las multiplicidades de
iwygt 410y —iwst —io en el polinomio caracteristico, respectivamente. Segtn la proposicién [37 en Ia pagina 98|
las raices del polinomio caracteristico son:
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s=—yE4/72—wi

y éstas en ninguin caso pueden ser un nimero imaginario puro pues es v # 0. Asi, m; = 0 = ma. Y obtenemos
que nuestra solucion particular es de la formas:
mp (t) — Aezwft+za 4 Befzwftfza
Para obtener los valores de A y B, «forzamos» que z, (t) cumpla la ecuacién diferencial del enunciado:
iwft+ia 77wat77la

&p (t) = iwyAe — iwygBe

‘%p (t) _ _wJ%Aeiwft-‘rioz _ wj%Be—int—ia

iy () + 2yip (t) + wiz, (t) =

7w)2CAezwft+za _ wJQIBefzwftfwz + Q’YinAelwfter _ Q,Yiwaefzwftfza + w(z)Aelwfter 4 w(Q)Befuuftfwz _

= (—w? + 2ywyi + wg) Aeiwsttio | (_w)% — 2wy +w§) Beiwst—ia

Bien, ahora la expresion anterior tiene que ser igual a f (¢). Luego, necesariamente:

9 9 F A= i 1

(WO_Wf+2'Y‘*’fi)A:% C2mwi — wi 4 2wy
=
F F 1
2 2 .
—wt—2 B=— B=—
(w5 — wf = 2ywyi) 2m 2m wh — w§ — 2ywyi
Por consiguiente, nuestra solucién particular queda:
, (t) _ i 5 21 'eiwft+ioz i § 21 .efiwftfia
2m wy — wj + 2wyt 2m wy — wj — 2wyt
—A =B

Como vemos, A = B como ya sabiamos, puesto que z, (t) es real y las exponenciales son linealmente
independientes. Bien, ahora nos interesa transformar la soluciéon al cuerpo de los reales. Para facilitarnos las
cuentas llamaremos a := ReA, b :=ImA y u := w¢t 4+ . Asi, la solucién anterior queda:

zp (t) = (a+bi) e™ + (a — bi) e ™ = a (™ + ™) +bi (™ — e~ ™) =

=2cosut =2isenut

= 2a cosut — 2bsen ut

Y esto tiene la forma de una oscilacién armonica. Luego, por la proposicion [29 en Ta pagina 78| sabemos que
existen E, ¢ tales que:

2a cosut — 2bsenut = E cos (ut + ¢)

En la demostracion de dicha proposicién, obtuvimos que:

4b2 b2 2 b2 —
E=2a¢r+:2w¢l+=2a Y 0 2t =2 b2 = 2V AA =
4a? a? a? a

— 2 F
—Vaaa- |5 ! - m
m

2 2 2
(B-e3) + ot J(u-p) 4 a0

e 2 con 4 F 1 wh — wF — 2ywyi
= arctan — = arctan — = arg A = arg | — =
4 2a a & &\ am wh — Wi + 2ywsi wh — wi — 2ywyi
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F  wj—wi—2ywyi —2ywy
= arg T 3 = arctan Z_u?
m (w% — wj%) + 472%% 0 f
De esta forma, recordando que u = wyt + «, nuestra solucién particular (la respuesta estacionaria) queda:

F

£ —2
x, (t) = m cos | wyt + o + arctan [ 2L
2 B f wg — 2
V(=) s /

Bien, ahora segun la proposicién 49 en la pagina 116|deberiamos encontrar una solucién general de la ecuacion
diferencial homogénea (la respuesta natural):

i+ 2y +wg =0

que son justo los tres tipos de oscilaciones amortiguadas libres que vimos en el apartado anterior. No obstante,
segun los corolarios [L3 en la pagina 99| [L7 en la pagina 107]y [18 en la pagina 108] los tres tipos de oscilaciones
son asintoticamente estables. En consecuencia, para un tiempo suficientemente grande, la respuesta natural se
hace cero y la solucién es iinicamente la respuesta estacionaria.

Q.E.D.

2.8. Resonancia

Observacion 46. A lo largo de toda esta seccion supondremos que estamos viendo el sistema cuando el tiem-
po transcurrido es lo suficientemente grande como para que la respuesta natural (la solucion de la ecuacion
diferencial homogénea) se anule.

Definicién 76. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F'(t) = F cos (wst + ).
Diremos que el sistema esta en resonancia en amplitud cuando la amplitud a correspondiente a la solucién
dada por la proposicion [50 en la pagina 116|es méaxima.

Definicién 77. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F'(t) = F cos (wst + ).
Diremos que un sistema estd en resonancia en energia cuando la velocidad v := aw; correspondiente a la
solucion dada por la proposicion [0 en la pagina 116| es maxima.

2.8.1. Resonancia fijando la frecuencia de la fuerza externa w; y variando la fre-
cuencia natural del sistema wy

Proposicion 51. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (wyt + «)

con wy fijo. La resonancia en amplitud y en energia para wy € (0,00) se da cuando wy = wy =: wp . Ademds,
la amplitud y velocidad mdxzima del sistema son:

F F

Umdz =

Umaz =

2mrywy 2my

Demostracion. Recordemos la soluciéon dada por la proposiciéon |50 en la pagina 116}

F
£ —2
x(t) = m cos | wyt + o + arctan (ﬂ%)
wh — w3

2
\/(wg — w}%) + 472%%

=a

=6
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F
—w -2
x(t) = m S sen | wst + o+ arctan | 1L
2 f 02 — o2
(8 -3)" +an3 i
=5

=v
Nuestro objetivo es hallar el valor de wg que maximiza el valor de a y v. Notese que la fase § no importa
absolutamente nada para este célculo. Por otra parte como v = awy y wy esta fijo, aquel valor que maximice a

maximizara también v. Por tanto, queremos maximizar la funcion:

3

a(wo) =
2
\/(wg — w?) + 472%%

Claramente, el valor méximo tiene lugar cuando el denominador es minimo. Variando wy el denominador es

minimo cuando wy = w¢ =: wp,-. En ese caso:
£ F

m

2,2
4wf

Amax = A (WO,T) =a (WO = wf) = = Qm,wa

Y, como v = awy:

Q.E.D.

Observacion 47. Para un wy fijo, la dependencia de la amplitud con respecto a la frecuencia natural wy tiene la

siguiente forma:

Umiax 7]

Wy
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2.8.2. Resonancia fijando la frecuencia natural del sistema w, y variando la fre-
cuencia de la fuerza externa wy

2.8.2.1. Resonancia en amplitud

Proposicion 52. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (wyt + o)
con wy variable. Si mantenemos fija la frecuencia natural del sistema wy, la resonancia en amplitud para wy €

[0,00) se da:

1. enwy = \/wi — 292 =1 wy, siwd > 2v% y vale:

F
am = —
“ 2myy/wg — 72

2. enwy =0 siwd <2v? y vale:
F

mwo

Umaz =
En este caso la fuerza aplicada serd constante y no se producird oscilacion.

Nétese que la solucion (1) sdlo existe si wi > 272, Es decir, unicamente puede existir en amortiguamientos
subcriticos (v < wp) y, aun asi, no existird en todos los de este tipo.

Demostracion. Recordemos la solucién dada por la proposicién [50 en la pagina 116;

F
£ —2
x(t) = m i cos | wst + a4 arctan (ﬂ%)
wi—w
J (w8 ) + 473 S,

=a

=6

Notese que la fase 6 no importa absolutamente nada para este calculo. Queremos maximizar la funcién:

E
m

a(wy) =
2
\/(wg — w?) + 47%)}%

La funcién anterior serd méxima cuando el denominador sea minimo. Por tanto, nuestro problema consiste
en minimizar la funcion:

2
g (wy) = \/(wg — w?) + 47200?

Para ello, hallamos su derivada:

dg o) 2 (w% - w]%) (—2wy) + 82wy i (w% —wi+ 272wf>
dwy T > 2) 2,,2 - > 2\’ 2,2
2 (wo —wf) + 4yiwy 2 (Wo —wf> + 4wy
dg 2 2 2
dos (wf) =06 wy (—4wi + 4w} +87%) =0 &
- — 4w +4w‘?' +8y2=0 @w; = wi — 272 o Jwr = Vws =292 =t wy,
wr=20 wy=0

Noétese que el punto critico wy, solo puede alcanzarse en el caso de un amortiguamiento subcritico (v < wp)
y (aun asi, no en todos los de este tipo). Supongamos que existe wy,, ahora nos faltaria comprobar que
efectivamente es un minimo. Como el cero es simple, nos basta con mirar el signo de la derivada en un punto, o
bien entre 0 y wy,, o bien en un punto mayor que wy . En particular estudiemos el signo de la derivada cuando
wp — 00!
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dg —dwy (w% —-wi+ 272wf) 4w} w}
lim —— (wy) = lim = lim —== lim 2— = lim 2wy =00
wf—r00 dwf wf—r00 2 f—>OO2 (.U4 wf—r00 wf wf—r00
2 (w% - w?) + 472%2@

Asi, necesariamente wy = \/wi — 272 es un punto de minimo relativo y su valor es:

9wy =wyr) = \/(wg —wd +29%)" + 492 (W§ - 29%) = \/474 +4v%wg — 8y =

= \/47%8 — 4yt = \/472 (W§ —7?) =27\ Jw§ —

Por consiguiente, el valor de la amplitud es maxima (relativamente) en wy = wy, = \/ws — 292 y vale:

F

Amax = 4 (Wfﬂ’) = > 5
2ymy/wi —
Nos quedaria comprobar que el maximo relativo encontrado es, a su vez, maximo absoluto, pero esto no es

dificil ya que 1lim 49 (wy) = 0o nos implica que lim g¢(wy) =00 y, en consecuencia, lim a(wy) =0 <
wy—oo dwy wf—>00 wy—00

a(wys,). Por otra parte, como wy, es un cero simple, y sabemos que lim 29 (wf) =00 >0, debe ser
W f—>00 de

da da
o (wy) < OVwy > wys, y v 0V0 < wy < wy,. Por consiguiente, necesariamente a (wy,) > a(0) y, asi,
W W
wy.» es un punto de maximo absoluto de a para wy € (0,00). Con esto hemos probado (1).
Supongamos, ahora, que no existe w -~ Entonces el inico punto critico que tenemos es justo un extremo
del intervalo (el 0) y tnicamente tenemos que evaluar la funcion en el infinito. Antes hemos visto que era

lim g(wy) =00 > g(0) y, en consecuencia, 0 es un minimo absoluto de g en [0, c0). Por ende, 0 es un punto
W f—r00

de maximo absoluto de la amplitud en [0, c0) y, asi, hemos probado (2). Q.E.D.

Definicién 78. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F' (t) = F cos (wyt + «)
con wy # 0 variable en el que mantenemos fija la frecuencia natural del sistema wy. Supongamos que se cumple
wd > 2v?, entonces llamamos anchura de resonancia al intervalo cerrado entre los dos valores de wy tales

que a (wy) = —ai‘/‘%".

Proposicion 53. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (wst + o)
con wy # 0 variable en el que mantenemos fija la frecuencia natural del sistema wy. Supongamos que se cumple
wd > 292, Entonces, la anchura de resonancia es el intervalo [wq,wp] donde:

Wy = \/w%r — 27y /wE — 2
wp = \/w]%,TJery\/wg — 2

Demostracion. Recordemos (ver proposicion [50 en la pagina 116]) que la amplitud en funciéon de wy venia dada
por:

F
m

a(wyp) =
V(i)
0 f YWy

Por otra parte, por la proposicion [52 en la pagina anterior] sabemos que la maxima amplitud

F

améx -
2yma/wE — 2
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Por tanto queremos resolver la ecuacién:
F
F m

22y P \/( )

para w¢. Lo anterior es equivalente a:

2
\/(wg — w?) + 49203 = 29V24 /Wi — 72

Elevamos al cuadrado a ambos lados:

(wg — wj%)Q + 47%1? =87 (wg — %) &
& wy — 2w} + wi 4+ 47%wi — 8y (wh — %) =0 &
& wi+ (497 = ) wf +wg — 897 (wg — %) =0

La ecuacién anterior es una bicuadrada, sus soluciones positivas (wy > 0) son:

22 — 492 + \/(2w§ —442)? — 4 (wh — 872 (w2 —12))
wf = =
2

1
= \/wg — 292+ 5\/4w§ — 16wdy? + 167* — 4w§ + 3272w? — 3294 =

1 1
= \/wg — 272 £ 5\/716(40372 + 167* + 3272w — 3294 = \/wg — 292 £ 5\/167%13 — 1644 =
1 1
= \/wg — 292 £ 5\/1672 (w3 —72) = \/wg — 292 £ 54m/w8 -2 =
= \/wg — 292 £27y/wf — 2

Por la proposicién |52 en la pagina 120| es: wr, = Vwi — 272 & W]%,r = w? — 272, de forma que lo anterior

es equivalente a:
wp = \/wir + 274/ wd — 72

con lo que llegamos al enunciado. Q.E.D.

Corolario 19. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (wst + «)
con wy # 0 variable en el que mantenemos fija la frecuencia natural del sistema wg. Sea, ademds, v < wy (por
tanto se cumple w3 > 242). Entonces, la anchura de resonancia puede aproximarse por el intervalo [w,wy)
donde:

Wa R Wfr —7

Wp = Wf e+ 7y

Demostracion. Partimos de la proposiciéon anterior:

Wy = \/%20,7- — 2vy/wd — 2
wp = \/w?’T—FZm/wg — 2
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Recordemos la expresion dada para wy, en la proposicion [52 en la pagina 120}

Wy =4/ wi — 272

Sustituyendo, obtenemos:

Wy = \/w§272+2'y\/w8’y2
Wy = \/w§2722'y\/w8'y2

Como 7y < wy, serd wi > 72 y w? > 242. Por tanto, podemos aproximar las expresiones anteriores por:

2
wa%\/wg—?ywo:wm/l—l
Wo

2
wp &/ wd + 2ywo = wo 1—&—1
Vo wo

Como es 7 < wy, wlo — 0 y podemos hacer uso del lema |7 en la pagina 102| para obtener una aproximaciéon
a primer orden de las expresiones anteriores:

(-%)-
WegRwo|l—— ] =wp—7
wo

wp X Wo (1—}—7) =wp+7
wo

Por dltimo, como es v < wg y era wy, = Vwi — 272, podemos aproximar wy = wy, de manera que
obtenemos:
Wa R Wer—7°

Wy = Wfe+y

con lo que llegamos a las expresiones del enunciado. Q.E.D.

Observacion 48. Recordemos que el factor de calidad venia definido como [66 en la pagina 98t

Wo
Q= o
Lo que acabamos de ver le da algo de sentido al nombre de «factor de calidad». En muchas aplicaciones
practicas nos interesa tener una resonancia estrecha y aguda. Por el corolario anterior sabemos que la longitud
de la anchura de resonancia es aproximadamente 2y cuando v < wy. De manera que cuanto mas pequena sea
la anchura de resonancia, mayor sera el factor de calidad.

Observacion 49. Podemos ver todo lo mencionado en las proposiciones anteriores en la siguiente grafica de la
amplitud de una oscilaciéon subamortiguadas:
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a
Amgx ]
1
T=zWo
Omix -
V2
wf_’T
T T wf

T
wf,?"i'y wWo wf"r+’y

Podemos ver que la aproximacion realizada para la anchura de la resonancia es, en realidad, bastante buena
a pesar de que 7y es s6lo un quinto de wy.
Sin embargo, en una oscilacion sobreamortiguada, el maximo en la amplitud se encuentra cuando w; = 0:
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Qmgx ]

Wt

2.8.2.2. Resonancia en energia

Proposicion 54. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F (t) = F cos (wst + o)
con wy # 0 variable. Si mantenemos fija la frecuencia natural del sistema wg, la resonancia en energia para
wy € (0,00) se da cuando wy = wy. Ademds, la velocidad mdzima del sistema es:

i
2my

Umdz =

Demostracion. Recordemos que, por la definicion [77 en Ia pagina 118] la velocidad del sistema es:

v =wra

Usando la proposiciéon [50 en la pagina 116, tenemos que la velocidad es:

F
m¥r
v(wy) = .
(wg — wj%) + 4’y2w?

Para estudiar los puntos criticos de la funcién anterior, vamos a proceder a derivar:

\/(WS - wj2">2 + 42w} — wy Z(Ujgfw?)(ﬂtf)wv%f
2/ ) "+

2
(wg - w]%) + 472w?

dl(w)_i
dwy ! T m

2
(wg — w]%) + 472%% + 2w12c (w% - wj%) - 472%2c

2
(s -3)" a2

3
2
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wi — 2w(2)w]2c + w% + 2w(2)w]2c - Qw;% B —w? +wj

3
2 3 2
[(w% - W;) + 4“/260?] {(w% — w?) + 472%%}

dv

dwf

3
2

(W) =0 —wi+wj =0& w; =wj < wp = w

ya que wg,ws > 0. Para probar que es un maximo relativo aprovecharemos el hecho de que el cero es simple
(aunque no lo parezca es simple, para que fuera cuadruple se tendria que poder factorizar como (wy — w0)4).
Como el cero es simple, simplemente hallando el valor de la velocidad en el supuesto punto de méximo y el valor
de la velocidad en otro punto (por ejemplo en cero), podremos comprobar que es maximo.

F wo F wWo F
v (wo) = — =

m 4720.)3 - EQ'ywo a 2ym

Por otra parte:

v(0)=0

Y claramente 27% > 0 pues F,v,m,2 > 0. Asi wy = wp es maximo relativo. Para probar que, ademas, es
méximo absoluto, inicamente tenemos que estudiar el limite de la velocidad cuando wy — oo:

F
=w F F 1
lim v(wy) = lim m=/ = lim ——L = lim —— =0<v(w)
wf—00 wf—00 2 wr—00 M w4 wf—>00 mwf
\/(W% - w;) + 4y2w} vV r
Asf wy = wp es un punto de méaximo absoluto y dicho maximo vale:
F
Vmax = ——
ma: 27m

Q.E.D.

Corolario 20. Sea un oscilador lineal amortiguado forzado con una fuerza del estilo F' (t) = F cos (wst + «) con
wy # 0 variable. St mantenemos fija la frecuencia natural del sistema wy, la mdrima transferencia en potencia
al oscilador por parte de la fuerza externa se produce cuando wy = wy.

Demostracion. Recordemos que era:

P=Fz

Por la proposicion [50 en la pagina 116] sabemos que es:

F
£ —2
x(t) = a0 cos | wgt + a + arctan it
2 wh — w?
(wg - w?) + 4y2w?

F
—w -2
(t)=— 1 J; sen (wft—i—a—i—arctan (ﬂ%))
wi —w
\/(w?) - wj%) + 472w]2¢ 0 !

=v

Por tanto:

-2
P = Fcos (wft + a)vsen (wft + a + arctan (27“’;))
wh — w?

Haciendo abstraccion de las fases, claramente la expresion anterior serd4 méxima cuando v sea maxima Yy,
por la proposicion anterior, eso sucede cuando wy = wy. Q.E.D.

Observacion 50. Para un wy fijo la velocidad del sistema varia de la siguiente forma:
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W

1
wo

Como podemos ver, la maxima resonancia en energia se produce tanto para amortiguamientos subcriticos
como supercriticos, de hecho, para cualquier tipo de amortiguamientos. Claramente se ve también que el méximo
se encuentra en wy = wy.

2.8.3. La fase en resonancia (*No lo vimos méas que con dibujos en clase)

Recordemos que por la proposicién [0 en la pagina 116 la diferencia de fase viene dada por:

-2
6 = arctan (ﬂ%)
wy — W

Sigamos esta fase mientras variamos wy, suponiendo v < wp. Cuando es wy < wp, 0 es muy pequeio en
modulo; es decir, mientras wy < wy, las oscilaciones estan casi en fase con la fuerza externa. A medida que
aumenta wy y se acerca a wo, ¢ disminuye lentamente. En resonancia en energia donde es wy = wy, el argumento
de la arcotangente tiende a menos infinito por lo que § = —7; es decir, las oscilaciones van en cuadratura de
fase con la fuerza externa. Una vez que wy > wp, el argumento de la arcotangente es positivo y tiende a cero
conforme wy aumenta. Por consiguiente, ¢ disminuye més alld de —7 y finalmente tiende a —7. En este punto,
las oscilaciones estan casi en oposicion de fase con la fuerza externa.

A medida que v se va a acercando mas a wg, las variaciones son menos extremas y cuando vy > wy, el
crecimiento de ¢ es rapido al principio pero luego se hace mucho mas lento.

Todo esto puede verse graficamente en:
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T T CL)f
Wy —v=4wy
1 Y= O].WO
—7 —~v=0.01wy
1,
1,
7]
4 |
A

2.8.4. Ejemplos varios de la vida real

Después de las arduas secciones anteriores, el lector puede estar preguntandose: «Muy bien, pero esto ;para
qué sirve?». La resonancia es un efecto comun en la vida diaria. Por ejemplo, es por resonancia como una radio
es capaz de «aislary la frecuencia que queremos escuchar de las otras. También, el clasico ejemplo en el que una
cantante es capaz de romper un vaso de cristal con su voz se debe a esto: El sonido es una onda de presion que se
propaga a través de un medio material, en particular, a través de un vaso de cristal. Si la frecuencia de la onda
incidente es justo la frecuencia de resonancia en amplitud del vaso, entonces las oscilaciones tendran amplitud
méaxima y el vaso se rompera. También, la resonancia ha ocasionado tragedias en la ingenieria de puentes (para
maés informacion hagase clic aqui m)

2.9. Series de Fourier

Teorema 18 (Descomposicion en serie de Fourier). Sea f (t) una funcidn periddica con periodo T' en un intervalo

I CR. Entonces Ja; coni=0,1,...,00, db; coni=1,2,...,00 tales que:
(o)
= 50 Z ap, cos (nwt) + by, sen (nwt)] Yt € T
donde:
s
o= [ L1

2
T
2 =2

ap, = — f(t)cos(nwt)dt ¥n=1,2,...,00

TJ-g

"http://estructurando.net/2014/06/30/5-cagadas-en-la-ingenieria-de-puentes-por-culpa-de-la-resonancia/
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T
9 %
n:—/Z f(t)sen (nwt)dtVn =1,2,...,00
/g

— 27
Yyw= 7.

Observacion 51. El teorema anterior nos dice, por tanto, que cualquier fuerza periédica puede descomponer-
se en un combinacion lineal (infinita) de senos y cosenos. Eso nos va a permitir trabajar con fuerzas de este estilo:

h\

t

Proposicion 55. La solucion general de una oscilacion lineal amortiguada (con v > 0) forzada con una fuerza
periddica F (t) de periodo T, cuando t es suficientemente grande, puede expresarse como:

o @, COS (nwft + arctan (WL"WJI‘)) + b, sen (nwft -+ arctan (%27#))

n? nzwf

2
n=1 m\/(wg — anJ%) + 472712%2@

donde ws = 2% Y ag, an Y by, son los dados en el teorema|18 en la pagina antem'od.

ag

x(t) =

2
2mwg

Demostracion. Primero, como F (t) es una funcion periodica, por el teorema [18 en la pagina anterior| sabemos
que existen ag, a,,b, con n =1,2,...,00 tales que:

?0 Z @y, cos (nwyt) + by, sen (nwyt)]

Por tanto, la ecuacion diferencial a resolver queda:

o0
. . 2 ap 1
&+ 2y + wir = 2— - Z ay, cos (nwyt) + by, sen (nwyt)]

Ahora, vamos a aprovechar la linealidad de la ecuacion diferencial para decir que la solucion estacionaria (la
solucion particular de la no homogénea) que estamos buscando es suma de las soluciones particulares de cada
uno de los sumandos que conforman F ().

Vayamos con el primer sumando; nos quedaria la ecuacion diferencial:

ao

Notese que 52 es conbtante Por tanto, por la proposicion 24 en la pagina 74} sabemos que existe un cambio de

variable x = y + 2’” =Y+ 525 que la transforma en una ecuacion homogénea.
0 U
De esta forma, la boluc10n particular correspondiente a este primer sumando seria:
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ap
1 t
Qmwg +on (?)

Pero, segiin los corolarios [13 en la pagina 99| [17 en la pagina 107|y [I8 en la pagina 108 como estamos en
tiempos suficientemente grandes yy, (t) se anula, porque la ecuacion diferencial homogénea es asintéticamente
estable. Asi, tenemos que:

Tp,ag (t) =

ao

Lp,ag (t) = Qmwg

Vamos, ahora, con los términos con coseno. Nos queda la ecuacion diferencial:

&+ 27& + wiz = ay, cos (nwyt)

La solucion de la ecuacion diferencial anterior para ¢ suficientemente grande viene dada por la proposicion [50]
len la pagina 116}

—2ynwy
Zpa, ( cos | nwyt + arctan | —w——"5
Wy — nAWy

m\/ n2w2 —|— 472n2w12[

Vamos, ahora, con los términos con seno. Nos queda la ecuacion diferencial:

&+ 2y + wix = by, sen (nwyt)

Notese que podemos escribir el seno como un coseno con un desfase de + 3.

&+ 2vyi + wix = by, cos (nwft + g)

La solucion de la ecuacion diferencial anterior para ¢ suficientemente grande viene dada por la proposicion [50]
len la pagina 116}

b -2
Tpb, (1) = n - cos (nwft + g + arctan (%))
m\/ wd — n%}?) + 4y2n2w} 0 f

Ahora, podemos volver a escribir el coseno con un desfase de +7 como un seno:

—2ynwy
Tp,b, sen | nwyt + arctan | ——-5
2, 22,2 Wo Ty
m —-n f —1—47 nfws

Asi, aplicando linealidad, sabemos que la solucion particular (la respuesta estacionaria) que buscamos es:

ao o0 ap COS (nwft + arctan (ﬂ%)) + by, sen (nwft + arctan (%))

Ty (1) = 2mw?

n=1 m\/ wo—n2 f +472n2w12c

Por dltimo, segiin los corolarios |13 en la pagina 99| [17 en la pagina 107|y [18 en la pagina 108 la respuesta
natural es asintoticamente estable y, en consecuencia, se anula cuando ¢ es lo suficientemente grande. Por tanto,
la solucién que buscamos es justo la respuesta estacionaria:

0
= 2 tl) + 1, (1)

Q.E.D.

Observacion 52. Imaginemos que queremos estudiar la resonancia en amplitud o en energia de un oscilador
lineal forzado con un fuerza periddica. Aunque su descomposicion en serie de Fourier tenga infinitos términos,
para obtener una buena aproximacion del valor de la amplitud en resonancia o el valor de la velocidad basta que
consideremos los términos de la serie de Fourier cuya frecuencia nwy se acerque a la frecuencia de resonancia
wy,r de nuestro sistema.
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2.10. Oscilaciones tridimensionales. Oscilador armoénico is6tropo

2.10.1. Definicién y primeras propiedades

Ejemplo 20 (Ejemplo introductorio). Consideremos un muelle tridimensional:

m

7
O

Como la oscilacion ya no es unidimensional, necesitamos unas nuevas ecuaciones matemaéticas que nos des-
criban el movimiento de la masa m.

Definicion 79. Decimos que una magnitud fisica ¥ = (z, y, 2) sufre una oscilaciéon arménica tridimensional
si satisface la ecuacion diferencial:

o 2. 2. 2

7+ (wmx,wyy,wzz) =0

Definicion 80. Decimos que una magnitud fisica 7 sufre una oscilacién arménica tridimensional is6tropa
Sl Wy = wy = w, =: w.
Diremos que la oscilacién es anisétropa cuando no se de la condiciéon anterior.

Corolario 21. Una oscilacion armdnica isdtropa satisface la ecuacion diferencial:

F4+w?z=0

Frw’f=0&a<{ij+w?y=0

F4+wlz=0
Demostracion. Es trivial a partir de la definicion. Q.E.D.
Proposicion 56. Una particula de masa m en un espacio tridimensional sometida a una fuerza F=—ki=

—kr# sufre una oscilacion armdnica isdtropa con w? = %

Demostracion. Por la segunda ley de Newton (ver axioma [l en la pagina 8)), tenemos:

mit = —ki & 7+ —7 =0
m

que claramente tiene la forma dada en el corolario Q.E.D.

2.10.2. Solucién del oscilador arménico isétropo

Proposicion 57. La solucion de una oscilacion armdnica isétropa puede expresarse como:

7(t) = coswt + dsenwt
- O
donde c=71y yd= =2, Ademds, la velocidad viene dada por:
w
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7(t) = —Gwsenwt + dw cos wt

Demostracion. Partimos de la ecuacion diferencial del corolario 21 en Ta pagina anterior}

) 4wz =0
F+w =0 ij+w?y=0
F4+w?z=0

Como, vemos, al expresar el sistema de ecuaciones por componentes, vemos que cada ecuaciéon es inde-
pendiente de las otras. En consecuencia, resolver el sistema anterior es equivalente a resolver tres osciladores
armonicos. Por la proposicién [28 en la pagina 76 sabemos que existen c;,d;,cy,dy,c.,d. € R tales que la
solucion de las ecuaciones diferenciales anteriores puede expresarse como:

x (t) = ¢y coswt + d, senwt
y (t) = ¢y coswt + dy senwt
z (t) = ¢, coswt + d, senwt

Equivalentemente, si definimos ¢ := (cz, ¢y, ¢,) ¥y d:= (dy, dy,d,) podemos expresar las soluciones anteriores
como:
7 (t) = Ccoswt + dsenwt

Por la proposicién |35 en la pagina 89| sabemos que:

v
Cy = To dy = =22
— __ Yy,0
Cy = Yo dy = =%
c, = 2 d, = &0

€

Y, claramente 7y = (2o, Yo, 20) ¥ Uo = (Vz,0,Vy,0,Vz,0). Por tanto, tenemos que:
L > o
C=Tp d = —
w
Por tltimo, para obtener la velocidad, simplemente derivamos:
Z (t) = —céw senwt 4+ dw cos wt

Q.E.D.

2.10.3. Un oscilador arménico is6tropo es central y conservativo

Proposicion 58. La fuerza F de la Proposicion |56 en la pdgina antem’ori es central respecto al origen de
coordenadas y conservativa. Bl momento angular y la energia son constantes del movimiento y vienen dadas
por las expresiones:

Lo =mwcxd

E= %mw2 (¢ + d?)

Demostracion. Por la definicion [12 en la pagina 20] tenemos que el momento angular respecto al origen de
coordenadas O es:

EO =miFxXTF=m [E’coswt—i— cfsenwt} X W [—Esenwt—i— cfcoswt] =

mw | —@x Ecoswitsenwt — d x & sen® wt + & x dcos® wt + d X dsenwt coswt | =
——

=0 :-ExJ =0

= mw {E’x J] [sen2 wt + cos? wt] = mwéxd

=1
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Asi, como el momento angular no depende de t, éste se conserva. Y, por la proposicion [7 en la pagina 22| la
fuerza es central.
Ahora, veamos que la fuerza F' es conservativa. Si definimos la funcién V (7) := 1ki"?, claramente se cumple:

F= —VV pues —VV = _T = —72kr = —k7. Asi, como la fuerza tnicamente depende de la posicién, por la

definicion |5 en la pagina 14|7 F' es conservativa. Por tanto, tiene una funcion energia potencial asociada (que es
la V' que hemos definido antes) y la energia mecanica:

1 - 1
E = 5771772 + 5]@?2

debe ser constante. En consecuencia, para obtener su valor, podemos calculara en el punto que nos sea mas

cémodo. Por ejemplo en ¢t = 0:

1 1
E = imvg + ikrg

Por la proposicion |57 en la pagina 131} sabemos que ¢ =7 y d=2 o vy = wd. Sustituyendo, tenemos:
w

1 1
E = —mw?d® + Zkc?
2 2

k
Por la proposicion |56 en la pagina 131, sabemos que es w? = —. Asi:
m

NN A S S A SN S S
E—2kd+2kc—2k(c +d)—2mw (c +d)
Q.E.D.

Corolario 22. El movimiento de un oscilador armdnico isétropo estd restringido al plano que forman los
vectores € y d si ¢} d y sigue la direccion de € si € || d. En este dltimo caso, el movimiento es unidimensional.

Demostracion. Supongamos, ¢ }f d. Segun la proposiciéon anterior:

- —

mr X7 =Lo=mwc¢xd#0

Luego LO es perpendicular al plano formado por los vectores 7 x r Pero, de hecho, LO es constante, luego,
necesariamente 7y T siempre van a estar en el mismo plano. Como Lo también es perpendicular a los vectores
cy d7 el plano formado por ¥ x 7y el formado por Cy d debe ser, necesariamente, el mismo.

Si | d, el momento angular Lo es nulo. Segiin la proposicion |57 en la pagina 131}

7 (t) = Ccoswt + dsenwt
Como ¢ || d, necesariamente 7 || ¢y asi, la oscilacion se produce Gnicamente en la direccion de ¢. Q.E.D.

Observacion 53. El primer caso de este tltimo corolario podria haberse probado también partiendo de la forma
de la soluciéon dada por la proposicion 57 en la pagina 131}

7(t) = Ecoswt + dsen wt

Sicl cf, cy d son linealmente independientes y, para cualquier ¢, 7 va a ser combinacion lineal de ¢’y d. Por
tanto, 7 estara en el plano que forman €y d.

Lema 10. Sean a,f € R, entonces se cumple:

1.
cos (a+ ) = cosacos f — sen asen 3

sen (a+ ) = sen«cos B + cos asen
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2.10.4. Forma de la trayectoria

Proposicion 59. La trayectoria descrita por una particula sometida a una fuerza F como la de la pmposicio’n
|en la pagina 15’J| es una elipse siempre que ¢ Jf d. Ademds, la posicion de la particula puede expresarse como:

7 = G cos (wt + 0) + bsen (wt + 0)

donde d, b € R3 son los semiejes mayor y menor de la elipse (y, por tanto, @ L l_;) y6oe [—

mente es @ el semieje mayor de la elipse y b el semieje menor, puede ser al revés. Dichos
estdan relacionados con ¢ y d de la siguiente forma:

T No necesaria-
a,

s
il
b y 0 son unicos y

—

1 2¢-d =
02arctan<d26_62> sid#c ngsid:E H:fgsid:fc

a

ccos — dsenb

b= écsenf + dcosf

Demostracion. Partimos de lo que queremos probar y vamos a ver que es equivalente a la expresion que ya
tenfamos para la posicion en la proposicion [57 en la pagina 131}
Por el lema [10 en la pagina anterior] podemos expresar la férmula del enunciado como:

7= @ (coswt cos § — senwtsen 0) + b (sen wt cos O + cos wt sen 6)

Ahora, supongamos @ = ¢cosf — dsen y b= &senf + dcosb (como viene en el enunciado) y veamos que
llegamos justamente a la expresiéon de la proposicién [57 en la pagina 131}

7= (E’cos 6 — dsen 9) (coswt cos — senwtsen ) + (€sen9 + dcos 9) (senwt cos @ + coswtsen ) =

= Gcoswt cos?  — Esenwt sen 0 cos § — d cos wt sen O cos § + dsen wt sen? O+
+&senwt sen 6 cos O + Gcoswt sen? O + dsen wt cos? O + d coswt sen 6 cos O =

= Ccoswt (cos2 6 + sen? 9) +dsen wt (sen2 0 + cos> 9) — Gcoswt + dsenwt

=1 =1
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Por tanto, existen 6 € R;&,I; € R3 (no necesariamente tnicos [de hecho, no lo son|) tales que podemos
expresar la posicion de la particula como:

7 = @cos (wt + 6) + bsen (wt + 6)

Examinando las expresiones de a y de b:

R
a=ccosf —dsenb

b= écsenf + dcosf

" o o
podemos ver que si ¢ || d, @ || ¢y b || € luego @ || b. En este caso, el movimiento es unidimensional como ya

hemos probado en el corolario |22 en la pagina 133l Asi que supondremos ¢ }f d.
Bien, ahora veamos qué condiciones tiene que cumplir § para que sea @ L b:

(ECOSchfsene) . (5sen9+cfc030> =0
<:)c2sent9(:0s0—8-cfsen29+8~<fcos20—d2sen0cos9:O<:>
<:)czsenﬁcosﬂ—d256n96059+€-J(COSQG—SeHQG) =0&

sen 260

(:)(02—d2) + & dcos20 =0

= Si suponemos cos 260 = 0, necesariamente sen20 = 1 <20 =3 +nrVne€Z 0= +nrVn € Zy:

+ (02—d2):0<ﬁ>02:d2¢>c:d

DN | =

= Suponiendo cos 26 # 0, dividimos a ambos lados de la ecuacion por %cos 26, obteniendo:

42—

ep bt [(26d
—2arcan P22

noétese que tenemos garantizado que ¢ # d porque cos 20 # 0, asi que

- 2¢-d 2¢-d
(02 - d2) tan20 +2¢-d =0 < tan20 = 072 & 20 = arctan (c) &
c 2 2

°28-d . ,
) esta bien definido.

Ahora, démonos cuenta de que si § € R, 6 no es tnico. Notemos arctanx € (—g, g) Vr € R, de esta forma,
en el caso ¢ # d si restringimos 6 al intervalo (—%, %) su valor sera tnico, pues si ¢ # d, la arcotangente es
inyectiva. En el caso ¢ = d, el valor de 6 vendra dada por una féormula limite. Claramente, en la expresion:

1 2¢-d
0= 5 arctan m

ed>0 lm - m &d<0 lm  m

2250 22 4 2—c20 22 4

T T

De manera que acabamos de probar que siempre hay un # inico en [_Z7 Z] tal que d'y b son perpendiculares.

A partir de ahora, supondremos que 6 es tal que @ y b son perpendiculares (ya sabemos que existe asi que no
hay ningan problema en hacer esta suposiciéon). Entonces, podemos establecer los ejes coordenados X y Y
coincidentes con las direcciones de @ y b. De forma que la descomposicion de 7 (¢) en los ejes X e Y queda:

x (t) = acos (wt+0) & ? = cos (wt + 0)
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y (t) = bsen (wt + 0) &

y() _
= =sen (wt + 0)

Elevando al cuadrado y sumando ambas ecuaciones, obtenemos:

= cos? (wt + 0) +sen? (wt +6) =1

que es justo la ecuacion cartesiana de una elipse. Notese que @ no tiene que ser necesariamente el semieje mayor
de la elipse (podria serlo b perfectamente). Q.E.D.

Proposiciéon 60. El momento_anqular y la_energia del movimiento de una particula sometida a una fuerza F
como la de la proposicion |56 en la pdgina 15’J| en funcion de los pardmetros @ y b de la proposicion

queda:

_ 1 2 o _ 1 o5y 2
E—Qk:(a +b)—2mw (a +b)

Lo =mwd xb

Demostracion. Partimos de la expresion de la posicion dada en la proposicion [59 en la pagina 134y derivamos
para hallar la velocidad:

7 = @cos (wt + 6) + bsen (wt + 6)

7= —dwsen (wt + 0) + wb cos (wt + 0)

Como tanto la energia como el momento son constantes, puedo calcularlos en el instante en el que me sea
més sencillo. Por tanto, escojo un ¢ tal que 7=d. _Este t claramente existe puesto que el seno que acompana a
b se hace cero para algun t. Entonces, sera: ©¥ = wb y, asi, el célculo queda muy sencillo:

Lo:mFxF:m(iX<wb>:mwﬁxb

1 1 1
FE = 51@‘7"2 + mi? = Zka® + ~mw

212
2 ) 2 b

Por la proposicion |56 en la pagina 131, sabemos que es w? = —. Por consiguiente:
m

PR S R S BT N S I S
E_2ka +2kb—2k(a +b)—2mw (a® +b?)

Q.E.D.

2.10.5.

Proposicion 61. Supongamos que tenemos una particula sometida a una fuerza F como la de la pmposzczon.

en la pagina 181, Ademds conocemos el valor de las constantes € y d entonces, |d| = a y ‘b = b son las dos

unicas soluciones positivas de la ecuacion bicuadrada en wu:
ut — (02 + d2) u? + Ad?sen’a =0
donde a es el dngulo que forman c y d.

Demostracion. Primero, veamos que efectivamente, tanto a como b son soluciones de la ecuacion. Por las pro-
posiciones [68 en Ta pagina 132]y [60] tenemos:

mwcxd=Lo=mwidxb&sdxb=¢xd

?@Mﬂ%:E:%M&+#V¢&+H:&+% (2.10.1)
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Como es @ L 5, llamando « al dngulo que forman ¢y J; de la primera ecuacion se deduce:

ab = cdsen a = a®b* = c*d* sen” o (2.10.2)

Despejando a? de la ecuacion [2.10.1 en la pagina anterior| y sustituyendo en [2.10.2, obtenemos:

a?=32+d% -

(02 +d? - b2) b? = Ad?sen? a < b2 (02 + d2) — b —AdPsen’a =0«

ot — (02 +d2) b2 + Ad?sen’a =0

Luego b, claramente, satisface la ecuacién del enunciado. Ahora, despejando b? de la ecuacién [2.10.1 en la paginal

y sustituyendo en [2.10.2} obtenemos:

v =c+d* —a?

a? (62 +d?* — a2) = *d?sen’ o & a? ((32 + d2) —a* —Ad*sen’a =0«
& a — (¢ +d*) a® + Pd®sen’ a =0
Luego a también satisface la ecuacion del enunciado.

Ahora probemos que son las tnicas dos soluciones positivas. Como la ecuacién del enunciado es una bi-
cuadrada, si tenemos una solucion A € R 3 A > 0, entonces, necesariamente —\ serd también solucién. Esto
se debe al cambio de variable t = u? < u = ++/f que se emplea para resolver las ecuaciones bicuadradas.
Es decir, si A es real y es solucién de la ecuacién bicuadrada, t = A2 sera soluciéon de la ecuaciéon de segundo
grado correspondiente al cambio de variable. Pero como hemos dicho antes, u = ++/t = )\, luego —\ también
es solucion. Bien, volviendo a nuestro caso particular, como a,b > 0 son soluciones de la ecuacién bicuadrada
del enunciado y son reales, —a y —b también seran soluciones. Y, claramente —a, —b < 0. Como una ecuacién
de cuarto grado puede tener como mucho cuatro soluciones y ya hemos agotado todas, a y b son las tnicas
soluciones positivas. Q.E.D.

Proposicion 62. Supongamos que tenemos una particula de masa m sometida a una fuerza F como la de la
proposicion|[56 en la pdgina 131 Ademds conocemos el valor de las constantes del movimiento Lo y E, entonces,

ldl=ay ‘b‘ = b son las dos unicas soluciones positivas de la ecuacion bicuadrada en w:

2F L2
ut — o)

=0
mw? m2w?

Demostracion. Partimos de la proposicion [61 en Ia pagina anterior]y vamos a expresarla en funciéon del momento
angular y de la energia:

ut — (02 + d2) w2+ Ad%sen’a =0

Por la proposiciéon 58 en la pagina 132] tenemos:

Lo =mwéxd

1 2F
E = —muw? (02+d2) sl +d=
2 w2
Luego:
Lo 2 72 2 LQO
Lo = mwedsena < cdsena = — = ¢“d“ sen” o = 5 5
mw m2w
donde « es el angulo que forman ¢y d.
Ahora, simplemente sustituyendo en la ecuacion bicuadrada en u, tenemos:
2F L?
ut — — u? 202 =0
w m2w
con lo que queda probado el enunciado. Q.E.D.
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2.10.6. Ejemplos

Ejercicio 8. Tenemos una particula de masa m cuya posiciéon describe una oscilacién armonica isétropa con

. o ro =21+ ] . . .
condiciones iniciales {Z’o 4A,Z + 8JA" Calcular su orbita y analizar el efecto de w en ella. Obtener, también, la
Uo = 41 — 8

energia y el momento angular.

Solucion.
Por la proposiciéon [57 en la pagina 131 sabemos:

—

=10

wd:ﬁg

Ahora, queremos hallar el valor de @ y b. Por la proposiciéon |59 en la pagina 134|, tenemos que es:

2¢-d 3
tan 20 — ﬁ =0<:>292077T,27T,37T<:>9=0,g,7'r,§

Notese que estamos suponiendo que 6 € [0, 27), mientras que en la proposicion en cuestion nos restringiamos
afe [—%, %] . Como consecuencia, los vectores @ y b no seran tnicos, pero la trayectoria trazada por la particula
si lo serd, como veremos mas adelante.

Obtenemos:

4282 24420 2M(1+2Y) 16-5

2 _ o2 _ 2
c=2Hl=0 d_ﬁ w2 w2 w? w2

Si hacemos w = 4, obtenemos ¢ = d y tenemos una circunferencia. Si hacemos w < 4, entonces d > c,
mientras que si w > 4 entonces ¢ > d. En estos dos casos, obtenemos una elipse.

donde la trayectoria negra es la circunferencia negra que se corresponderia con w = 4, la elipse roja se
corresponderia con w > 4 y la elipse marrén se corresponderia con w < 4.

Estudiemos ahora todos los posibles valores de 6. Recordemos que por la proposicion [59 en la pagina 134]
es:

@ = ccosf — dsenf
b= csenf + dcosf

» Sif=0:

Sy
I
Q‘l oy
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= Sif= 3 B
a=—d
b=2¢
= Si0=m:
a=—¢
b=—d
= Sif= 37”: B
a=d
b=—¢

Como vemos, en todos estos casos la elipse que se forma es la misma y tnicamente cambia qué tomamos como
semieje mayor y qué tomamos como semieje menor.
Ahora, calculamos la energia. Aplicando la proposicion [60 en Ta pagina 136] tenemos:

1 1 80
E Qk‘(a —l—b) Qmw (5+w2>

Para obtener el momento angular, utilizamos la proposicion [58 en la pagina 132

EO = mFO X 170 = —20m/§:

Ejercicio 9. Tenemos una particula sometida a una fuerza F = —kf a distancia ro del centro de fuerzas.
[ Qué condiciones debe cumplir ¥y para que la trayectoria sea circular? Suponiendo que la particula describe
una Orbita circular, le realizamos un impulso radial I = mA#. Estudiar c6mo varfan la energia y el momento
angular.

Solucién. Tomando ¢ = 7, para que la oOrbita sea circular debe ser ¢ = d y ademés ¢ L d. Por tanto,
c=d<& rg = & vy = row. Por tanto, deben ser 75 L @ y vo = wro.
Sabemos que la energia tras el impulso E’, sera:

1 I\% 1 1 1 1 (1)
r__ 2 _ 2:7 2 — 2 — —_ =
E = 5™ <v0+ () >+2kro 2mvo—|— 2kr0+2m( )
N————

=F
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A
:m() +E:>E/>E
2 m
———
>0

Notese que el nuevo impulso se hace a lo largo de la direcciéon radial y que, por tanto, la velocidad inicial
radial (antes de aplicar el impulso) es nula.
Como el impulso es instantaneo:
Ty =To

El modulo de la velocidad también aumentara:

vy > v

Sin embargo, el momento angular permanecera constante, puesto que para su calculo inicamente interviene
la componente de la velocidad perpendicular a la direcciéon radial:

’ — — f — i N r
o=mrx |To+— | =mrxvh+m 7xI =Lo
m —_—— ~—

=Lo 7| I==0
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Lain-Calvo

Capitulo 3

Fuerzas centrales conservativas

3.1. Leyes de conservacién

Recomendamos repasar todas las secciones del tema uno entre la seccion (1.3 en la pagina 12|y la secciéon|1.5.3
en la pagina 21| ambas inclusive. En especial, las definiciones 4 en la pagina 12| [5 en la pagina 14] [I12 en la
[pagina 20| [14 en la pagina 21} el teorema [5 en la pagina 21} las proposiciones 4 en la pagina 13| [7 en la]
[pagina 22| |8 en la pagina 22} asi como el corolario [2 en la pagina 22|

3.1.1. Momento angular en coordendas polares y relaciones con la velocidad
Recordemos que en coordenadas polares teniamos:
Vp =T vy = rd
Proposicion 63. El momento angular en coordenadas polares viene dado por la expresion:
Lo = mr26k
donde k =7 x 6.

Demostracion. Notese que:

Asi, aplicando la definicion de momento angular de una particula (ver definicion |12 en la pagina 20)), tenemos:

Eo = mF X ¥ = mi x (rf—l—r@é) = mi 7 X 7 +mr 7 x 0 = mr0k
N~ ~—~—
—0 =k

Q.E.D.

Corolario 23. La proposicion anterior nos permite e:vpresaré y la velocidad vy en el eje 0 (el perpendicular al
radial) en funcion del momento angular:
Lo Lo

2 vy
mr mr

Demostracion. Partimos de la proposiciéon anterior:

.. L
Lo=mr?f0="%

mr

Por otra parte: _
mr20 = mrug
Asi que:

L
mrvgzLo(:)vgz—O
mr

Q.E.D.

Licencia: Creative Commons 141


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. FUERZAS CENTRALES CONSERVATIVAS
Lain-Calvo 3.1. LEYES DE CONSERVACION

Observacion 54. En general, 6 y vy no seran constantes. Solo seran constantes en el caso en el que r = cte, es
decir, cuando la trayectoria sea una circunferencia.

Observacion 55. A partir de este momento usaremos L en vez de Lo para referirnos al momento angular ya
que sobreentederemos que es el momento angular con respecto al centro de fuerzas.

3.1.2. Parametros del movimiento debido a una fuerza central conservativa

Proposicion 64. El movimiento de una particula de masa m sometida a una fuerza central conservativa F' tiene
asociadas dos constantes, la energia mecdnica y el momento angular. En coordenadas polares dichas constantes
nos dan las ecuaciones:

E= %m (f2 + r292) +V(r)

L =mr20

donde V (1) es la funcion energia potencial asociada a F.

Demostracion. Como F es una fuerza central, por la proposicion |7 en la pagina 22| su momento angular se
conserva. Ademas, como F es una fuerza conservativa, por el teorema |7 en la pagina 25L la energia se conserva.
Por la proposicion |8 en la pagina 22L el potencial asociado a F solo puede depender de 7. La energia mecéanica
F en un punto a distancia r del centro de fuerzas viene dada por:

1 .
Ezimf'z—i—V(r)

Como 7 = 77 + rf0, tenemos:

E= %m (7*2 + r26'2) +V(r)

Por otra parte, por la proposicon [63 en la pagina anterior|en coordenadas polares el momento angular puede
expresarse como:

L =mr?f
Q.E.D.

Proposicion 65 (Ecuacion radial de la energia). Sea un particula de masa m sometida a una fuerza central
conservativa F. Entonces se cumple:

1, 2
—my Vir)=F
2 + 2mr2 V()
2 . L2 .
donde el término -—— es la energia potencial de una fuerza centrifuga F. = — T = mb*7 que es central y con-
mr

mr
servativa. Dicha fuerza centrifuga se corresponde con aquella fuerza inercial que apareceria para un observador
que girara con el dngulo 6.

Demostracion. Partimos de la proposicion [64}

E = %m (7*2 + r292) +V(r)

. L
L:mr29<:>9:—2
mr

Despejando 6 de la segunda ecuacién y sustituyendo en la primera, obtenemos:
1 ., 1 , L? 1, 2
E= 5mr + DY +V(r)= S mi + 52

2

+Vr)

Por la proposicién |8 en la pagina 22| trivialmente, el término

5 es la energia potencial asociada a una

2mr

fuerza que es central y conservativa. Dicha fuerza es:
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2 2
Fe e (e

- 7
or 2mr3 mr3

Por otra parte, sustituyendo L por el valor dado en la proposicién [64 en la pagina anterior] obtenemos:

2,.442
- mer+= . .
L= ———7 = mrf*F = mbh?

,F'
mr3

Solo nos quedaria probar que Fy se corresponde con aquella fuerza inercial que apareceria para un observador
que girara con el angulo 6. Esto no lo vamos a probar ahora, lo haremos en el capitulo sexto. Q.E.D.

Corolario 24. Sea un particula de masa m sometida a una fuerza central conservativa F'. Entonces su distancia
al centro de fuerzas satisface la ecuacion diferencial:

m2r3 m

Demostracion. Partimos de la proposicion anterior y derivamos con respecto al tiempo:

1. L2 2, dav  dE
—m2r7 + — + == =0«

2 om \ ) T T a
L . 0V dr
m'f'T'_WT E(T) E —0<:>
hney
4 )
@mrr——mrgr—i—ﬁ(r)rzo

ya que la energia es una constante del movimiento por la proposicién [64 en la pagina anterior] Usando

o (r) = —F (r), llegamos a:

or )
o P S0
L — (r) s
Dividiendo por m7, obtenemos:
L? F(r) 0
m2r3 m

Q.E.D.

Definicién 81. Llamaremos energia potencial efectiva V. a los términos no cinéticos que aparecen en la
ecuacion radial de la energia (ver proposicion [65 en la pagina anterior)):

2

Vers (r): +V(r)

Observacion 56. Muchas veces podremos hacer un andlisis cualitativo del movimiento de una particula en un
campo central conservativo simplemente mirando la grafica de la energia potencial efectiva y teniendo en cuenta
la energia de la particula.

T 2mr?

Definicion 82. Sea un particula de masa m sometida a una fuerza central F'. Llamamos velocidad aerolar
al area barrida por el vector posiciéon de la particula con respecto al centro de fuerzas por unidad de tiempo.

Teorema 19 (22 ley de Kepler). Sea un particula de masa m sometida a una fuerza central F. Entonces el
vector posicion de la particula barre dreas iguales en tiempos iguales y la velocidad aerolar es:

dA L

dt  2m
Demostracion. Consideremos el area encerrada entre el vector posiciéon en un instante ¢y y el vector posicion en
t =ty + dt. En ese dt, el extremo del vector posicion se habra desplazado una distancia rdf. Como rdf es muy

pequeno en comparaciéon con r, podemos considerar que la figura es un tridngulo rectangulo de base r y altura
rdf. Por tanto su area sera:

1 1
dA = Zrrdf = ~r*df
2 2
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Dividiendo por dt, obtenemos:

dA _1,ds

1,
27 — 220
at 2 a2
Como la fuerza es central, por la proposicién |7 en la pagina 22| su momento angular es constante. Usando
el corolario [23 en la pagina 141} podemos poner € en funciéon de L:

L
mr?
y sustituyendo, tenemos:
dA 1, L L
_— = =T e —
dt 2 mr?2 2m
Como la velocidad aerolar es constante, el vector posicion de la particula barre areas iguales en tiempos
iguales. Q.E.D.

Observacion 57. Notese que el resultado anterior es valido para cualquier fuerza central F , no s6lo para la
fuerza gravitatoria.

3.1.3. Caso del oscilador armoénico isétropo
3.1.3.1. Andlisis cualitativo de la energia potencial efectiva V.

Estudiemos la grafica del potencial efectivo V¢ para el caso del oscilador armoénico isétropo. Recordemos
que, en este caso, la energia potencial V' (r) venia dada por:

1
Vir)= 5]67"2
De manera que el potencial efectivo queda:
L? 1,
Vers (r) = 2mr2 + §kr

La gréfica queda:
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b’ a="b a’

Vemos claramente como el potencial efectivo Ves; tiene un minimo. Si conocemos la energia con la que
cuenta nuestra particula (supongamos que tiene energia E’), entonces viendo la grafica ya sabemos que r va a
oscilar entre b’ y @’ y que en dichos puntos sera 1 = 0, porque toda la energia con la que cuenta la particula sera
energia potencial efectiva (su cinética sera nula). Por la proposicion [59 en la pagina 134 de hecho, sabemos que
la trayectoria de la particula es una elipse y que a y b son sus semiejes mayor y menor. En este caso, el centro
de fuerzas esté en el centro de la elipse.

Si nuestra particula contara con una energia F, entonces obtendriamos que es a = b y siempre es 7 = 0. En
este caso, en el minimo de energia, la trayectoria seria una circunferencia.

Por ultimo, nétese que nuestra particula no puede tener menos energia potencial efectiva que E. Pues, por el
simple hecho de encontrarse a cierta distancia r ya tiene energia potencial efectiva y hemos visto que el minimo
de la funcion vale E. Si esta reflexion no ayuda, ver de nuevo la expresién mateméatica de V. ;¢ puede que ayude
a asentar la idea.

Observacion 58. Recordamos que los puntos a y b vienen dados por la proposicion [62 en la pagina 137}

Observacion 59. Imaginemos una funcion energia potencial con esta forma:
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V A Vers

\
I 4

r

Para una energia F; tendriamos una circunferencia y para una energia Fs tendriamos o bien una circunfe-
rencia o bien una elipse dependiendo de las condiciones iniciales.

Proposicion 66. Sea una particula de masa m sometida a una oscilacion armdonica isétropa. El valor de r que
hace que la trayectoria sea circular es:

af L?
0=V ik

Ademds el valor minimo de la energia potencial efectiva se alcanza en ro y vale:

k
Verfmim = L] —
i, Vo

Por otra parte, cuando v = 1o (una drbita circular) la energia cinética y potencial son iguales ¥t y su valor
coincide con la mitad de la energia mecdnica:

T=V 2y =

_E_L [k
T2 2Vm

Demostracion. Utilizando la proposicion [62 en la pagina 137y la proposicion [56 en la pagina 131] sabemos que
a, b son las soluciones positivas de la ecuacién bicuadrada en u:

Hallamos las raices:

Para que la solucién sea tnica, debe ser:

g B 2B _ L. [k
k2 mk k- m VE  Jm B m

Expresando E en funcién de r, tenemos:

1, L1, i
z Zkr2 = a2
SR s L m
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Si la trayectoria es circular, debe ser 7 = 0, asi, la expresion anterior queda:

L? 1 [k
Zkr? =Ly —
2mr2+2r m

Multiplicando a ambos lados por 72, tenemos:

12 1 k
*k4:L V2
om T2 V"

Multiplicando por %, obtenemos:

L? s 2L [k 4 4 2L L?
R =",/ Zrte _ == i
mk tr k mr " \/mkr mk

2L 412 412 L
| Yok~ VomE T wmE 7,%,4_ L _W
o 2 o 2 \'Vmk Vmk

En el caso del oscilador armonico isétropo, la energia potencial efectiva es:

Como r > 0, tenemos:

L? 1
o (1) = 5 + sk
Vers (r) 2mr2+2 "
Hallemos sus puntos criticos:
dV. L? 1 2
derff () ==25 5+ ok2r=—— 7 +hr
LVeff() 0ek L emkrt=1L%<r! —LQ@ o L2
r) = r= mkr® = rt = r=

dr mr3 k mk

Asi que efectivamente rg = 4/ #Tz es un punto critico de Vess. Sustituyendo en Vs, obtenemos que el valor del

punto critico es:
L? 1 L L |k L |k k
Ve (r) = + =k =242 S =2
a 2m—%k 2 Vmk 2Vm  2Vm m

Como rq es el tinico punto critico, para ver que es minimo absoluto basta con que estudiemos el comportamiento
de V,¢s en los extremos del intervalo de estudio [0, 00):

L2
2mr?

ti Vi (r) =t

r—0

1
+ 2kr2) =00

) ) rr 1,
lim Veyp(r) = lim + §k‘r = 00

r—00 7—00 2mr2

Asi, necesariamente rg es un minimo absoluto de Vey;.
Ahora, calculamos la energia potencial V' y la energia cinética cuando r = rg:

_1 2 _1 -2 22 _1 292
V—§kr0 T_2m<i0+r9 —2m7“9

Por el corolario 23 en la pagina 141] sabemos:
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2

y como es ré = sustituyendo, obtenemos:
m

gLk
T om2lE T

mk
Sustituyendo en la expresion de la energia cinética, obtenemos:

1 . 1 k1
T= §mr202 = imTQE = §k7”2
Y asiT = V.Y como la energfa mecanicaes E =T+ V:

E
T+ V =E2lI=EsV=T=—
=T

Como es 7 = 0, segtin la ecuacion radial de la energia (ver proposicion [65 en la pagina 142)), la energia
potencial efectiva es igual a la energia total. Por tanto:

E Veffmin
V:T:—:iﬁ
2 2

Q.E.D.
3.1.3.2.

Cambio de orbitas, caso particular: oscilador arménico isétropo en orbita circular

Tenemos una particula sometida de masa m, cuya posicién sufre una oscilacién armoénica isétropa. Partimos
de un movimiento circular de radio R con una energia F; y momento angular L;.

Impulso radial: Ahora, le damos un impulso radial hacia fuera con una velocidad v,.

~ RO

\

—

Uy

L
m

Nos preguntamos cudl es la energia y el momento angular final. Como vimos en el ejercicio[9 en la pagina 139

Ly = L; pues un momento radial no genera momento angular y, en consecuencia, el momento angular no cambia
Asi, al ser v? = R?0% + v2, Ey es de la forma:

1

1 1 , 1 1 5 1 1 (1\?
_ i 2, tip2_ 1 242 2 Lop2_ 1 poge 1y o0 1 i
Ef—2mv +2kR 5™ R°0°+ v, +2kR 2mRG +2kr +2m<m)
v —_—
:(%)2 =E;
1 [I)?
XOR
2 m
donde%:vr.
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Vs
Impulso tangencial 1: Ahora, aplicamos un impulso tangencial tal que vy = 51

(%)
|
?Jf — U
En consecuencia:
L R _Ri Li
=mRv; = mRv; - = —
f f 9 9
1 5, 1, 5 1 v\2 1, o, 11 5 1 o, 1T

Veamos la situacion graficamente:
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E

1
! !
b R=a

———————— ——

- ——————————

Podemos facilmente localizar la nueva energia cualitativamente en la grafica, porque la particula se sigue
encontrando a distancia R.

Impulso tangencial 2: Ahora, aplicamos un impulso tangencial tal que vy = 2v;.
En consecuencia:

=L,
—~
Ly =mRvy = mRv;2 = 2L,

2 2 2
=T; Vi

1 1 1 1 1 1
Ep = -mv? + 5kRZ’ = -—m(2v)* + §kR2 =4 -mv? + gk;RQ = AT, 4+ V; > E;
——

De nuevo, veamos la situaciéon graficamente:
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E

3.2. Conicas

Agradecimientos 3. Esta seccion se debe en su totalidad a Juan Guerrero Marcos.

Para las curvas conicas se cumple:

k1_
||

Donde r es la distancia desde el foco de la conica hasta el punto situado en un angulo 6, 6, es la inclinacién de
la curva respecto al dngulo cero del eje de coordenadas, k es la parte de la fuerza independiente de la posicion
(aunque tnicamente esta presente para indicar la naturaleza atractiva o repulsiva de la fuerza central que crea
la trayectoria), e es la excentricidad de la curva y [ es el semi latus rectum.

En funcién del valor de e, pueden distinguirse tres tipos de curvas conicas: elipse, hipérbola y parabola.

r |ecos (0 — 0y) — l

3.2.1. Elipse

Tiene lugar si el valor de la excentricidad esta comprendido en el intervalo [0, 1).
Para una elipse, las longitudes de los semiejes mayor y menor seréan a y b, respectivamente y la distancia de
uno de los focos al centro, c.
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C

R
1)

3.2.1.1. Relaciones

Se cumplen las siguientes relaciones:

a? = b + (3.2.1)
2
= (3.2.2)
a
i X + X =2a, VX (3.2.3)

3.2.1.2. Circunferencia

Un caso particular se da si e = 0, por lo que r sera constante y la curva se llamara circunferencia.
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Entonces a = b, por loque l =b=r.

3.2.2. Hipérbola

Si la excentricidad de la coénica es superior a la unidad (e > 1), entonces aparecen dos ramas que tienden
asintéticamente a dos rectas que se intersectan en el origen O.
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3.2.2.1. Relaciones

Se cumplen las siguientes relaciones:

A =a’+1? (3.2.4)
2
l= % (3.2.5)
IFiX - F5X| = 2a, VX (3.2.6)

3.2.3. Parabola

Cuando la excentricidad de la curva es de valor unidad (e = 1), la conica descrita es una parabola.
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3.2.3.1. Relaciones

Entonces se cumplen:

1 =2FV (3.2.7)
FX =Xl,, VX (3.2.8)
3.3. Ley cuadratica inversa
Vamos a considerar fuerzas del tipo:
- k .
F = ﬁ'r
Notemos que la fuerza dada arriba es central conservativa pues 3V : R®* — R diferenciable tal que
F = —%—Vf (hemos usado la proposicion [8 en la pagina 22)). Dicha funcion V (r) es:
r
k
Vir) =2
(="
De manera que el potencial efectivo queda:
L? k
Verr = -
= ome2 Ty

Diremos que la fuerza es repulsiva si k > 0 y diremos que la fuerza es atractiva si k < 0.

Definicion 83. Diremos que la trayectoria de una particula es abierta o no acotada cuando o bien proviene
del infinito, o bien llega hasta el infinito o ambas.

Anélogamente, diremos que la trayectoria de una particula es cerrada o acotada cuando la particula ni
proviene del infinito ni llega al infinito.
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Definicién 84. Sea una particula sobre la que acttia una fuerza F. Llamamos parametro de impacto b con
respecto al centro de fuerzas de F ala minima distancia entre el centro de fuerzas y la trayectoria de la particula
si fuese F' = 0.

Alternativamente, en el contexto de teoria de colisiones puede definirse el parametro de impacto como la
distancia perpendicular desde la trayectoria de entrada en linea recta del proyectil hasta un eje paralelo que
pasa por el centro del blanco.

m
Voo

® >

Vv

Proposicion 67. La trayectoria de una particula sometida a una fuerza el tipo:

3.3.1. Caso k>0

-k
F = 77"
r
con k > 0 siempre es abierta. La energia potencial efectiva de la particula no tiene minimo. La minima distancia
entre la particula y el centro de fuerzas se alcanza en:

k [ k2
T = 5E 152 + 02 1= T

donde b es el pardmetro de impacto y E es la energia de la particula (que sabemos que es una constante del
movimiento).
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E

Demostracion. El potencial efectivo de la particula es:

L? k
Very = -
= omr? + T
Derivamos para buscar los puntos criticos:
dVers L? 1 1 —L? k
=—(-2)=+k(-1)5=—7—-=5 <0

dr 2m 3
pues L.m,r, k > 0.

Por tanto, la expresion no anterior no se anula nunca y, en consecuencia, el potencial efectivo no tiene puntos
criticos en nuestro intervalo de interés. Unicamente queda considerar el comportamiento de la funcion en el cero

y en el infinito:

L2
omr? ' o0 o
L? k

Jr —
2mr?  r rooo

0

De forma que la funcion tiene infimo (0) pero no minimo.

Como hemos visto antes, la derivada es siempre estrictamente negativa, luego nuestra funcion es estrictamente
decreciente en (0,00). Para que la trayectoria sea cerrada, deberia haber al menos dos valores del potencial
efectivo que se correspondieran con el mismo valor de r. Pero esto es imposible, pues como la funcion es
estrictamente decreciente y continua en (0,00) es inyectiva y, si es inyectiva, a cada valor de r le corresponde
un unico valor de V,f¢. Por consiguiente, las trayectorias son siempre abiertas.

Para probar la dltima parte, vamos a aplicar que sabemos calcular el valor de la energia en el limite del
infinito:
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(1, K\ 1,
E= Tlgglo <2mv + T) = Mo
Para calcular el momento angular en el infinito vamos a aplicar un truco bastante elaborado y puede que algo
dificil de comprender. En el infinito, como hemos visto antes, la energia potencial se hace cero, luego es como
si no hubiera fuerzas. Si no tenemos fuerzas, el momento angular desde cualquier punto O debe conservarse
por el teorema |5 en la pagina 21l Tomemos O como el centro de fuerzas de nuestra fuerza F. En ausencia de
fuerzas, sabemos que la distancia minima entre la trayectoria y nuestro punto O es b por la definiciéon

la pagina 156 Como la distancia minima siempre es en perpendicular, sabemos que b L 7. Luego, el momento
angular en el punto de minima distancia (en el caso de ausencia de fuerzas) es:

L = mbuy

dado que la velocidad en ausencia de fuerzas es constante por la primera ley de Newton (ver teorema
pagina §|). Pero, como el momento angular se conserva en ausencia de fuerzas, el momento angular en el infinito
también serd L = mbua y asf (volviendo a nuestro caso inicial con F ), como en el infinito es como si no hubiera
fuerzas, el momento angular de nuestra particula sometida a la fuerza F en el infinito también es L = M.
Por ultimo, como Fes central, su momento angular es constante y asi el momento angular de nuestra particula
es siempre:

L = mbuy

Como V¢ es estrictamente decreciente, sabemos que dado un nivel de energia fijo F, la menor distancia va
a darse cuando sea E = Vs (r). Asi, tenemos:

=L?
lmv2 g m2b?v2, k
2 e 2m’r12n1’n Tmin
Dividiendo por %mvgo a ambos lados, tenemos:
1= b2 L k _ b2 L k N
T?nin %mfvzo Tmin Ter‘n Ermin
——
=FE
k k
srio o =b+  min eri — 5 min — ¥=0s
Er B a2 g ZI
G rmin = —— 5 —— =g\ P
. . k2 o kK . .
donde descartamos la soluciéon negativa pues 15 +b* > Y por tanto, la solucién con el — siempre es
negativa o cero (y solo es cero si es b2 =0) y r > 0. Q.E.D.

La proposiciéon anterior podria aplicarse en el siguiente ejemplo:

Ejemplo 21. Una particula de carga ¢ se mueve en el campo creado por ¢’ (¢g¢’ > 0), fija en O. Inicialmente ¢
se encuentra muy lejos de O con v cuya direccién dista b de 0.
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o<

3.3.2. Caso k<0

Definicion 85. Llamamos sems latus rectum [ a:

Dimos una definicién méas gréafica de este concepto en la seccion [3.2 en la pagina 151|

Proposicion 68. La trayectoria de una particula sometida a una fuerza el tipo:

-k
F=—r
r2
con k < 0 puede ser tanto abierta como cerrada. Existe el minimo de la energia potencial efectiva, se alcanza
K V(@)

2] 2

» Sila energia potencial efectiva es minima E = Vs mm, entonces el movimiento es circular de radio r = 1.
Ademds, se da:

enr =1y vale Vers mm= — . Tenemos la siguiente casuistica:
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y la velocidad del movimiento circular viene dada por la expresion:

[
ml
n SiVepsmm < E <0, entonces tendremos una orbita cerrada cuya distancia minima y mdzima son las dos
soluciones de la ecuacion en r:

= Si E =0, entonces la trayectoria es abierta y la distancia minima es:

l

Tmin = 5

Ademds, la velocidad de la particula es nula en el infinito v, = 0.

= Si B > 0, entonces la trayectoria es abierta y la distancia minima es la dnica solucion positiva de la
ecuacion en r: I "
2
r“+ —=r——=0
E 2F

Ademds, el mddulo de la velocidad en el infinito es mayor que cero vy > 0.

E

Demostracion. En este caso, utilizando la definicion [85 en la pagina anterior] la energia potencial efectiva viene

dada por:
Lz |kl o1
Ver? = gz — 7 — M (22 - )
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Hallemos sus puntos criticos:
d‘/;lff l 1 1 l 1
=kl(=(-2)=—-(-1)=5|=k|-—=+—
e ||(2< )5 ( >T2) |( +)

dVepp k2o L1 1
I -3t e G=gel=r

Bien, ahora hallemos el valor de Vs en el minimo:

1Y _ A (1 Kl _ V@)
Vepfmin = Vepy (r=1) = ||<2l2_>:l(2_1):_2122<0

Para ver que es un minimo absoluto tenemos que estudiar la funciéon Vess en el infinito y en el cero:

1 l—2r
Vos = |k o) =k (2
5= |( T) | I( 52 )
lim Vs = k| 1im () =
g err Z IR e ) T
lim V.; = |k| lim (—i) T =
T—>00 Eff T—>00 T‘Q T—>00 T

En consecuencia, efectivamente r = [ es un punto de minimo absoluto.

» Si B = Vesymm entonces r es una constante del movimiento y en consecuencia 7 = 0 y la trayectoria es
circular de radio r = [. Ademés, por lo visto antes, tenemos:

V{0
E= Veff,ml’n = T

Por tanto, como es £ =T + V, sera:

vV _ vy 1o, V() K
P L I ALl
ml ml

» Sies Vefrmin < E <0, entonces, por la ecuacion radial de la energfa (ver proposicion 65 en la pagina 142)):

1 . 1 l 1
0>E:§m7ﬂ2+‘/eff( )—gmr +|k| (_7">

Como el tnico punto critico de V,¢¢ es un minimo relativo que se da en r = [, sabemos que para todo r < {
la funcién V. es estrictamente decreciente y para todo r > [ la funcién Vess es estrictamente creciente.
Por tanto, los valores méximos y minimos de r se daran cuando E = Vs (1) < 7 = 0. Asi, tenemos la

ecuacion: ) -
— 9 )
= |k| <_r) =|k|< 52 ) s E2rf = k| (l-2r) &
20k| |kl _
& 2Er? 4 21k|r — k|l =0 & r? +2E E—O
Como es E < 0, podemos expresar la ecuacion de arriba como:
SR L I L o kK
—=0& —=0&
] "TE o
k kl k k2 —2kl
b= /B-H fx /R
B 2 2

Licencia: Creative Commons 162


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. FUERZAS CENTRALES CONSERVATIVAS

Lain-Calvo 3.3. LEY CUADRATICA INVERSA
L
Como es £ > V.t mm, debe ser £ > ~5 =3 Asi:
k 2k 9
E> 2 < 2klE < - = =k

porque es k < 0. Por tanto:
k* —2kIE >0

En consecuencia, sabemos que las raices de la ecuacion son reales. Por otra parte, como —2kIE < O:

k? —2kIE  k?
B2 "B
Y, por lo tanto:
ko JE2 4kl k_ JE2 E k
E E 2E _ E E ol o}
"= 2 2 2

Asi, es las dos soluciones de la ecuacion anterior son siempre positivas. Y como siempre tenemos garantizado
que existen dos soluciones reales y positivas, es decir, que hay una distancia maxima y otra minima, la
orbita es cerrada.

= Sies F =0, por el mismo argumento que antes, los valores maximos y minimos de r se daran cuando
E =V (r) & 7 =0. Asi, tenemos la ecuacion:

0==1H (5 - 1) = (5

Como la solucién es tnica, necesariamente debe corresponderse con la distancia minima. Por tanto, la
trayectoria es abierta, ya que no hay una distancia maxima.
Por ultimo cuando r — oo, tenemos:

l
><:>l—2r_0<:>r_2

1 k
O:E=T+V:§m02—u©2m =05 v =0
N

—0

= Sies E > 0, por el mismo razonamiento hecho en el segundo apartado, llegamos a la ecuacién:

21k| Ikl

55" op Y

r? +
Como es E > 0, podemos reescribir la ecuaciéon anterior como:

2, Kl JR[E
r+Er 2E70¢>

k 4|kl k k242|k|lE
W /B Y./

<:> — —
" 2 2

Claramente las dos soluciones son reales pues:

k*+2|k|IE

= >0

Por otra parte, vemos como una solucién es negativa. Probemos que la solucion correspondiente al + es
positiva. Tenemos:
K2+ 2|k|IE _ k?
B2 E?

K2+ 2 [k[IE ;2 |k|
B2 _O

porque |k|,l, E,2 > 0. Luego:
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En consecuencia, tenemos una solucién positiva que necesariamente se corresponderéd con la minima dis-
tancia y una solucién negativa que no tiene significado fisico. Por ende, la 6rbita sera abierta.

Por ultimo cuando r — 0o, tenemos:
Lo, k1 5
O<E:T—|—V:§mvoo— — <:>§mvoo>0(:>\voo|>0
r

—0

Q.E.D.

k
Ejercicio 10. Tenemos una particula de masa m sometida a una fuerza del estilo ' = —7 con k < 0 que
r
v

describe una érbita circular y la particula sufre un impulso tangencial tal que v’ = =

4
|
NSy

Solucién. Como la orbita es circular, por la proposicion [68 en Ta pagina 160] tenemos que el radio de la
circunferencia es el semi latus rectum r = [. Por otra parte, sabemos que la energia es:

El nuevo momento angular es:

L'=mlv =mle =mlv = = =
2 2
Y la energfa es:
1 v\2 k 11 k 1 k
B r2 _ (7) LA BTy ADTRRAA -y
muetr=gm\y) Ty Tyttt s
=T

3.4. Orbitas

3.4.1. Resultados generales
Proposicion 69. Sea un particula de masa m sometida a una fuerza central conservativa F. Entonces, siempre

d
que sea —Z # 0 en coordenadas polares se cumple:
du\? 5 2m 1
ke i il
(@) +e-% e ()]
d*u m F (3)

T T e

1 _
donde u = — y V es la funcion energia potencial asociada a F'.

164
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Demostracion. Partimos de la ecuacion radial de la energia (ver proposicion [65 en la pagina 142)):

Tty X v =kE

Por otra parte, por la proposicion [63 en la pagina 141} sabemos que el momento angular en coordenadas polares
puede expresarse como:

L =mr?f
Nuestro objetivo es hallar r (6). Para ello vamos a reescribir 7 como sigue:

_dr_drdo_dr,
dt dodt  df
Por el corolario [23 en la pagina 141} tenemos:

_ L da
mr2 df

. . 1 1 .
Ahora, hacemos el cambio de variable u = — < r = — y en consecuencia, por la regla de la cadena, tenemos:
r U

dr _ dr du 1 du

do~ dudd u?df
Por consiguiente, nos queda:

_ L2( 1>du L du
r=—u|—-—— )07 =———
w2

m do m df
Asi, sustituyendo en la ecuacién radial de la energia, tenemos:
1 du + L2 2y 1\ e
2 df 2m w)

l( ) el v (1) e
o L[(@)y v -m-v ()
o () w2 e ()]

A continuacion, vamos a derivar la ecuacion anterior con respecto a 6:

Jdudu o du 2m | dE _dVdr
d0dez " M"ae T L2 | 4o dr do
=0 av
- =a0

dado que FE es una constante del movimiento por la proposicion[64 en Ta pagina 142] Asi, lo anterior es equivalente

du d*u du m dV dr

war TV T T2 ar do

1
Como —— =F(r)=F (u)’ tenemos:

du d*u du —m (1) dr

waer e T 12 a0
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d 1d
Recordando que hemos hallado anteriormente o ———u, llegamos a:
do u? do

dudu | du_mo (1) (1Y du
dodo " "o~ 20 \u) \ u2) do
o du L du .
Como, por hipédtesis era ¥ = (0, podemos dividir por 90 obteniendo:

d*u m F ()
a2 T T 2

Q.E.D.

Observacion 60. A través de la proposicion [69 en la pagina 164] podemos hallar la trayectoria de la particula
si conocemos la fuerza y viceversa.

3.4.2. Orbitas y trayectorias para la ley cuadratica inversa

3.4.2.1. Ecuacion de la trayectoria en coordenadas polares

. L o=k
Proposicion 70. Sea un particula de masa m sometida a una fuerza del estilo F' = — 7. Entonces en coorde-
r

nadas polares se cumple:

1
donde u = —.

<

Demostracion. Trivial. Se parte de la proposicion [69 en la pagina 164] y se sustituye:

V(r)k@V<i)ku

.
k 1
F(r)= S eF (u> = ku?

Q.E.D.

=~k
Proposicién 71. Sea un particula de masa m sometida a una fuerza del estilo F' = — 7. Entonces, la trayectoria
r

de la particula de masa m es una conica y la ecuacion de la trayectoria viene dada por:
rlecos (@ —6y) —1)=1sik>0
rlecos(0 —6p)+1]=1si k<0

donde:

recibe el nombre de excentricidad.
Ademds, el origen de las coordenadas polares se encuentra en uno de los focos de la cdnica.

Demostracion. Partimos de la proposicion [70, de manera que tenemos:

Lo o omk Pu o omk
d6? L2 d6? 2
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Multiplicando por [ a ambos lados, obtenemos:

d?u Imk
L2
Como la derivada es lineal y como por la definiciéon |85 en la pagina 160|es [ = m y | no depende de 6 (porque
L no depende de 6), tenemos:
d? (lu) L? mk d? d* (lu) k
l — =0 ——+Ilu+—=0
a0z T T az T T
. . k
Tomando el cambio de variable z = lu + m, llegamos a:
d?z
W +2=0

que es una ecuacion diferencial lineal como la de un oscilador armoénico con w = 1 y con variable independiente
0 en lugar de t. Por la proposicion [29 en la pagina 78| tenemos que la soluciéon de la ecuacion diferencial anterior
puede expresarse como:

z=acos (0 —0p)

donde a, 6y € R. Por otra parte, de nuevo, por la proposicion |70 en la pagina anterior|llegamos a:

du\ 2 2m
(dﬁ) +U2 L2 [E ku]

2
12 (d“> 422 = 2 ey

Multiplicando por {2, obtenemos:

de L2
2
Como la derivada es lineal y como por la definicién [85 en la pagina 160|es [ = W’ tenemos:
m
d(lu)\? ) 2m L4 212 21
l E—kul=—I[F—k E—k
(“50) =T S p -k = 2 (B - ki = 2 B

k
Sumando 2lu— + 1 a ambos lados, obtenemos:

||

2
(d(l“)> b 42 1= 2 2 1 e

do || || ||
@(d(lu)>2+(lu+k>2 LB —kut k] +1=2E 4
do || [kl ||

lE
Llamando e? := W + 1, nos queda:

() o)

k
Tomando el cambio de variable z = lu + —, llegamos a:

|K|
dz\? 9 5
(d@) T =e

z=acos (0 —0p)

Recordando que hemos hallado antes que:
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dz

— = —asen (0 — 0
20 (0 —6o)

y sustituyendo en la ecuacién anterior, obtenemos:

[—asen (0 — 69)]* + [acos (0 — 6p)]* = €2 < a®sen? (0 — ) + a® cos® (0 — 0y) = €2 =

& a® [sen” (6 — 0p) + cos® (0 — 6p)] = € 228 =

=1

En consecuencia, llegamos a:

z=-ecos (0 —b)

Por otra parte, recordemos que:

l Jrk l+l<:
Zz = (U —_— = — e
k[ |k
Ast: ; % . ;
ecos(@—ﬁo)z;—i—m@ecosw—@o)—m:;@
k

<1 lecos (0 —b6p) — l

m =
Si k > 0, entonces la ecuacién anterior queda:

rlecos (0 —b6p) —1] =1
Mientras que si k < 0, entonces:

rlecos (6 —b6p) +1] =1

Cualquiera de las dos ecuaciones anteriores se corresponde con una conica expresada en coordenadas polares
tomando el origen de coordenadas en uno de los focos, como puede verse en la seccién [3.2 en la pagina 151
Q.E.D.

-k
Proposicién 72. Sea un particula de masa m sometida a una fuerza del estilo F' = — 7. Si restringimos 6 a
T

[0,27), la minima distancia entre la particula y el centro de fuerzas se alcanza en 6 = 6y y viene dada por:

l
Toin = —— St k>0
e—1

l
T = —— Si k <0
e+ 1

La mayor distancia entre la particula y el centro de fuerzas cuando k < 0 y0 < e < 1 se alcanza en § = O+
y viene dada por la expresion:

l
—e+1

T'mdx =

y no existe en caso contrario (es infinita).

Demostracion. Partiendo de la proposicion [71 en la pagina 166] sabemos que la trayectoria de la particula de
masa m cuando k£ > 0 viene dada por la ecuacién:

rlecos (6 —b6p) —1] =1

Despejando, tenemos:
l

B ecos (0 —6) — 1

El valor de r ser4a minimo cuando el numerador sea maximo. Eso ocurrira cuando:

COS(G—Q()):1@9—90:04:}9:90
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En ese caso, r vale:
l

e—1
Reciprocamente, el mayor valor de r se alcanzaria cuando el denominador fuese minimo, pero como e > 0, el
valor que hace el denominador minimo, también lo hace negativo y r no puede ser negativo. Por tanto, no existe
rmax cuando k > 0.

De nuevo, partiendo de la proposicion [71 en la pagina 166] sabemos que la trayectoria de la particula de
masa m cuando k < 0 viene dada por la ecuacién:

Tmin =

rlecos (8 —6p) + 1] =1

Despejando, tenemos:
l

- ecos (6 —0y) +1

El valor de r ser4a minimo cuando el numerador sea maximo. Eso ocurriréd cuando:
cos(@—0y)=1<0—-0,=0

En ese caso, r vale:
l
e+1

Reciprocamente, el mayor valor de r se alcanza cuando el denominador es minimo. Esto tiene lugar cuando:

Tmin =

cos(@—0))=—-10-0y=n=0=0+

El minimo del denominador seré positivo cuando siempre que sea 0 < e < 1. En ese caso:

l
—e+1

Tmax =
Q.E.D.

-k
Corolario 25. Sea un particula de masa m sometida a una fuerza del estilo F'= —7. Si restringimos 0 a

[0,27), Oy es el dngulo que forma el punto mds cercano al origen de coordenadas con la horizontal.

Demostracion. Trivial tras leer el enunciado de la proposiciéon anterior. Q.E.D.

-k
Proposicién 73. Sea un particula de masa m sometida a una fuerza del estilo F' = — . Restringimos 0 a

r

[0, 27).
= Sik >0, se da siempre E > 0 y la trayectoria se corresponde con la «rama derechay (cos (0 — 0y) > 0) de
o ) . 1 1 o
una hipérbola (e > 1), cuyas asintotas forman los dngulos arccos | — | y arccos [ —— | con la direccion
e e

asociada a 0.
= Sik <0y ademds:

L]

TN
o Verrmm < E <0, entonces la trayectoria es una elipse (0 < e < 1).

E=Verrmm= entonces la trayectoria es una circunferencia (e =0).

e £ =0, entonces la trayectoria es una pardbola (e =1).

e £ > 0, entonces la trayectoria se corresponde con la «rama izquierday (cos (6 —6p) < 0) de una
1 1

hipérbola (e > 1), cuyas asintotas forman los dngulos arccos () y arccos | —— | con la direccion
e e

asociada a 0.

Licencia: Creative Commons 169


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. FUERZAS CENTRALES CONSERVATIVAS
Lain-Calvo 3.4. ORBITAS

Licencia: Creative Commons 170


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. FUERZAS CENTRALES CONSERVATIVAS
Lain-Calvo 3.4. ORBITAS

Rama repulsiva

Demostracion. Partimos de la expresion dada para la excentricidad e en la proposicion [71 en la pagina 166}

e= @nLl
|k

= Sies k > 0, entonces la energia en cualquier punto viene dada por:

1 k
Eziva—k - >0
—— \7:/
>0 >0

Asi, siempre es E¥ > 0. Por tanto:
2|

K[

2lFE [2lFE
W+1>1<:> m+1>1<:>e>1

De esta forma, la trayectoria es una hipérbola.
Por la proposiciéon [71 en la pagina 166] tenemos que la trayectoria en este caso viene descrita por la
ecuacion:

>0

En consecuencia:

rlecos (0 —6y) —1] =1

Para hallar las asintotas, vamos a hacer el limite cuando » — oo en la expresiéon anterior. Notese que como
[ € R, necesariamente cuando r — oo:

1
ecos(9—90)—1—>O<:)ecos(9—90)—>1<:>cos(9—00)—>;>0

Por tanto, cuando r — 00, cos (f — 6y) > 0 y nos encontramos en la rama derecha de la hipérbola.
Despejando (8 — 6p) de la ecuacion anterior, obtenemos:

1
< (0 — 6p) — Larccos (>
e
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donde recordamos que Im arc cos = [0, 7. Por tanto, hay dos angulos en [0, 27) que cumplen que cos (6 — 6p) =
1 (y, asi, hay dos asintotas).

Unicamente queda probar que la trayectoria se corresponde con la rama derecha de la hipérbola; ésta es
la rama maés alejada del centro de fuerzas. Por la proposicion [72 en la pagina 168] sabemos que la minima
distancia entre el centro de fuerzas y la rama de la hipérbola viene dada por:

l
Tmin = sik>0
e—1
l .
Tmin = sik <O
e+1

Notese que:
l l
e—l<e+les —>
e—1 e+1

Luego, claramente, de las dos distancias a cada una de las ramas, la distancia minima en el caso k > 0 se
corresponde con la mayor de las dos posibles. En consecuencia, la trayectoria se corresponde con la rama
derecha de la parabola.

= Sies k <0y ademas:

||

® B=Verrmm=—57

, por la proposicién (68 en la pagina 160} la trayectoria es circular y, en conse-

cuencia, e = 0.

o Versmm < E <0, entonces:

2lF
— <0
||
En consecuencia:
21F 20F
— 4+ 1<le — 4 1l<lee<l
|| ||
Por otra parte, como es:
||
E> ‘/e min = T 57
75 20

tenemos:

Kl 7RI\ 2)

2lE 208
W+1>0<:> W+1>O<:>e>0

Por ende, es 0 < e < 1 y la trayectoria de la particula es una elipse.

Por consiguiente:

e I/ =0, entonces:

||
—~—
=0
y la trayectoria es una paréabola.
e [/ > 0, entonces:
20E -0
||

En consecuencia:

2lF [21E
m+1>1<:> W+1>1<:>e>1
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De esta forma, la trayectoria es una hipérbola.
Por la proposiciéon [71 en la pagina 166] tenemos que la trayectoria en este caso viene descrita por la
ecuacion:

rlecos(0 —6y) +1] =1

Para hallar las asintotas, vamos a hacer el limite cuando r — oo en la expresiéon anterior. Notese que
como | € R, necesariamente cuando r — oo:

1
ecos(0—0p)+1—0secos(d —bp) - —1<cos(@—0y) >—— <0
e

Por tanto, cuando r — 00, cos (0 — 6p) < 0 y nos encontramos en la rama izquierda de la hipérbola.
Despejando (6 — ) de la ecuaciéon anterior, obtenemos:

(0 — 6p) — Lt arccos (—1>

e
donde recordamos que Imarccos = [0, 7]. Por tanto, hay dos angulos en [0,27) que cumplen que
cos (§ — 0p) = —1 (y, asi, hay dos asintotas). Ahora, recordemos que arccosz = —arccos (—z) Yz €

[—1, 1]. Asi, lo anterior es equivalente a:

(0 — 6p) — Farccos <1>
e

Unicamente queda probar que la trayectoria se corresponde con la rama izquierda de la hipérbola;
ésta es la rama més cercana al centro de fuerzas. Por la proposicion [72 en la pagina 168| sabemos
que la minima distancia entre el centro de fuerzas y la rama de la hipérbola viene dada por:

l
Tmin = sik>0
e—1

Tmin = e—f—]_ sik <0
Notese que:
e—1l<e+l& L > l
e—1 e+ 1
Luego, claramente, de las dos distancias a cada una de las ramas, la distancia minima en el caso
k < 0 se corresponde con la menor de las dos posibles. En consecuencia, la trayectoria se corresponde

con la rama izquierda de la parabola.

Q.E.D.

3.4.2.2. Resumen

’ k \ E \ e \ tipo de conica \ Tmin \ T méx
[
k>0 >0 > 1 hipérbola (rama derecha) 1 00
e —
k
= —% =0 circunferencia l
k<o F<0 ooy ) | et
B> _% e <1 elipse e+
=0 =1 paréabola ~
>0 > 1 | hipérbola (rama izquierda)

-k
donde k es la constante que define la fuerza F' = —, E es la energia del movimiento, e es la excentricidad de

la orbita ry, es la distancia minima de la trayectoria de la particula al centro de fuerzas, rysx es la distancia
L2

méaxima de la trayectoria de la particula al centro de fuerzas y [ = W
m

1
Las asintotas de las hipérbolas forman un angulo de + arc cos <> con la horizontal.
e
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3.4.2.3. Ejemplos

Ejemplo 22. Supongamos que tenemos una particula de masa m sometida a una fuerza central conservativa
F' cuyo potencial asociado viene dado por:

k 9 1 av 2k 3
Nuestro objetivo es deducir las ecuaciones que rigen la trayectoria de la particula.
Partimos de la proposicion [69 en la pagina 164}

d2 F 1
do? L2u?
y sustituimos por el valor que tenemos de la fuerza F':
d*u n m 2ku? - d*u + (1 m2k 0
—_— mw = ———- —_— u =
de? L? w? de? L2
_.k/

donde llamamos &’ al paréntesis anterior.
Ahora, llegamos a varios casos dependiendo del signo de k’. Cada caso requiere resolver una ecuacion dife-
rencial (que se deja como ejercicio para el lector).

1. Si k' > 0, tenemos que la solucion de la ecuacion diferencial anterior es:

U = acos (\/EG—HO>

;LZ = —Vk'asen (\/?9 — 00)

Sustituyendo en la otra expresion dada por la proposicion [69 en la pagina 164}

(&) Bl ()

obtenemos )
S Y L LT I
a) T T2 T2
o [ 2+ 2 (1, 2mkY _2mE
a) T 2 )" 12
7k:/
Ka2sen? (V0 — 0 ) + Ka? cos® (VIO — 0 ) = 22
= asen( —0)+ acos( —0)_7
2mE 2mE
2
SR =T e\
2. Sik <O0:
u:acosh<\/P9790>
3. Sik =0:

u=al — b

Ejemplo 23 (Velocidad de escape de la superficie de la Tierra). Recordemos que la velocidad escape de un
cuerpo celeste es aquella velocidad inicial que permite que un cuerpo cualquiera de masa m que parte de la
superficie de dicho cuerpo celeste llegue al infinito con velocidad nula. Por la proposicion [68 en Ia pagina 160}
estamos en el caso E = 0. Por tanto, como la energia se conserva tenemos que:
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1 GM 2GM
EiZEmUQ—Tm:Oc)v: T:\/QgR

donde g = %]\24 En el caso de la Tierra, con los datos R = 6370 km y g = 9,81 3, obtenemos:

k
ve = 11,2 22
S

Notese que el modulo de la velocidad de escape (en condiciones ideales, es decir, suponiendo que no hay
atmosfera, etc.) no depende del angulo de lanzamiento.

Ejemplo 24. ;A qué distancia llegara un objecto lanzado con la mitad de la velocidad de escape? Es decir, un
objeto con velocidad:

Hallemos E':
1 GMm 1 (&)Q_GMm 11 5, 1 GM GMm 3GMm

E/:—mUIQ—iz—m > = vV, =-m— — ——— = —————

2 R 2 R 12" T 4R R 1 R
Por la proposicion [68 en la pagina 160, sabemos que los puntos de maxima y minima distancia son las
soluciones de la ecuacion:

Sustituyendo en nuestro caso, obtenemos:

s GMm GMm L?

T 3aMm " T 3GMm 5 =0
1R SR m
4. 2 RI?
<r?— ZRr =

Ahora, haciendo:

|GM /{GMR
L =mRv sena =mR ﬁsena:m 5 sen o

2 R GMR
2 sena=0<

llegamos a:

4
2_7 p—
m gt s e ™ 2

@rQ—gRr—i—%]#senza:O

La solucién de la ecuacion anterior es:
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4 42 4
sR+/55R?— SR%sen’a o 92 1
r=2 \/32 5 5 = §R + 3—2R2 - §R2 sen? o =

2 4 3
_z = 2 _ 2 p2 a2 _
3R:l:\/9 (R 4R sen oz)
1:|:\/1—;lsen2a]

La solucién positiva se corresponde a rysx v la negativa se corresponde a . La mayor altura medida
desde la superficie de la Tierra queda:

R
hmax = Tmax — R = 3 [—1—1- \/4—3sen2a}

Como Veyymm < E < 0, por la proposiciéon [71 en la pagina 166} sabemos que la trayectoria de la particula
viene dada por la expresion:

2
=ZR
3

l=rlecos (8 —6y) + 1]

donde:
I L? B 2,GMR 9 1 9
= m A = > sen aGMmz 2 sen” a
y:
2F1 2 (—3GMm) B gen? o
2 1 R 2 2
=—+1= 1=—- 1=
e |k| GMm sen” o +
3
=1—Zsen2a

También podriamos hallar e y [ a través de las ecuaciones dadas en la proposicion [72 en la pagina 168}

l l
1+e

Tmin = Tmax = 1—e
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Nuestro objetivo ahora es hallar el valor de « para el cual se produce el maximo alcance, es decir, la mayor
distancia medida sobre la superficie de la tierra que recorre el objeto antes de impactar de nuevo con la Tierra.
Tenemos dos formas de calcular dicho alcance, una es:

(62 —01)R
que se corresponderia con la distancia mas corta en el dibujo. La otra es:
(91+27T—(92)R: (91 —92)R

Muy bien, ahora jcémo obtenemos los valores de 61 y 627 Pues de la siguiente manera. Por la proposicién
len Ta pagina 166, sabemos que la trayectoria de nuestro objeto esta descrita por la ecuacion:

l=rlecos (0 —0y) +1]

A continuacioén, resolvemos para r = R, obteniendo:

l:R[ecos(9—90)+1]@ézecos(@—%)—&—l@
1 gsen’a—1
COS(g_go):[l_l} _ gsen’a—1
R € 1*%8611205
Como 6y — 6y = — (62 — ) por simetria, debe ser:

alcance = (92 — 91) R = [(92 — 90) — (91 — 90)] R=2 (92 — 90) R

Ahora, obtengamos el alcance maximo. Para ello, primero tenemos que ver para qué angulo a ocurre el
alcance maximo. Con tal propoésito, derivamos:

3
— 5 Sen & Cos &
senacosay/1 — 4sen2a—(%sen2a—1)%
24/1—2 sen?

L eos (6~ 00)] = T fenle
_ senacosa (1 —3sen’a) + $senacosa (3sen’a—1)
- [1— 2 sen? ]3 -
_senacosa (1— 3+ 3sen’a—2sen’a)  senacosa(f— Esen’a)
- [1— 3sen2a]®  [1-3sen2a]?

Sen o cos o (2 — 3sen? a)

8[1— ZsenQa}%

do

donde descartamos las soluciones o = 0 y a = 7, puesto que no son soluciones fisicas reales.
Sustituyendo, llegamos a:

d 2
0= —[cos(@i—ﬁo)]@2—3sen2a20®sen2a:gﬁ)a:54,7°

1 _
3 sen” 1

cos (6 — 6y) = =

32 -1 3
— i3 \/1 ~3 \/g
01 — 6o = —160,5° = 199,47°
02 — 0o = 160,5°

2 1 2
31 3= -5 __2V2
1

& 0 — 0y = £160,5° &

De manera que el alcance maximo es:

alcance = (199,47° — 160,5°) I%R = 0,68R

O, alternativamente, podemos dar el alcance como 27 menos el valor anterior:

alcance = (2r — 0,68) R
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3.4.2.4. Obtencion de la ecuacién en cartesianas

-k
Proposicién 74. Sea un particula de masa m sometida a una fuerza del estilo F'= —7. En coordenadas

r
cartesianas con el eje horizontal en la direccion de 0y, la trayectoria de la particula m viene descrita por:

» Sie=0:
2?4yt =1
m Sie=1: l
2
= -2l - =
=2 (a-3)
n Sil0<e<1: )
(z + ea) y271
a? v
donde a = l b= %l
_1_e2y = —
m Sie>1: )
(z —ea) y2_1
a? o2

l
dondeazez_1 yb= =

Demostracion. A lo largo de toda la demostracion, llamaremos 5 := 6 — 6y. Como tomamos los ejes cartesianos
tales que el eje horizontal tiene la direcciéon de 6y la relacion entre las coordenadas cartesianas y polares queda:

x=rcos(fd —0y) =rcosp

y=rsen(d —0y) = rsenf

2?4 y? =2

= Si e = 0, por la proposicion [73 en la pagina 169| la trayectoria es una circunferencia. Recordemos la
relacion:

T2:.’132+y2

También, por la proposiciéon [71 en la pagina 166| sabemos que en el caso de la circunferencia se cumple:

r=ler?=7[

Sutituyendo, obtenemos:
IR QR

de manera que llegamos a la ecuacion del enunciado.

= Si e =1, por la proposiciéon [73 en la pagina 169 la trayectoria es una parabola y por la proposicion
tenemos:

rlcosB+1] =1l rcosf+r=I
Sustituyendo r = y/22 4+ y? y rcos 8 = x, llegamos a:

r+Vri+yi=ler—l=—\12+y2 e

l
s 2x+P =ty ey’ = 2r+1>= -2 <x—2>
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» Si0 < e <1, por la proposicién [T3_en la pagina 169} la trayectoria es una elipse y por la proposicion [71]

len la pagina 166] tenemos:
rlecosp+1]=1l<ercosf+r=1

Sustituyendo x = r cos 3, obtenemos:
ex+r=loe—l=—r=(ex-1)°=(-r) =22+ =

sl —2exl+ 1P =2>+y o (1762)$2+2€$l+y2 =1?
Multiplicando por (1 — 62) a ambos lados, obtenemos:
[(1—e*)a?+2exl+y°] (1-€*)=1*(1-¢%) &
& (1 — 62)21‘2 + 2elx (1 — 62) + 42 (1 — 62) =1? (1 — 62)
Completamos cuadrados:
[(1 — 62)$+6l]2 — 212 P (1 — 62) =1? (1 — 62) &
[(1-e)atel]”+y?(1-€) — 2 =1 -2 &
[(1 — 62)x+el]2 + 92 (1 —62) =1?

Dividiendo a ambos lados por 2, tenemos:
2

2
[(1—€?)z+el] 1—e? , (1-e?)z+el y
2 + Y= le i =1
1—e2
2 2
2 1 2
x Y Ttera y
(:)[ — te|l +—F—=1¢ . ] =1
1—e2 1—e? 1—e? 1—e?
que ya tiene la forma candnica de una elipse no centrada en el origen:
2 2
(z — o) +(y—y0) -1
a? b2 N
Asi, obtenemos:
a’ = v Sa= !
S (1-e2)? T 1=e?
2 l
b = &b=
1—e? V1—e?
l
= ea. En consecuencia, podemos expresar la ecuacion de la trayectoria como:

Notese que e——
4 1—e¢2

2
@tea) v _

Sie > 1y k < 0, por la proposicion 73 en la pagina 169] la trayectoria es una hipérbola y por la

proposicioén [71 en la pagina 166} tenemos:

rlecosf+1] =1
La deduccioén es la misma que en el caso de la elipse hasta que llegamos a:

2
[(1—6222$+6l] +17€2 2 _ 4

179
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Noétese que 1 — e? < 0 al ser e > 1. Por tanto, nos interesa reescribir la ecuaciéon anterior como:

—(e2 _ 2 2
[ (e l12)x+el] N 1y2:1

2 . :
Como 22 = (—2)7, lo anterior es equivalente a:

[(62—1)x—el]2 e?—1,
2 T v Ele
2 2
(e2=1)z—el y? (=1 y?
& ; =1 7 —e =1
e2—1 e2—1
2 2
2 T —e 2
@[ - —e} 3{2 :1@[ 16211 3{2 —le
e?—1 e2—1 e?—1 e2—1
o eats]
X em] y2
At 2 -z =1
e2—1

(e2-1)?
que ya tiene la forma canodnica de una hipérbola no centrada en el origen:

(z — 900)2 (y — y())2 -1

a? B b2
Asi, obtenemos:
2 l
= —— sa=
(e2—1) e -1
2 l
v = sb=
e2—1 e —1

l

Notese que e— 1= ea. En consecuencia, podemos expresar la ecuacién de la trayectoria como:
2 —

= Sie> 1y k > 0, por la proposiciéon [73 en la pagina 169 la trayectoria es una hipérbola y por la

proposicioén [71 en la pagina 166} tenemos:
rlecosp—1]=1l<ercosf—r=1

Sustituyendo x = r cos 3, obtenemos:
er—r=loer—l=r=(ex—1)°=r>=2a+4>

Y con esto, ya estamos en el mismo caso que para e > 1y k < 0, por lo que llegamos a la misma ecuacion.
Q.E.D.

Observacion 61. Notese que la ecuacion de la parabola dada en la proposicion |74 en la pagina 178|se corresponde

con una parabola tumbada.
Es maés, en todos los casos anteriores, el eje x tiene la direccion del eje real o mayor (en su caso) de la conica

180
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3.4.2.5. Relacion de los parametros de las 6rbitas con la energia y el momento angular

-k
Proposicién 75. Sea un particula de masa m sometida a una fuerza del estilo F'= — . Los pardmetros a y b
r

de la conica estdn relacionados con la energia y el momento angular de la siguiente forma:

a——|k| 2—al= L?
- 2|E| 0 2m|E|

Ademds, se cumplen las siguientes relaciones:

m Si0<e<l1:

k
rmfn+rmdxz2a E=— c = ae
2a
= Sie>1:
FE = |k‘ = =2 =2
= % c=ac Tmin, k>0 T Tmin k<0 = 2C Tmin, k>0 — T'min,k<0 = 4@
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'max

Demostracion. Cuando 0 < e < 1, por la proposicion [74 en la pagina 178 sabemos que a y b cumplen:

l l

- he
1—e? V1—e?

Y, por la definicién [85 en la pagina 160 y por la proposicién [71 en la pagina 166, sabemos que [ y e vienen
dadas por las expresiones:

a

L? 2lE
l= e? = 1
m |k ||
Sustituyendo en a, obtenemos:
l l Kl kK

azlfﬂlf1:7ﬁlff:7ﬁ*ﬁ’2m|

pues k < 0y E < 0. Por otra parte:
2 l k| L2 L?

1-e2 '1-e “T2E[mk ~ 2m|E|

=a

b2

Por el contrario, si es e > 1, por la proposicién [74 en la pagina 178 sabemos que a y b cumplen:

l _ l
ez -1 V2~ 1

a =

De nuevo, por la definicién [85 en la pagina 160| y por la proposicion [71 en la pagina 166} sabemos que ly e
vienen dadas por las expresiones:

L? 20E
l = e2="11
m k| |K|
Sustituyendo en a, obtenemos:
_ ! I i
C¥E1-1 2T 2E 20E|
pues E > 0. Por otra parte:
2 l k| L? L?
e2—1 e —1 2|E|ml|k|  2m|E]
——
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= Si 0 <e <1, por la proposicion [72 en Ia pagina 168 tenemos:

l l

- Tmax — —
e+1 —e+1
n l n l ll—e—i—l-i—e 2l 9 l 9g
Tmin T T"max = = = = =
14+4e 1-e¢ 1—e2 1—e2 1—e2
——

=a

Tmin =

donde sabemos que lo puesto entre llaves es a por la proposicién [74 en la pagina 178|
Hemos probado antes que era cierto:

I
2|E]
En nuestro caso son kK < 0y F < 0, de manera que lo anterior es equivalente a:
k k
a=—F=—
2F 2a

Por tltimo, por lo visto en la seccién [3.2.1 en la pagina 151| sabemos que en una elipse se cumple a? =
b% + 2 < % = a? — b?. De esta forma, obtenemos:

F=d>-bv=d>-al=ala—-1)

A partir de la proposicion [71 en la pagina 166, podemos expresar [ en funciéon de e:

2 2
=—+1& — ]l = —

(-1 =te -1 1)

como es k < 0, lo anterior es equivalente a:

_k ooy R e

=a

y, por lo que hemos visto antes, lo indicado entre corchetes es a y asi, obtenemos:
l=ua (1 — 62)
Sustituyendo en la expresién para c?, obtenemos:
c2=a2—|—b2=a[a—a(1—62)] =a? (1—1+€2) =a’* e c=ae

= Sie > 1, por lo probado antes, tenemos:

K
2|E]|
En nuestro caso, es E > 0, luego podemos expresar lo anterior como:
|| ||
= —&FEF=—
“T ok 2

Ahora, por lo visto en la seccién|3.2.2 en la pagina 153|sabemos que en una hipérbola se cumple ¢? = a?+b2.
De esta forma, obtenemos:

A=d*+bv=d*+al=ala+l)

A partir de la proposicion [71 en Ta pagina 166, podemos expresar [ en funcion de e:

., 2E CAE K|

= tledld-1=""s 2_1)=1
e 7 + e 7 S5E (e )
como es F > 0, lo anterior es equivalente a:
k[ (o
= -1
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y, por lo que hemos visto antes, lo indicado entre corchetes es a y asi, obtenemos:
l=a (62 — 1)
Sustituyendo en la expresiéon para c?, obtenemos:

02:a2+b2:a[a+a(62—1)] :a2(1+62—1):a262<:>c:a6

A continuacién, por la proposiciéon [72 en la pagina 168| tenemos que:

l

o~

Tmin,k>0 = m Tmin,k<0 = e+ 1
Asi:
n l l ; 1 n 1 l6+1+6_1 2le
Tmin Tmin = = = = =
k>0 P e—1 e+1 ez -1 ez -1
l
:2@62_1 =2 ea =2c
—— =c
=a
Por otra parte:
l l I 1 1 le +1—e+1
Tmin — T'min - - = - =l =
k>0 RO T T et e—1 e+1 e2 -1
l
=2 o = 2a
——

Q.E.D.

.k
Corolario 26. Sea un particula de masa m sometida a una fuerza del estilo F' = — 7. Para un valor de k dado,
r

orbitas que tengan el mismo valor del semieje mayor a tendrdn, necesariamente, la misma energia en valor
absoluto.
|| ||

Demostracion. Trivial, pues es a = 21| & Bl =—. Q.E.D.
a

Observacion 62. En el dibujo de la elipse de la proposicion [75 en la pagina 181] notese que el centro de fuerzas
esta en un foco de la elipse y que el centro de la elipse queda a la izquierda. Es decir, la disposicion es justo al
revés que en el caso de la hipérbola.

3.4.2.6. Angulo de dispersién en trayectorias hiperboélicas

Definiciéon 86. Sea una particula que se mueve en una direccion fija (direccion de entrada) y tras un suceso
cualquiera, termina desplazandose en otra direccion fija (direccion de salida). Llamamos dngulo de dispersién
al angulo que hay entre la direccién de entrada y la de salida. Es decir el angulo de dispersion es el que forman
entre si el vector velocidad de la particula a la entrada y el vector velocidad de la particula a la salida.

Proposicion 76. Sea un particula de masa m que inicialmente se encuentra muy alejada de un centro de

fuerzas que ejerce una fuerza del estilo F= %f con k > 0. Sea by, el pardmetro de impacto de la particula
de masa m con respecto al centro de fuerzas.T Es decir, bimp es la minima distancia entre la trayectoria de la
particula y el centro de fuerzas si fuese F=0. Entonces, la particula de masa m describe una drbita hiperbdlica
con b = by Y, visto desde una distancia lo suficientemente alejada, el dngulo de dispersion © estd relacionado
con el parametro de impacto de la siguiente forma:

|| ©

cot —

b= bimp = muZ, 2

donde v es el mddulo de la velocidad de la particula de masa m cuando se encuentra muy alejada del centro
de fuerzas.
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Demostracion. Vamos a realizar un razonamiento similar al hecho en la demostracién de la proposicion
Como inicialmente la particula se encuentra muy alejada del centro de fuerzas, podemos suponer
que r — o0 y, en consecuencia, la particula en el infinito Ginicamente tendra energia cinética:
E= %mvgo

Nuestro siguiente objetivo es calcular el momento angular de la trayectoria. Como es constante, nos interesa
calcularlo cuando la particula esta muy alejada del centro de fuerzas (en el infinito), sin embargo, nos interesaria
poder expresarlo en funcién de b;y,,,. Para ello, vamos a usar el siguiente argumento: Cuando la particula esta
muy lejos del centro de fuerzas, como hemos dicho en el parrafo anterior, podemos suponer que sobre ella
no acttan fuerzas. Si no tenemos fuerzas, el momento angular desde cualquier punto debe conservarse por el
teorema |5 en la pagina 21} Tomemos nuestro centro de fuerzas como punto de referencia para el calculo del
momento angular. Si fuese F= 0, sabemos que la minima distancia entre la trayectoria y el centro de fuerzas
serfa b por la definicion [84 en la pagina 156} Como la distancia minima siempre es en perpendlcular sabemos
que bzmp L 7. De esta forma, el momento angular en el punto de minima distancia (cuando F = 0) viene dado
por:

L = mbimproso

dado que la velocidad en ausencia de fuerzas es constante por la primera ley de Newton (ver teorema
pagina §f). Pero, como el momento angular se conserva en ausencia de fuerzas, el momento angular cuando la
particula estd muy alejada del centro de fuerzas también serd L = mbjy,,va y asi (volviendo a nuestro caso
inicial con F = 21“) el momento angular de nuestra particula cuando estd muy alejada del centro de fuerzas

también es L = mbimpUss. Por dltimo, como F' es central, el momento angular es constante y asi el momento
angular de nuestra particula es siempre:
L = mbimpVes

En resumen, hemos conseguido obtener las dos constantes del movimiento:

1
L = mbimpVoso E = imvgc >0

Licencia: Creative Commons 185


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. FUERZAS CENTRALES CONSERVATIVAS
Lain-Calvo 3.4. ORBITAS

Por la proposicion [73_en la pagina 169, sabemos que la trayectoria seguida por nuestra particula sera una
hipérbola. Ahora, por la proposicién [75 en la pagina 181} sabemos que el pardmetro b de nuestra hipérbola esta
relacionad con la energia y el momento angular como sigue:

2
2 _ L
2m |E)|
Sustituyendo, obtenemos:
212 2
m=b;, v b,bimp>0
2 impUoo 49 ;0imp 7
b772 T = Dimp b ="Dbimp
mazmuZ,

De manera que el parametro b de nuestra hipérbola coincide con el pardmetro de impacto.

A continuacion, notemos que la hipérbola tiene dos asintotas, una se corresponderé con la direccién de entrada
de nuestra particula y la otra con la direccién de salida. Esto es asi, porque cuando nos encontramos muy lejos del
centro de fuerzas, la hipérbola es imperceptible y parece que tengamos una linea recta. Bien, recordamos por la

1 1
proposicion |73 en la pagina 169|que las asintotas de la hipérbola formaban dngulos arc cos () y arc cos (—)
e e

. . 1
con la direccion de #y. Llamemos « := arc cos ( . Calculemos tan a; para ello, usamos que:
e

V1—2a22

xT

tanarccosx =

(lo anterior se ha extraido de aquﬂ) de manera que obtenemos:

J1-% e2 — 1
i T —e — =Ver—1
1 e
€

Ahora, por la proposicion [75 en Ta pagina 181] sabemos que es:

tana =

c
c=aese=—
a

Sustituyendo, obtenemos:

tana =14/ — —1
a2

Recordando lo visto en la seccién [3.2.2 en la pagina 153] sabemos que en una hipérbola se cumple ¢ = a? + b2,

sustituyendo, llegamos a:
a? + b? a? + b2 — a? 2 b
tana = —l =y ===
a? a? a? a

Estudiando la definicion [86 en Ta pagina 1841 vemos que el dngulo de dispersion O es el que forman entre si
ambas asintotas, es decir, es:

T—0
2
Usando la expresiéon que hemos hallado anteriormente para la tangente, obtenemos:

(77—@) b
tan o = tan = —
2 a

Usando la proposicion [75 en la pagina 181} podemos expresar a en funcién de la energia como sigue:

O=r-2a0a20a=1-0a=

WM K]
2E  2imw?,

Thttps://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&oldid=876493420#Relationships_
between_trigonometric_functions_and_inverse_trigonometric_functions

Licencia: Creative Commons 186


https://en.wikipedia.org/w/index.php%3Ftitle%3DInverse_trigonometric_functions%26oldid%3D876493420#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions
https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&oldid=876493420##Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions
https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&oldid=876493420##Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. FUERZAS CENTRALES CONSERVATIVAS
Lain-Calvo 3.4. ORBITAS

Sustituyendo, llegamos a:

tan 6 ——b S b= k] tan I—Q
WM\ T2 )T H Tz, M\ 27 2

2
muvg,

Por dltimo usamos que la tangente del complementario es la cotagenteﬂ

t (W ) t
an| — —Ir) =cotxr
2

De manera que obtenemos:

W ©
= cot —
mu2, 2

(=

Q.E.D.

3.4.2.7. Periodo de la orbita eliptica

Observacion 63. Notemos que la trayectoria de una particula de masa m sometida a una fuerza del estilo

—

k
F = — 7 satisface la segunda ley de Kepler (ver teorema |19 en la pagina 143|) por ser central.
r

Teorema 20 (Tercera ley de Kepler). Sea un particula de masa m sometida a una fuerza del estilo F= —7
r

con k < 0 tal que su energia es negativa E < 0, entonces se da:

T? ma®

ar? k|

donde T es el periodo de la orbita y a es el semieje mayor de la elipse que describe la particula m.

Demostracion. Como F es central, por la segunda ley de Kepler (ver teorema|19 en la pagina 143[), se satisface:

dA_ L
dt ~ 2m

Ademés, como es k < 0y E < 0, por la proposicion [68 en Ta pagina 160 sabemos que la trayectoria de la
particula sera cerrada y, por la forma de la expresion matematica de la proposicion [71 en Ia pagina 166] sera
periodica. Llamemos 7 a dicho periodo. Por la proposicién [73 en la pagina 169 conocemos, ademés, que la
orbita sera una elipse o una circunferencia (que no es mas que un caso particular de elipse con a = b). Como el
area de la elipse es mab, por lo dicho anteriormente, debe satisfacerse:

mab dA L n?a?y® L2

= = s =
T dt  2m T? 4m?
Notese que lo anterior tiene todo el sentid;) pues % no es una magnitud diferencial. Por la proposicion

L
la pagina 181} sabemos que b? = al = am. Sustituyendo, obtenemos:
m

2 2 L?
T™“a a7m|k| B L2 w2a3 1 ma3 7—2

T2 d4m?  T2|k|]  4m k| e

Q.E.D.

Corolario 27. Sea un particula de masa m sometida a una fuerza del estilo F= 7 tal que su energia

2
r
es negativa E < 0, entonces se da:

7—2 a3

ir? T GM
donde T es el periodo de la drbita, a es el semieje mayor de la conica que describe la particula m, G es la
constante de gravitacion universal y M es la masa generadora del campo.

2Esto puede verse en la pagina https://en.wikipedia.org/w/index.php?title=Trigonometric_functions&oldid=868696055#
Right-angled_triangle_definitions.
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Demostracion. Trivial. Simplemente se sustituye en el teorema [20 en Ia pagina anterior] k = —GMm. Q.E.D.

- . 0=k
Definicién 87. Sea una particula de masa m sometida a una fuerza del estilo F' = —7 con k < 0 tal que su
r
energia es negativa E < 0. Se llama pericentro al punto de la érbita que realiza la minima distancia al centro

de fuerzas y se llama apocentro al punto de la 6rbita que realiza la maxima distancia al centro de fuerzas.
—GMm

r2
recibe el nombre de apoastro. Es mas, si la masa generadora del campo gravitatorio es el Sol, entonces el
periastro recibe el nombre de perihelio y el apoastro recibe el nombre de afelio. Analogamente, si la masa
generadora del campo gravitatoria es la Tierra, el periastro recibe el nombre de perigeo y el apoastro recibe el
nombre de apogeo.

En astronomia, es decir, cuando F' = 7, el pericentro recibe el nombre de periastro y el apocentro

"By
apocentro
apoastro

pericentro
periastro

Ejemplo 25. Fijémonos en el dibujo siguiente. Supongamos que es la o6rbita de la Tierra alrededor del Sol, que
tiene una excentricidad e = 0,0167. Calculemos cuantos dias més le cuesta recorrer el area morada que el area
verde.
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Primero, obtengamos dichas areas. No resultan dificiles del calcular pues pueden obtenerse a partir del area
de media elipse y del area del triangulo cuyos lados son a,c y 7. Asi, obtenemos:

wab bc  wab
Amorado - _2 + 25 == —2 + be
wab bc mwab
A = — — _ = —
verde 9 9 B be

De manera que la diferencia de areas es:

AA = Amorado - Averde = 2bc

Por la proposicion [75 en Ta pagina 181] podemos expresar ¢ en funcion de la excentricidad e y el semieje mayor
a, obteniendo:

AA =2bc=2b ea = 2abe
—~

=c

Por la segunda ley de Kepler aplicada al caso gravitatorio (ver teorema |19 en la pagina 143)), tenemos:

— = cte
dt

Por tanto, si llamamos At al tiempo que le cuesta la tierra recorrer AA, debe cumplirse:
A AA
T At

donde A es el area de la orbita de la Tierra y T es su periodo. Dicho area sabemos que es:
A = mab

Sustituyendo, obtenemos:

wab  2abe T 2e 2e
pry _— = — At = — ~ d'
T 7 < T N = - ] ~ 3,88 dias
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3.4.2.8. Ejemplos

Ejemplo 26. Tenemos una particula de masa m sometida a la fuerza gravitatoria generada por un cuerpo de
masa M inmévil en torno al cual nuestra particula de masa m describe 6rbita circular de radio R. Posterior-
mente, le damos un impulso radial hacia dentro produciéndole un cambio de velocidad en la direccion radial de
exactamente la velocidad del movimiento circular. ;Qué tipo de érbita describira el objeto tras el impulso?

Ue

Impulso radial

Por la proposicion [68 en la pagina 160, sabemos lo siguiente:

Y GM E__GMm

"V R ~ 2R
GMm GMm vV

V=% T=73r =3

y ademas que | = R. En estas condiciones, el momento angular antes del impulso puede ser descrito como:

GM
L =mRy| "=
"W TR

Ahora, le damos un impulso radial hacia dentro de velocidad v, = v... Tras aplicarle el impulso radial, sabemos
que se conservard el momento angular porque los momentos lineales radiales no hacen momento angular (por
definicién de momento angular [ver definicién [12 en la pagina 20]). En consecuencia, también se conservaré [
(por definicion de [ [ver definicion [85 en la pagina 160]). Ast:

L'=1L I'=1
Calculemos la nueva energia de la orbita:

1
E' =F+ §mvz
——
=T

1
pues T = imvz es justo la energfa cinética con la que contaba la particula de masa m antes de aplicarle el

impulso. Ahora, como ademéas ' =T + V, obtenemos:

E'=T+V+T=2T+V
T v .
pero recordemos que en una Orbita circular T = 5 de forma que, sustituyendo llegamos a:

v

Licencia: Creative Commons 190


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. FUERZAS CENTRALES CONSERVATIVAS
Lain-Calvo 3.4. ORBITAS

En consecuencia, por la proposicién [73 en la pagina 169] la nueva érbita es una parabola y la excentricidad
de dicha orbita es e = 1. Ademas, la distancia minima entre la nueva trayectoria y el centro de fuerzas sera (por
la proposicion [72 en la pagina 168)):

I R

T'min = 5 9
porque en la 6rbita circular es R = [.

Ejemplo 27. Tenemos una particula de masa m sometida a la fuerza gravitatoria generada por un cuerpo de
masa M inmévil en torno al cual nuestra particula de masa m describe 6rbita circular de radio R. Posterior-
mente, le damos un impulso radial hacia dentro produciéndole un cambio de velocidad en la direcciéon radial de

v,
v = Ec donde v, es la velocidad del movimiento circular. ;Qué tipo de érbita describira el objeto tras el impulso?

Todas las deducciones de la 6rbita circular son las mismas que en el ejemplo [26 en la pagina anterior]

Ahora, le damos un impulso radial hacia dentro de velocidad v, = —. Tras aplicarle el impulso radial,

sabemos que se conservara el momento angular porque los momentos lineales radiales no hacen momento angular
(por definicién de momento angular [ver definicion|12 en la pagina 20]). En consecuencia, también se conservara
I (por definicion de ! [ver definicion [85 en la pagina 160]). Asi:

Calculemos la nueva energfa de la orbita:

1 Ve 2 11 T
E/:E — (70) :E — — 2:E _
HEEA Ty =Rty
—
=T
Como E =T + V, obtenemos:
T 5T
E=T+V+—-—=V+—
+V i+ + 5
1 . \%
Como en una orbita circular T = —5:
5V 3GMm
_,f_V_,V_, — 2
=V-13 8 e

De esta forma, sabemos que la nueva trayectoria sera una elipse. Mediante la proposicion |75 en la pagina 181}
podemos obtener el valor de los pardmetros a y b de la nueva orbita.

E__GMm@_%GMm__GMm@%l_l@a_éR
o 2a 8 R 2a 4R  a 3
4
b’ =al = -R®
“=3

dado que [ = R.
A continuacién, vamos a hallar la excentricidad a través de c. Sabemos por la seccion [3.2.1 en la pagina 151|
que en una elipse se cumple:

a2 = b2 + 2
podemos obtener ¢ como sigue:
42 4 4 4 4 2
2 2 32 2 2 2 2
=a"—b'==R" —-R°=-R°|-—-1)==-R°&c==-R
c-a 32 3 3 ( ) 9 T3

En consecuencia:
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Ejemplo 28. Tenemos una particula de masa m sometida a la fuerza gravitatoria generada por un cuerpo de
masa M inmo6vil en torno al cual nuestra particula de masa m describe 6rbita circular de radio R. Posterior-
mente, le damos un impulso radial hacia dentro produciéndole un cambio de velocidad en la direccién radial
de v, = 2v. donde v, es la velocidad del movimiento circular. ;Qué tipo de érbita describira el objeto tras el
impulso?

Todas las deducciones de la 6rbita circular son las mismas que en el ejemplo [26 en la pagina 190]

Ahora, le damos un impulso radial hacia dentro de velocidad v, = 2v.. Tras aplicarle el impulso radial,
sabemos que se conservara el momento angular porque los momentos lineales radiales no hacen momento angular
(por definicién de momento angular [ver definicion|12 en la pagina 20]). En consecuencia, también se conservara
I (por definicion de ! [ver definicion [85 en la pagina 160]). Asi:

Calculemos la nueva energia de la orbita:

1 1
E':E+§m(2vc)2:E+4§mvf:E+4T
=T

Como E =T + V, obtenemos:
E'=T+V +4T =V 45T

\%4
Como en una orbita circular T' = —5:

% 5 3 3GMm
E=V-5—-=V-V=-V=-"7"9-—2>0
2 2 2 2 R
De esta forma, sabemos que la nueva trayectoria serd una hipérbola. Mediante la proposicién
podemos obtener el valor de los parametros a y b de la nueva érbita.

E_GMm®§GMm_GMm®31_1® _E
) 2" R 2 R a3
R2
b2 =al = —
@3

dado que I = R.
A continuacion, vamos a hallar la excentricidad a través de c¢. Sabemos por la seccion [3.2.2 en la pagina 153]
que en una hipérbola se cumple:

& =a® + b

podemos obtener ¢ como sigue:

R? R2 R?/1 4 2
2 2, 12 2
cTer o "3 73 (3+ ) 9 T3
Y, en consecuencia:
c %R
627:17:2
a gR

Ejemplo 29. Supongamos que la érbita de la Tierra alrededor del Sol es circular de radio R. Ademaés de por la
Tierra, el Sol es orbitado por un cometa de cuya orbita sabemos que la distancia méas corta entre ella y el Sol es

Tmin = — Yy que, ademas, la velocidad del cometa en el punto en el que se realiza la minima distancia es dos veces

la velocidad de la 6rbita circular de la Tierra. ;Qué tipo de orbita describe el cometa? ;Qué velocidad posee
el cometa cuando intersecta la orbita de la Tierra? ;Qué angulo forman el vector velocidad de la Tierra con
el vector velocidad del cometa en los puntos de interseccion? ;Durante cuénto tiempo permaneceré el cometa
dentro de la o6rbita de la Tierra?
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Primero, obtenemos la velocidad de la 6rbita circular de la Tierra mediante la proposicion[68 en la pagina 160}

GM
Ve = 7
donde M es la masa del Sol.

A continuacion, deseamos obtener el tipo de orbita del cometa. Para ello, hallemos la energia. Como la
energia es una constante del movimiento, podemos hallarla alli donde nos sea mas facil. En este caso, nos
resulta mas sencillo en el punto de distancia minima, pues conocemos tanto el valor de la distancia minima
como la velocidad en ese punto. Llamando m a la masa del cometa, tenemos:

GMm 1 2 GMm 1 2
E = _? + §m (2’05) = _2T + 4§m'l}c =
GMm GM
= -2 2m —— =0
R "R
_

Luego tenemos una parabola. Ademas, segin la proposicion [72 en Ta pagina 168 sabemos que para el caso
de una paréabola la distancia minima cumple:

l

Tmin = 3

R
Como en nuestro caso era rmm = 25 tenemos [ = R.
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Ahora, obtengamos la velocidad que tiene el cometa cuando intersecta la orbita de la Tierra. Lo hacemos
por energias. En el punto de interseccion con la érbita de la Tierra, la distancia del cometa al Sol sera R, pues
la 6rbita de la Tierra es circular.

L 1 5 GMm 1 , GMm _[2GM

Ahora, calculemos el angulo a que forma el vector velocidad con la trayectoria de la orbita de la Tierra.
Para ello, vamos a aplicar la conservaciéon del momento angular. No obstante, primero tenemos que calcular el
momento angular. Podemos hallarlo en el punto r = 7,1, donde sabemos que es 7 = 0 (pues la distancia minima
es siempre en perpendicular) y, en consecuencia, r y v son perpendiculares:

[GM
L =m§2vc =mRv, = mR % =mVGMR

Como el momento angular se conserva, el momento angular en el punto de interseccién debe ser el momento
angular inicial. Como ya conocemos el mddulo de la velocidad en el punto de interseccion (donde es r = R),
simplemente:

2GM 1 T
mVGMR = mRy/ 7 senﬁ@l-ﬁsenﬁ@senﬁ—ﬁﬁﬁ—z

T
restringiendo 3 a [O, f] donde $ es el angulo que forma el vector velocidad del cometa con el vector posicién

con respecto del Sol (la direccion radial), no el dangulo que forma el vector velocidad del cometa con el vector
velocidad de la Tierra (que es perpendicular a la direccion radial), dicho angulo es al que hemos llamado «.
Pero, hecho esto, calcular a es muy sencillo, ya que 8 y « son complementarios.
7r 7T
a=——a=—

2 4

0 .
Notese que en este caso si que es a = 3, porque era [ = —; pero, en general, esto no seré cierto.

Para calcular el tiempo que permanece el cometa dentro de la 6rbita terrestre vamos a usar la segunda ley
de Kepler (ver teorema [19 en la pagina 143)), que dice que:

dA L

dt 2m
como conocemos el momento angular de la 6rbita, el reto consiste en hallar el drea encerrada entre los vectores
posiciéon en los puntos de interseccion contenida en la parabola. Como el area es simétrica, nos basta con hallar
una mitad. Vamos a obtener dicho area matematicamente usando las formas funcionales de la recta (el vector

posicion) y la parabola presentes e integrando. Notese que en este caso, como la 6rbita es una parabola y el Sol
debe ser el foco de la pardbola; en el dibujo del principio de este ejercicio, los vectores posicion de los puntos

de interseccion tiene direcciéon vertical. Si giramos dicho dibujo 5 en sentido horario, obtenemos:
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W

R
2

Directriz y = —%

Nuestro objetivo es hallar el &rea entre la linea horizontal azul y la parabola roja. Vamos a hacer esto
integrando. Para ello, necesitamos obtener las ecuaciones matematicas que describen estos objetos. La linea
recta horizontal viene descrita por:

Recordemos que la ecuacién general de una parabola cuyo eje es paralelo al eje Y es:

g(z) = A2’ + Bz +C

g (r) =2Az+ B

Para hallar la ecuacién de la parabola vamos a usar que sabemos que el minimo se da en x = 0 y que vale 0.
Ademés, debe cortar a la funcion f (x) en = R. Matematicamente, podemos escribir lo anterior como:

De las primeras dos ecuaciones obtenemos facilmente que:
B=C=0

Apliquemos la dltima ecuacion:

R
“=g(R)=AR’ s A= —
5 g(R) & 5

Bien, ahora estamos en disposiciéon de hallar el area objetivo:

R 2 3R 2 2 2
A:2/ B ool ge—n|Be o2 (BB _pp B 2p
o L2 2R 0

Ahora, por la segunda ley de Kepler, tenemos:

A L 2R* L imR?  4mR?
= 2 = s t=2 =
t 2m t 2m L 3L
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Anteriormente, habiamos obtenido que:

L=mVvGMR
Sustituyendo, tenemos:
_ 4mR? 4 RS
3mvVGMR 3VGM

3.5. Dispersion de particulas

Recomendamos repasar las definiciones [84 en la pagina 156y [86 en la pagina 184] antes de proseguir con la
lectura de esta seccion.

3.5.1. Colisién entre una particula mévil y una esfera fija de radio R

Proposicion 77. Sea una particula puntual que lanzamos con un pardmetro de impacto b hacia una esfera
fija de radio R con rapidez v. Si el choque es eldstico, la fuerza de interaccion (la fuerza de choque) es central
conservativa; por tanto, se conserva la energia y el momento angular antes y después del choque. Ademds, tras
el choque la particula sequird llevando rapidez v y el pardmetro de impacto b y el dngulo de dispersion 0 estdn
relactonados por la expresion:

0
b= Rcos§

Demostracion. Como el choque es eléstico, la energia cinética antes del choque sera la misma que después del
choque. En consecuencia, el modulo de la velocidad (la rapidez) se conserva.

Durante la colision actia sobre la particula una fuerza desconocida. Sin embargo, como el choque es elastico
y no hay otras fuerzas aparte de la fuerza de choque, la energia mecanica debe ser igual a la cinética tanto
antes como después del choque y como esta tiltima se conserva, pues la energia mecanica se conservara también.
Por tanto, la fuerza del choque sera conservativa. Ademas, como la fuerza de choque sera perpendicular a la
superficie de la esfera, desde el centro de la esfera la fuerza de choque es central. Asi, la fuerza de choque es
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central conservativa. Como es central, el momento angular desde O debe conservarse. Asi si llamamos «; al
angulo que forma la trayectoria de entrada con la perpendicular a la superficie de la esfera en el punto de choque
y as al angulo que forma la trayectoria de salida con la perpendicular a la superficie de la esfera en el punto de
choque, obtenemos:

Rvsena; = Rvsen ag < sen ap = sen o

L ™ P . "
y como a1 ¥ o estan restringidos a [0, 5}, debe ser a; = o := . Notese que necesariamente o y ao estan

en el intervalo descrito anteriormente porque si fuera o > 3 entonces la particula incidente tendria que venir

desde dentro de la esfera y esto es absurdo.
Ahora, por trigonometria obtenemos facilmente que:

b= Rsena«

[NVRISS

7r
9:7T—2a(:)2a:7r—9<:)a:§—
Sustituyendo la segunda ecuacion en la primera, obtenemos:

T 0 0
b= Rsen (2—2> —Rcos§

Q.E.D.

Observacion 64. Notese que en este caso el momento lineal no se conserva.

3.5.2. Colisién entre un conjunto de proyectiles méviles y una lamina de blancos
fijos
3.5.2.1. Sin tener en cuenta la direccion tras la dispersiéon

En el caso anterior medir el parametro de impacto b era relativamente sencillo. Sin embargo, si el proyectil
que lanzamos es, por ejemplo, un protén y lo lanzamos contra un niicleo de nitrégeno, normalmente como mucho
podremos medir el angulo de dispersion 6 en una camara de niebla. Sin embargo, medir el pardmetro de impacto
b (que en nuestro ejemplo seria de escala nanométrica) mirando estelas de grosor de escala milimétrica no es
posible. Por tanto, para este tipo de experimentos nos interesa lanzar una gran cantidad de proyectiles y contra
una gran cantidad de blancos. Del mismo modo, normalmente no podremos conocer el valor del radio R de los
blancos (aun suponiendo el mismo para todos), por tanto, nos interesa trabajar con otra magnitud fisica que
nos indique el tamano del blanco; dicha magnitud fisica sera la seccién eficaz.

Definicion 88. Llamamos secciéon eficaz o de un blanco al area efectiva que muestra al interactuar con un
proyectil.

Teorema 21. Lanzamos un haz de Ni,. particulas de la misma masa y con la misma velocidad contra una
lamina de particulas estdticas de seccion eficaz o. Supondremos que la seccion del haz incidente A estd contenida
en el drea sobre la cual se extienden los blancos (que no es el drea ocupada por los blancos; el drea ocupada por
los blancos serd menor que el drea sobre la que se extienden; dicho de otra forma, hay huecos entre los blancos).
Entonces, el nimero de particulas que colisiona contra los blancos (y que supondremos, se dispersa) Ng;sp viene
dado por la expresion:

Ndisp = INincNplO

donde ny; es el nimero de blancos por unidad de drea, visto desde la direccion incidente. Es decir, si yo hiciera
una foto desde la perspectiva de uno de los proyectiles lanzados, hiciera una division de la foto segin una
cuadricula y tomara uno de esos cuadrados como unidad de referencia, ny seria el nimero de blancos que
habria en cada cuadrado. En nuestro modelo, supondremos que los blancos estdn distribuidos uniformemente.

Demostracion. La probabilidad de que uno de los proyectiles del haz incidente colisione con los blancos viene

dada por la expresion:
area ocupada por los blancos

Pcolisién =

seccion del haz incidente
Llamemos A a la seccion del haz incidente. Por otra parte, el area ocupada por los blancos sera el numero de
blancos por su seccion eficaz. En un area del tamano de la seccion del haz incidente habra Ny; = ny A blancos.
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De forma que el area ocupada por los blancos viene dada por Ay = nyAo. Asi, la probabilidad de colision

queda:
nblAa
Pcolisién = A = Np 0

que como vemos, no depende del la seccion del haz A. Por ultimo, el namero de proyectiles que colisiona (que
supondremos que es el mismo que se dispersa) sera:

Ndisp = ColisiénNinc = NincNblO
Q.E.D.

Si el lector anda ahora algo perdido con los nuevos conceptos el siguiente ejemplo le ayudara a captar su
significado practico.

Ejemplo 30 (Extraido de Taylor (2013) [2]). Un cazador observa que 50 cuervos se posan aleatoriamente sobre
1
un roble, donde ya no puede verlos. Cada cuervo tiene una seccion eficaz o ~ 3 pies? y el roble tiene un area

total (vista desde la posicion del cazador) de A = 150 pies?. Si el cazador dispara 60 balas al azar hacia el arbol,
/& cuantos cuervos esperaria acertar?

En este caso, el nimero de proyectiles incidentes serd N;,. = 60 y el numero de blancos serd Ny; = 50.
Ademas, la densidad de blancos en nuestro caso es:
_ Ny 50 1 1 1

A 150 pies? "3 pies?

Tyl

Aplicando el teorema [21 en la pagina anterior] obtenemos que el nimero de aciertos (el nimero de colisiones)
es:

11
Ndisp = Nipcnyo = 6055 =10

Con frecuencia, lo que tendremos sera un flujo continuo de proyectiles, no un haz de proyectiles disparados
«a la vez». Por tanto, nos serda mas util trabajar con el flujo de particulas entrante ¢;,. por unidad de area y
unidad de tiempo y el flujo de particulas dispersada ¢g;sp por unidad de area y por unidad de tiempo.

Corolario 28. Lanzamos un haz de particulas de la misma masa y con la misma velocidad contra una lamina
de particulas estdticas de seccion eficaz o. Sea:

dNinc

el nimero de particulas del haz incidente que llegan a los blancos por unidad de drea y por unidad de tiempo.
Igualmente, sea:

deisp

dtdA

el nimero de particulas que colisionan contra los blancos por unidad de drea y por unidad de tiempo. Hemos usado
diferenciales inexactos porque en realidad no existen los diferenciales de Nine Yy Naisp, usamos esta notacion
simplemente para indicar que son pequenos. Supondremos que la seccion del haz incidente A estd contenida en
el drea sobre la cual se extienden los blancos. Entonces, ambas magnitudes ¢inc Y Pdisp estan relacionadas entre
st por la expresion:

¢disp =

d)disp = ¢incnbl g

donde ny; es el numero de blancos por unidad de drea, visto desde la direccion incidente. En nuestro modelo,
supondremos que los blancos estdn distribuidos uniformemente.

Demostracion. Partimos del teorema [21 en la pagina anteriorf

Ndisp = Nincnbl(f

Si Naisp ¥ Nine son pequenos, podemos usar la notacién de diferencial inexacta, de manera que la expresion
anterior queda:
deisp :dNincnle
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Dividiendo la expresion anterior por dt y dA, llegamos a:

deisp o dNinc
dtdA =~ dtdA
—

:¢di5p :¢inc

Ny & Pdisp = PincNbl0

Q.E.D.

A veces, nos sera tutil trabajar con el flujo total por unidad de tiempo entrante g;,. y con el flujo total por
unidad de tiempo dispersado ggisp. Para este caso, tenemos el resultado equivalente:

Corolario 29. Lanzamos un haz de particulas de la misma masa y con la misma velocidad contra una ldmina
de particulas estdticas de seccion eficaz o. Sea:

dNinc

Qinc = dt

el numero de particulas del haz incidente que llegan a los blancos por unidad de tiempo. Igualmente, sea:

o deisp
Odisp = dt

el nuimero de particulas que colisionan contra los blancos por unidad de tiempo. Supondremos que la seccion del
haz incidente A estd contenida en el drea sobre la cual se extienden los blancos. Entonces, ambas magnitudes
Oinc Y Odisp estdn relacionadas entre si por la expresion:

Odisp = OQincTblO

donde ny; es el numero de blancos por unidad de drea, visto desde la direccion incidente. En nuestro modelo,
supondremos que los blancos estdn distribuidos uniformemente.

Demostracion. Partimos del corolario [28 en la pagina anteriorf

deisp le c
isp — Pinc Aad =
Gdisp = Pinclhi0 S 4y 4" = g A "0

Multiplicando a ambos lados por dA, obtenemos:

dNg; dN;
% = # Np1O < Odisp = OQincNblT
—— =

=Pdisp =Qinc

Q.E.D.

3.5.2.2. Teniendo en cuenta la direcciéon de la dispersion

En ocasiones, no s6lo me interesa saber el ntiimero de particulas dispersadas, sino el niimero de particulas
dispersadas en una direccion en concreto. Para esto, vamos a usar la secciéon eficaz diferencial. Lo habitual es
tomar la direccion del haz incidente como eje Z y después especificar la direcciéon de cualquier proyectil dando
sus angulos polares 8 y ¢. Mas en concreto, vamos a contar el nimero de particulas que salen en un cono
estrecho alrededor de (0, ¢). Para caracterizar dicho cono, vamos a utilizar el concepto de angulo sélido.
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Direccion de
dispersion
Direccion de

. . l
dispersion | 9
I

Xz -7

Observacion 65. Si miramos en la direccion perpendicular al eje Z, el angulo ¢ se corresponde con el dngulo
que forma la proyeccion de la direccion de dispersion en el plano perpendicular al eje Z con la vertical. Si ahora
miramos segin el plano que contiene tanto a la direccion de la dispersion como al eje Z, 6 se corresponde con
el angulo que forma la direcciéon de dispersion con el eje Z.

Definicion 89. Llamamos édngulo solido al angulo espacial tal que su expresion diferencial es:

dQ = 22 %2 (3.5.1)

Graficamente:

La idea del angulo sélidﬂ es el angulo 2D (la «anchura» del cono) que se forma tras proyectar la superficie

3Mas informacién en la pagina https://en.wikipedia.org/w/index.php?title=Solid_angle&oldid=874069230.
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sobre una esfera de radio unidad. Es decir, es una medida del agujero que tendria que hacer en la esfera de radio
unidad para poder ver el dS. Nétese que efectivamente es un angulo, pues es un pardmetro adimensional.

Proposicion 78. El dngulo sdlido diferencial d) expresado en coordenadas esféricas cuando el vector 7 es

paralelo al vector dS tiene la forma:
dS) = sen Odfdp

Demostracion. Partimos de la definicion de angulo sélido [89 en la pagina anterior}

g0 (215
T
Como es 7 || dS por hipotesis:
ds
dt = —3

El diferencial de superficie en coordenadas esféricas viene dado por:
dS = r? sen §dfdy

Sustituyendo, obtenemos:
r2 sen 0dOdyp

9 = :

= sen 6dfdp

r
con lo que se llega al enunciado. Q.E.D.

Proposicion 79. Lanzamos un haz de Nyy. particulas de la misma masa y con la misma velocidad contra una
lamina de particulas estdticas de seccion eficaz do para el dngulo sdlido dS). Es decir, do es el drea efectiva
de cada blanco para la dispersion en el dngulo sélido d2. Supondremos que la seccion del haz incidente A estd
contenida en el drea sobre la cual se extienden los blancos. Sea ny; el numero de blancos por unidad de drea,
visto desde la direccion incidente; supondremos que los blancos estdn distribuidos uniformemente. Sea Ngjisp a0
el nimero de particulas que colisionan contra los blancos y son dispersadas en el dngulo sdlido dS2. Sea, ademds:

¢' _ dNinc
inc dtdA

el numero de particulas del haz incidente que llegan a los blancos por unidad de drea y por unidad de tiempo.

Igualmente, sea:
¢ ) _ deisp,dQ
disp,dQ2 dtdA

el niumero de particulas que colisionan contra los blancos y son dispersadas en el dngulo sdlido d) por unidad
de drea y por unidad de tiempo. Por otra parte, sea:

dNinc

Qinc = dt

el nimero de particulas del haz incidente que llegan a los blancos por unidad de tiempo. Igualmente, sea:

dNgisp.dn

Odisp,d = dt

el nimero de particulas que colisionan contra los blancos y son dispersadas en el dngulo sdlido d) por unidad
de tiempo. Entonces, se dan las siguientes relaciones:

1.
do
Ndisp,dQ = Nincnbldiﬂdg
2. .
g
¢disp,dQ - ¢incanEdQ
3. )
g
Odisp,d = chnbzdfgdﬁ
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donde:

(6, ¢)

ds

NS

e—
e— 66—
o—

blancos

Demostracion. Aplicando la proposicion 21 en Ta pagina 197] restringiéndonos a las particulas dispersadas en
el angulo soélido df2, obtenemos:

Ngisp,aa = Nincnpdo
Multiplicando y dividiendo en el lado derecho de la ecuacion por el diferencial de angulo sélido df2, obtenemos:

do
Ndisp,dQ = Nincnbldigdg

d
Como el angulo so6lido d€2 es, por la proposiciéon |78 en la pagina anterior| funcion de df y dy, el cociente £

serd, en general, funcion de 0 y .
Ahora, si Ngisp ¥ Nine son pequeiios, podemos usar la notaciéon de diferencial inexacta, de manera que la
expresion anterior queda:

do
ANgisp,do =ANincnp el dQ

Dividiendo la expresion anterior por dt y dA, llegamos a:

deisp aQ lenc do do
’ = 7dQ s = Qinc 7dQ
dtdA dtdA Tl dQ & disp,d = PincNol a0
® ¢
=@disp,dQ =dinc

Si multiplicando la parte izquierda de la expresion anterior a ambos lados por dA, obtenemos:

deisp a2 sznc do do
: = —=d} & is = Oinc ——dS)
dt di Nyl a0 Odisp,dQ QincTlbl 7o)
—_——— ——
=Pdisp,dQ =Qinc

Q.E.D.

do
Definicion 90. El cociente — de la proposicion |79 en la pagina anterior|recibe el nombre de secciéon eficaz

diferencial. En general, la seccién eficaz diferencial es funcion de los angulos 0 y .
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Corolario 30. La seccion eficaz total o es igual a la integral sobre todos los posibles dngulos solidos dS) asociados

. . . a
a la seccion eficaz diferencial —.

ds)

af//—dQ /W /%O;lgseneded@
o= [[ar= [[ oS5 = [

Por la proposicion [78 en la pagina 201} sabemos que el dngulo solido en coordenadas esféricas viene dado por:

Demostracion.

d) = sen 0dOdyp

Sustituyendo, obtenemos:
do
o= / 9 sen 6dfdp

Como 0 € [0,7] y ¢ € [0,27), si queremos barrer todos los posibles dangulos solidos, tendremos que barrer todos
los posibles valores de 6 y . En consecuencia, la integral anterior queda:

T 27
do
o= sen 6dfdp
/9=0 / o d2

Proposicion 80. Lanzamos un haz de N, particulas de la misma masa y con la misma velocidad contra una
lamina de particulas estdticas de seccion eficaz do para el dngulo sdlido d). Es decir, do es el drea efectiva
de cada blanco para la dispersion en el dngulo sdlido dS). Supondremos que la seccion del haz incidente A estd
contenida en el drea sobre la cual se extienden los blancos. Sea ny; el nimero de blancos por unidad de drea,
visto desde la direccion incidente; supondremos que los blancos estdan distribuidos uniformemente. Contamos
con un detector de superficie Ager a distancia L de la ldmina de blancos (supondremos que L es mucho mayor
que las dimensiones de la ldmina de blancos de manera que la distancia entre cualquier punto de la ldmina y
nuestro detector es aproximadamente L) tal que la superficie de deteccion es perpendicular al vector posicion
que une la ldmina de blancos con el detector. Sea Ngeo; el nimero de particulas detectadas por el detector. Sea,
ademds:

Q.E.D.

¢inc - dtdA
el numero de particulas del haz incidente que llegan a los blancos por unidad de drea y por unidad de tiempo.
Igualmente, sea:

¢ _ deet
det = Itd A

el numero de particulas detectadas por el detector por unidad de drea y por unidad de tiempo. Por otra parte,
sea:

) _ sznc
Q'an dt
el niumero de particulas del haz incidente que llegan a los blancos por unidad de tiempo. Igualmente, sea:
0 _ deet
det dt

el mimero de particulas detectadas por el detector por unidad de tiempo. Entonces, se dan las siguientes rela-

ciones:
L do dA
o det
Nde - // Nzncnbl
" o L2
. do dA
o
¢det —/ d)zncnbl a0 Lget
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// do dAges
Odet = Qincbl S5~
Ages Q) L2

Demostracion. Partimos de la proposiciéon [79 en la pagina 201l De esta forma, sabemos que el nimero de
particulas dispersadas en un diferencial de angulo sélido d? viene dada por la expresion:

do
Ngisp,aa = Nincnol dedQ

Por tanto, para hallar el nimero de particulas que salen hacia nuestro detector tendremos que integrar la
expresion anterior al angulo s6lido de nuestro detector ge¢:

do
Nger = //Qdm NincnblEdeet

Aplicando la definicion de diferencial de angulo solido (ver definicién |89 en la péagina 200)), sabemos que el
diferencial de dngulo s6lido asociado a nuestro detector viene dado por:

pues la distancia entre la lamina de blancos y el detector es L. Por otra parte, como por hipotesis la superficie
de deteccion es perpendicular al vector posicion que une la lamina de blancos con el detector, serd dAge: || 7,
de manera que podemos escribir la expresién anterior como:

dAdet
L2

deet =

Sustituyendo en la expresion que hemos obtenido para Nge;, obtenemos:

do dAge:
Nde = ﬂ Nincnbl T 1o
) a dQ L2

Para obtener las otras expresiones o bien puede aplicarse un razonamiento anélogo para las ¢ y para las
0, o bien puede dividirse la expresion con las N por dA y dt (segin proceda) como hemos hecho ya varias
veces. Q.E.D.

3.5.2.3. Calculo de la seccion eficaz diferencial

Proposicion 81. Sea un blanco tal que posee simetria azial en la direccion en la que llegan los proyectiles. En

. . . g L. . ..
ese caso, la seccion eficaz diferencial el depende unicamente de 6 y viene dada por la expresion:

do _ b _|db
dQ ~ senf |df

donde b y 6 se corresponden con el parametro de impacto b y el dngulo de dispersion 0 del problema de un unico
proyectil y un unico blanco de las mismas caracteristicas.
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blancos blancos

Demostracion. Consideremos todos los proyectiles lanzados con un parametro de impacto entre by b+ db y
entre un dngulo ¢ y ¢ + dy. Estos son dispersados con angulo de dispersion entre 6 y 6 + df y entre un dngulo
@y @+ dp. Los proyectiles lanzados inciden sobre el blanco en un area:

do = b|db| de

donde db va con moddulo pues éste puede ser positivo o negativo, mientras que el area debe ser positiva nece-
sariamente. Por otra parte, el diferencial de angulo sblido en el que son desviadas estas particulas es, por la
proposicion [78 en la pagina 201}

d§) = sen 0dOdy

Sin embargo, en la forma anterior estamos considerando siempre que df > 0, dado que el diferencial en coor-
denadas esféricas df es siempre positivo. No obstante, en nuestro caso df no tiene por qué ser necesariamente
positivo. Por tanto, como df2 debe ser positivo, reescribimos la ecuacién anterior como:

dQ) = sen 6 |df| dy
Bien, ahora hallamos la seccion eficaz diferencial:

do _ bldbldp b |db
dQ  senf|df|dy  senf |df

Q.E.D.

Observacion 66. La proposicion [81 en la pagina anterior] nos indica que si hemos hallado la relacién entre
el pardmetro de impacto b y el dngulo de dispersion 6 para un proyectil y blanco determinados, tal que el
blanco presenta simetria axial respecto a la direccién con respecto a la que llegan las particulas, entonces
automéaticamente podemos conocer el valor de la seccién eficaz diferencial y, en consecuencia, ser capaces de
resolver problemas con un nimero alto de proyectiles y blancos.

Corolario 31. La seccion eficaz diferencial de una esfera rigida de radio R para colisiones eldsticas con parti-
culas puntuales viene dada por la expresion:

do R?
aQ 4
Demostracion. Por la proposicion [77 en la pagina 196] sabemos que si lanzamos un proyectil puntual contra
una esfera de radio R, el parametro de impacto b y el dngulo de dispersiéon estan relacionados por la ecuacion:

0
b= Rcos§
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Aplicando la proposicion [81 en Ta pagina 204] sabemos que la seccion eficaz diferencial es:

=sen 0
0 0
do b |db Rcos$ | R 6 Rcos4 R 0 212COS§SQH§ R?
= | = ——sen—| = —sen-=R*"-——=2—=2 = —
dQ)  senf |dO sen 6 2 2 senf 2 2 4 sen 0 4

Q.E.D.

Observacion 67. Lo mas llamativo del resultado anterior es que la seccién eficaz diferencial es isdtropa; esto es,
el namero de particulas dispersadas no depende de 6. Es el mismo en todas direcciones.

Corolario 32. La seccion eficaz total de una esfera rigida radio R para colisiones eldsticas con particulas

puntuales vale:
o =nR?

Demostracion. Partimos del corolario [31 en la pagina anterior] de manera que sabemos:

dO’_R2

a0 4

Por el corolario [30 en Ia pagina 203] sabemos que la seccion eficaz total viene dada por:

T 2 T 2 2 2 T
o= / / do sen 0dfdy = / / U sen 0dfdy = R—Qﬂ/ sen 0df =
6=0 J =0 dQ 6=0 J =0 4 4 0

TR? » TR?
= T [— COSG]O = T (1 — (—1)) = TI'R2

Q.E.D.

Ejercicio 11. Obtener la seccién eficaz diferencial y la seccién eficaz total para la dispersiéon de particulas
puntuales de masa m por medio de un cilindro fijo de radio R y longitud L para colisiones elasticas. El parametro
de impacto b viene dado como la distancia en perpendicular al eje del cilindro.

Soluciéon. Notese que, en este caso, como tenemos un cilindro, no tenemos simetria axial con respecto a la
direccién con la que llegan la particulas.

A 4

Z

En consecuencia, vamos a tener que hallar la seccién eficaz diferencial a partir del cociente de los diferenciales
do y dSQQ2. Para ello, vamos a trabajar en coordenadas cilindricas. Escogemos un do cualquiera. Visto desde la
direccién incidente, dicho area sera un rectangulo de lados db y dz. De forma que:

do = dbdz

Por otra parte, por definicion de angulo sdlido (ver definicion [89 en la pagina 200)), tenemos:

7-dS
2

dQ =
r
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Notese que 7 no es el radio del cilindro, sino la distancia de la superficie dS al cilindro. Como estamos tomando
la superficie perpendicular al vector 7, 7 y dS seran paralelos y, en consecuencia:

ds
Q="

Por otra parte, en coordenadas cilindricas, el diferencial de superficie lateral viene dado por:

dS = rdfdz
Sustituyendo, tenemos:
rd@dz dbdz
dQ) = =
do dbdz
aa = d9dz
donde ponemos los moédulos para asegurarnos de que — sea positivo. Por tanto, inicamente tenemos que

sacar la relacion entre el parametro de impacto y el angulo de dispersion. En lo que se refiere a obtener dicha
relacién nuestro problema es indistinguible del caso de la esfera, el de la proposicion [77 en la pagina 196| En
consecuencia, tenemos:

0 b R 0 R 0
b—RCOb2=>‘d9—’— ‘_

0
donde no hemos necesitado poner el médulo al término sen 3 porque, como 6 varia de 0 a 27, 3 varia de 0 a 7

. 0 . . .
y, de esta forma, es siempre sen 3 > 0. Asi, la seccioén eficaz diferencial queda:

y la seccion eficaz total:

U—//T*SGH —dQ) = / / r—s 0d6dz / / —sen deZ*
2=0J6 2=0J0

27

RQL |:—2COSZ:|O = RL [—cos g]o =RL[-(-1)—(-1)]=2RL

Y esto es justo el valor que esperariamos para la seccién eficaz total, pues si miramos un cilindro de forma
perpendicular, el drea que ocupa desde nuestro punto de vista es la de un rectangulo de base 2R y altura L.

3.5.3. Colisién entre un conjunto de proyectiles moéviles y un volumen de blancos
fijos
Definiciéon 91. Lanzamos un proyectil contra un volumen de blancos uniforme con seccion eficaz (total) o

Llamamos recorrido libre medio )\ a la distancia media que recorre la particula entre choque y choque.

Proposicion 82. El recorrido libre medio de un proyectil X en un volumen de blancos de seccion eficaz (total)
o con densidad de blancos por unidad de volumen uniforme ny; viene dado por:
1

A==
npy o

Demostracion. Podemos suponer, sin pérdida de generalidad que nuestro proyectil se mueve en la direccion del
eje x. En un volumen Adzx, donde A puede ser un area cualquiera, la densidad de blancos por unidad de area
equivalente sera:

Ny = Ny de

Por la proposiciéon 21 en la pagina 197, sabemos que el niimero de choques cuando es N;,. =1 es:

Ndisp = Np|0 = ’belde
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Para hallar la distancia media recorrida entre choque y choque, dividimos la distancia recorrida por el nimero
de choques producidos en dicha distancia, es decir:

dzx dx 1

A= = — = —
Niisp  Twdzo o

Q.E.D.

Proposicion 83. Lanzamos un haz de Nj,. particulas de la misma masa y con la misma velocidad contra un
volumen de espesor X de particulas estdticas de seccion eficaz (total) o. Sean ny la densidad de particulas por
unidad de volumen y N (x) el nimero de particulas que consiguen penetrar una distancia x < X dentro del
volumen de blancos. Ademds, sean:

dNinc

el nimero de particulas del haz incidente que llega al volumen de blancos por unidad de drea y unidad de tiempo,
dN (z)
(®) = Gaa

el nimero de particulas que consiguen penetrar una distancia x < X dentro del volumen de blancos por unidad
de drea y unidad de tiempo. Andlogamente, sean:

dNinc

Qinc = dt

el nimero de particulas del haz incidente que llega al volumen de blancos por unidad de tiempo,

o(x)= d]\;ffx)

el nimero de particulas que consiguen penetrar una distancia x < X dentro del volumen de blancos por unidad
de tiempo. Entonces, se dan las siguientes relaciones:

1.
N (.’E) = Ninceiﬁblgx = Nin667§
2. i
¢ (Z‘) = ¢ince_nbloz = (bince_i
3. ]
4 (’JI) = Qinceinhlam = Qinc€ >

donde X es el recorrido libre medio de un proyectil (como los que lanzamos) en el volumen de blancos.

o N AT [ ol + da)
N | |
o dx

Demostracion. Calculemos el nimero de particulas dispersadas entre una posiciéon = y una posiciéon x + dx. En
un volumen Adz, donde A puede ser un area cualquiera, la densidad de blancos por unidad de area equivalente
sera:

Npr = Nyl (’I + dx — :L‘) = nydx

Asi, por la proposicion 21 en Ta pagina 197] el ntimero de particulas dispersadas entre la posicion x y la posicion
T + dz sera:

Naispa—sa+ds = N () npjo = N () nydao
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pues al volumen Adx entran N (x) particulas. De esta forma, sabemos que el nimero de particulas que no atn
no han sido dispersadas en la posicién x + dx serd el ntimero de particulas sin dispersar en la posicién & menos
las dispersadas entre z y = 4+ dz. De forma que tenemos:

N (z +dz) = N (2) — Naispwoat+ds = N () — N (x) igiode <

< N (z+dz) — N (x) = =N (z) agodz

Notese que el término de la izquierda es justo la definicién de dN. De esta forma, tenemos:

AN N@ - qy v
dN = —N (IL’) npodr & —— = —nyodr & = 7/ ﬁbl(fdx 4
N (z) Nie V() 0

N N - _
< In ( N(m)) = —NpoT & N(x) =e "% & N (z) = Nypee "8

Usando la definicién [82 en Ta pagina 207}, podemos reescribir la expresion anterior como:

N (z) = Nipee %

Para obtener las expresiones para las ¢ y las g dividimos la expresion anterior entre dA y dt (segiin proceda)
como hemos hecho en demostraciones anteriores. Q.E.D.

x

Lema 11. El teorema de Taylor-Young aplicado a la funcion f(x) = e™* nos dice que cuando © — 0, f(x)

puede escribirse como:

fe) =1—xz+o(]z[)

Corolario 33. Lanzamos un haz de Nin. particulas de la misma masa y con la misma velocidad contra un
volumen de espesor X, con X muy pequeno, de particulas estdticas de seccion eficaz (total) o. Sean fuy la
densidad de particulas por unidad de volumen y Nyisp el nimero de particulas que se dispersan al atravesar el
volumen de blancos. Ademds, sean:

dNinc

el nimero de particulas del haz incidente que llega al volumen de blancos por unidad de drea y unidad de tiempo,
¢ R deisp
4T dtd A

el numero de particulas que se dispersan al atravesar el volumen de blancos por unidad de drea y unidad de

tiempo. Andlogamente, sean:
_ sznc

Qinc = dt

el numero de particulas del haz incidente que llega al volumen de blancos por unidad de tiempo,

deisp
dt

Odisp =

el nimero de particulas que se dispersan al atravesar el volumen de blancos por unidad de tiempo. Entonces
pueden aprozimarse Ngisp, Pdisp Y Odisp COMO Sigue:

1.
Ndisp ~ NipcnpoX = Nzncy
2. ¥
d)disp R Pincnpo X = d’znc?
3.

Odisp ~ QincﬁblUX = Oinc

> >

donde X es el recorrido libre medio de un proyectil (como los que lanzamos) en el volumen de blancos.
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Demostracion. Por la proposiciéon [83 en la pagina 208 sabemos que el nimero de particulas que consiguen
atravesar el volumen de espesor X es:

N (X) = Nipce 17X

De forma que el nimero de particulas que se dispersan sera el nimero de particulas entrantes menos el nimero
de particulas salientes sin dispersar:

Naisp = Nine = N (X) = Nine (1 = ™7¥)

Por el lema|ll en la pagina anterior] cuando X es muy pequeno, podemos aproximar la expresién anterior como:

Ndisp ~ Ninc (1 - [1 - ﬁblO'XD = NincnpoX

Usando la definicién [82 en la pagina 207], podemos reescribir la expresion anterior como:

X
Ndisp ~ Nzncy
Para obtener las expresiones para las ¢ y para las o se puede o bien repetir el razonamiento anterior con

ellas, o bien dividir la expresion a la que hemos llegado por dt y dA (segin corresponda). Q.E.D.

Corolario 34. Lanzamos un haz de N;p. particulas de la misma masa y con la misma velocidad contra un
volumen de espesor X, con X muy pequeno, de particulas estdticas de seccion eficaz do para el dngulo sdlido
dQ). Sean 1y la densidad de particulas por unidad de volumen y Ng;sp a0 el nimero de particulas que se dispersan
en el dngulo sdlido d) al atravesar el volumen de blancos. Ademds, sean:

dNinc

el nimero de particulas del haz incidente que llega al volumen de blancos por unidad de drea y unidad de tiempo,

deisp,dQ

¢disp,dﬂ = W

el numero de particulas que se dispersan en el dngulo sélido d2 al atravesar el volumen de blancos por unidad
de drea y unidad de tiempo. Andlogamente, sean:

0; _ dNinc
mc dt

el nimero de particulas del haz incidente que llega al volumen de blancos por unidad de tiempo,

ANgisp,an

Odisp,d = dt

el nimero de particulas que se dispersan en el angulo sdlido d2 al atravesar el volumen de blancos por unidad
de tiempo. Entonces pueden aprozimarse Ngisp.dq, Pdisp,d Y Odisp,dQ COMO sigue:

1.

Naisp,ao = chﬁle;%dQ
2. N

Odisp,d ~ Dinclpi X @dQ
3. N

Odisp,dQ & OincTpl X EdQ

donde: .
a0 = 5 (0.9)
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Demostracion. Partimos del corolario [33 en la pagina 209] restringiéndonos a las particulas dispersadas en un
angulo solido df2. De forma que tenemos:

Ndisp,dﬂ ~ Nincﬁledo—

Dividiendo y multiplicando en el lado derecho de la ecuacion por el diferencial de angulo sélido df2, llegamos a:

do
Ny; ~ Nipclp X —=dQ)
disp,dQ2 inc’thl a0
Las expresiones equivalentes para las ¢ y las ¢ se obtienen o bien repitiendo el razonamiento anterior con
ellas, o bien dividiendo la expresion anterior a ambos lados por dA y dt (segtn proceda). Q.E.D.

Corolario 35. Lanzamos un haz de N;p. particulas de la misma masa y con la misma velocidad contra un
volumen de espesor X, con X muy pequeno, de particulas estdticas de seccion eficaz do para el dngulo sdlido
dQ2. Sean ny la densidad de particulas por unidad de volumen. Contamos con un detector de superficie Ager a
distancia L de la ldmina de blancos (supondremos que L es mucho mayor que las dimensiones del volumen de
blancos de manera que la distancia entre cualquier punto del volumen y nuestro detector es aprorimadamente
L) tal que la superficie de deteccion es perpendicular al vector posicion que une el volumen de blancos con el
detector. Sea Nge; el nuimero de particulas detectadas por el detector. Ademds, sean:

(b' _ sznc
T dtd A
el nimero de particulas del haz incidente que llega al volumen de blancos por unidad de drea y unidad de tiempo,
¢ _ deet
T dtdA
el numero de particulas detectadas por el detector por unidad de drea y unidad de tiempo. Andlogamente, sean:
) _ sznc
Q'an dt

el niumero de particulas del haz incidente que llega al volumen de blancos por unidad de tiempo,

deet
dt

Odet =

el nimero de particulas detectadas por el detector por unidad de tiempo. Entonces pueden aprorimarse Nget, et
Y Odet COMO Sigue:

1.
- do dAges
Nde z// Nincnlei
¢ " dQ L2
. do dA
~ g det
Dde %/ Gincpn X ==
¢ " dQ L2
3.

< o e
Odet ~ A QincTlbl a9 L2

Demostracion. Partimos del corolario [34 en la pagina anterior] De esta forma, sabemos que el nimero de
particulas dispersadas en un diferencial de angulo sélido df? cuando X es muy pequeno es aproximadamente:

- do
Ndisp,dﬂ ~ Nincnleding

Por tanto, para hallar el nimero de particulas que salen hacia nuestro detector tendremos que integrar la
expresion anterior al &ngulo s6lido de nuestro detector ges:

- do
Nget = //Qdm Nincnle@deet
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Aplicando la definicion de diferencial de angulo sélido (ver definicion [89 en la pagina 200f), sabemos que el
diferencial de angulo sélido asociado a nuestro detector viene dado por:

pues la distancia entre la lamina de blancos y el detector es L. Por otra parte, como por hipotesis la superficie
de deteccion es perpendicular al vector posicién que une la lamina de blancos con el detector, sera dAge; || 7,
de manera que podemos escribir la expresién anterior como:

dAdet

deet = 12

Sustituyendo en la expresion que hemos obtenido para Nge;, obtenemos:

- do dAg.
Nget = // Ninenp X == det
Adet

aQ L2

Para obtener las otras expresiones o bien puede aplicarse un razonamiento anélogo para las ¢ y para las
0, 0 bien puede dividirse la expresion con las N por dA y dt (segtn proceda) como hemos hecho ya varias
veces. Q.E.D.

3.5.4. Dispersion de Rutherford (1911)

En este experimento, Rutherford y sus colaboradores observaron la dispersiéon de particulas alfa por nicleos
de oro en una delgada lamina de oro y utilizaron la distribucién observada para deducir el radio atémico. Para
poder obtener resultados a partir de dicha distribuciéon hizo falta conocer teéricamente el namero de particulas
que salen despedidas en cada direcciéon. Para ello, como hemos visto antes, necesitamos calcular la seccién eficaz
diferencial. Por suerte, los 4&tomos son esféricos, asi que tienen simetria axial con respecto a cualquier direccion,
en particular, con respecto a la direccion en la que lanzamos los proyectiles (las particulas «). En consecuencia,
podemos aplicar la proposiciéon [81 en la pagina 204] para obtener la seccién eficaz diferencial. Bien, para poder
aplicar la mencionada proposiciéon necesitamos conocer la relacién entre el parametro de impacto b y el angulo
de dispersion 6 si contdramos tnicamente con un proyectil y con un blanco y justo hallamos dicha relacién en
la proposicion [76 en la pagina 184] de forma que sabemos:

o
= —— cot —
mu? 2

donde v es la velocidad con la que lanzamos las particulas de masa m. En nuestro caso es:

b

k=KQq

donde @ es la carga del nucleo del atomo, ¢ es la carga de mi particula alfa y K = . Si llamamos ¢, a la

TEQ
carga del electréon y Z al ntimero atémico de los atomos que forman la lamina (en nuestro caso, oro), obtenemos:

k=KZq.2q. = 2K Zq?
De esta forma, la relacion entre el parametro de impacto y el angulo de dispersién queda:

2KZq§ 0
= cot —
mu? 2

b
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Ahora, por la proposiciéon 81 en la pagina 204} la seccion eficaz diferencial viene dada por:

do b |db| 2KZgq? cot §
ag|

d [2KZq2 0
— = — cot = || =
dQ  senf mv? senf |df | mv? 2
COSs g
- 2K 7 q? sen & 2KZq? | d cosg B
mv?  2sen g cos g mv?  |dO |sen g
B [QKqur 1 —Lsenfsen? —cos$lcos? B
L o2 2 sen? g sen? g N
_1
2
, 1,60 1 L0
_ {2qu§] A R R {QKqu} 1| 2KZ¢
muv? 2 sen? g sen? g mv? | 4sent g 2mu? sen? g
- Kqu
| mv2 sen? g

Bien ahora, nos interesa saber cuél es el angulo de dispersion de los particulas en funcién de la minima
distancia al ntcleo atémico. Para ello, volvamos a la expresién que tenfamos para el parametro de impacto:

2K 7 q? " 0
= cot —
mu? 2

b

. . - 1
vamos a intentar expresarla en funciéon de la energfa, esto no es dificil pues es E = —mw? (las particulas al

lanzarlas estan muy lejos de los d&tomos de manera que la fuerza de Coulomb que actta sobre ellas es casi nula),
de forma que obtenemos:
KZq? 0

b= T COt§
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Por la proposicion[75 en Ta pagina 181 podemos expresar la energia en funcion del semieje mayor de la hipérbola:

KZq? 0
b= 2KZq§ otizacotf
2a

También por esa misma proposicién sabemos que se cumple:

Tmin, k>0 T Tmin, k<0 = 2c
Tmin,k>0 — "min,k<0 = 2a

Sumando ambas ecuaciones, tenemos:
2rmin,k>0 = 2¢+ 20 & Tmmg>0 = Cc+a

Por otra parte, sabemos que una hipérbola se da ¢? = a2 + b%, de manera que tenemos:

0 0
C\/a2+a2(;ot22a\/1+cot22

De esta manera, la distancia minima queda:

/ 0
Tmin = @ (1 +1/1 4+ cot? 2)

Si reescribimos la expresion anterior en funciéon de la energia, obtenemos:

_ 2KZq? / o0\  KZg? / 50
Tmin = 5% <1+ 1+cot§ =z 1+ 1—|—cot§

De esta forma, podemos ver que los menores valores de 1, se alcanzan cuando 6 es grande, pues cuando 6
es grande, tan g es también grande, por lo que cot g es pequeno. Me interesa, por tanto, disparar particulas muy
energéticas que salgan rebotadas en angulos grandes para que se aproximen lo més posible al niicleo atémico.
La idea es que llegaremos a un limite en el valor del dngulo, de forma que no podamos hacer que crezca mas
por mucho que aumentemos la energia de las particulas. Ese limite del &ngulo es el correspondiente al radio del
atomo.

Una de las cuestiones curiosas de esta problema es que si uno intenta calcular la seccién eficaz total o, la
integral dada por el corolario 30 en la pagina 203| diverge. Esto se debe a que las fuerzas de Coulomb llegan
hasta el infinito. No obstante, si que es posible calcular la seccion eficaz para un intervalo [0y, 0¢).

Una tltima curiosidad sobre este experimento es que el &tomo es un sistema microscépico, algo dentro del
ambito de la mecéanica cuantica, no de la mecénica clasica. Asi que el lector podria preguntarse (y con razon)
por qué demonios funciona esto. Pues resulta que es una de las mayores casualidades de la historia de la fisica
que la féormula cuantica para la dispersion de dos particulas cargadas concuerda exactamente con la féormula
clasica de Rutherford (esto es rotundamente falso para otras fuerzas).
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Capitulo 4

El problema de dos cuerpos

4.1. Centro de masas y coordenadas relativas

Definicion 92. Llamamos masa reducida p de dos cuerpos de masas m; y mo a la masa:

mimso
mi1 + mo
Definicion 93. Sea S un sistema de n particulas, cada una con masa m; con ¢ = 1,...,n. Sea O el origen
de un sistema de referencia inercial a partir del cual damos la posicion de cada particula 7; con ¢ = 1,...,n.

Entonces, llamamos centro de masas o baricentro del sistema S al punto cuya posicion viene definida como
el promedio de los vectores posicion escalados por la masa de cada particula. Es decir,

n
E m;r;

>3 i=1

R - ni
E m;
i=1

Teorema 22 (El problema de dos cuerpos). Sea un sisterna de dos partz’culas con masa my y my. Llamaremos F
a la fuerza que la particula sequnda ejerce sobre la primera, es decir, F Fis. Sila tnica fuerza externa Fou
que actia sobre ambas particulas es tal que existe un campo g tal que Fleem =migy erext = mag, entonces
la dindmica del sistema es equivalente a dos problemas del movimiento de una particula. Dichos problemas de
una particula vienen dados por las ecuaciones:

R=g
pr' = F
mim -
donde, p = % es la masa reducida del sistema, R es la posicion del centro de masas del sistema y
my M2

7 =71 — Ty es la posicion relativa entre las dos masas. Ademds, llamaremos M = m1 4+ mo a la masa total del
sistema.

Demostracion. Por la segunda ley de Newton (ver axioma [l en la pagina 8)), tenemos:

. ~ ~
{m1r1 =Fi o+ Fieent
MoTy = Fo 1 + Forent

Por hipotesis es F = Fleg y por la tercera ley de Newton (ver axioma |2 en la pagina 9|) es F1<;2 = —Fgel

Ademés, por hipotesis existe g tal que F1<_ext migy F2<_ext mag. De esta forma, lo anterior es equivalente
a:

- B (4.1.1)
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Si sumamos ambas ecuaciones de la expresion [4.1.1 en Ta pagina anterior] obtenemos:

m1?1+m2%’2:mlg—I—mgg(:)M}?:Mg'@ﬁ:g'
—_———
=MB

Por otra parte, dividiendo por m; la primera ecuacién y dividiendo por meo la segunda ecuaciéon de la
expresion [4.1.1 en la pagina anterior] llegamos a:

—

- Fo
Tn=—+g
mi
-, Fo
m=——tg
ma

Si ahora restamos las dos ecuaciones anteriores, obtenemos:

.. .. 1 1 . 1
Feiy iy = — 4+ — F:m:,
mi mo mimeso 2

My

F & pur=

Q.E.D.

Observacion 68. Notese que si efectivamente existe un campo g como el que recoge el enunciado del teorema 22|
len la pagina anterior] dicho campo debe ser necesariamente el mismo en todos los puntos del espacio. No
obstante, si que podria depender de tiempo, aunque; en ese caso, no seria conservativo.

Observacion 69. Si trabajamos con la fuerza gravitatoria entre dos cuerpos, para aplicar el teorema en laj
pagina anterior] nos sera mas tutil reescribir la fuerza gravitatoria entre dos masas my y ms como:

- Gmims . uwGmims nw Gmims G (my+mo)
F=-—p = —f= - s = 5 7
r woor e r

Notese, ademas, que el teorema[22 en la pagina anterior| me indica que si yo quiero estudiar el movimiento de
dos cuerpos que se atraen gravitacionalmente en ausencia de otras fuerzas, voy a tener una ecuacion diferencial
muy sencilla para el centro de masas y una ecuacion cuya resolucion se va a hacer como en el tema anterior.

Ejemplo 31. La solucion vista para el problema de dos cuerpos permite hallar una solucién en primera aproxi-
macién de la orbita del sistema Tierra-Luna en torno al Sol. Si suponemos que el campo gravitatorio generado
por el Sol es el mismo para la Luna que para la Tierra, podemos aplicar el teorema [22 en la pagina anterior|y,
asi, obtener un resultado.

Corolario 36. Sea un sistema de dos particulas con masa my y mo. En ausencia de fuerzas externas, el
2
momento lineal del centro de masas P.,, permanece constante.

—

_>
P, = cte

Demostracion. Partimos del teorema [22 en la pagina anterior}

Lo L L - —
R=¢g=0& R=cte& MR = cte & P,,, = cte
~~

=FPcm
Q.E.D.

Proposicion 84. Sea un sistema de dos particulas con masa my y mo y sea M = my + my. La posicion de
ambas particulas ¥y y T2 en funcion de la posicion de su centro de masas R y del vector con origen en la seqgunda
particula y extremo en la primera particula ¥ = 11 — T2 viene dada por:

ma my

FIZE+MF F2:E_MT
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Demostracion. Por la definicion de posiciéon de centro de masas (ver definicion [93 en la pagina 215)), tenemos:

Ao maT1 + mats
mi1 + mao

Por otra parte, sabemos que es:

F=T7T]—To & =T+T75

V)

Sustituyendo en la ecuacién anterior, obtenemos:

R» m1F1 —+ mQ'FQ mi (F+ 7?2) —+ mgfg mlf n mia —+ mo _, mlf + N o
= = = 7’2 = ’]“2
mi1 + mo mi1 + mso mi1+ms  myp+ mse M
——
=M
. - mlf'
=R ——
M

A continuacion si despejamos 75 en vez de 77 :

7"’:7"’1—#2@#2:—7?—}—1?1
Sustituyendo, obtenemos:
i mit1 + mafy a1+ mo (—F+71)  mg + ms - maf I Mot -
frd — = 1 — =ry — —
mi + mo mi + meo mi + mo mi + mo M
——
=M
N = mQF
7 =R+——
M

Q.E.D.

4.2. Sistema de referencia centro de masas

Ahora, vamos a estudiar como quedan todas las magnitudes fisicas vistas desde el centro de masas. Denota-
remos las magnitudes fisicas vistas desde el centro de masas con un asterisco * y denotaremos las magnitudes
fisicas del centro de masas con el subindice cm. A pesar de que el centro de masas no es, en general, un sistema
de referencia inercial, éste ofrece varias ventajas como veremos a continuacion.

Teorema 23. Sea un sistema de dos particulas con masa my y ms. Visto desde el sistema de referencia centro
de masas:

1. El vector posicion del centro de masas, medido desde el centro de masas es siempre el vector nulo.

—

R*=0

2. El vector que tiene su origen en la sequnda particula y su extremo en la primera particula es el mismo que
bajo cualquier otro sistema de referencia inercial.

%

rr=7r

8. En funcion del vector ¥* = 7 la posicion de las dos particulas que conforman el sistema queda:

Tl—M TQ— M

% ma ’F* —% mq ’F*

4. El momento lineal total desde el centro de masas P* es siempre cero.

—

P*=0
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5. Sillamamos p* al momento de la primera particula, entonces ambas particulas tienen momentos del mismo
maodulo y direccion pero sentido opuesto.

—% Sk ok ok
P =miry = —Mary = ur
donde o €es la masa reducida de ambas parn ticulas.

6. El momento angular medido desde el centro de masas L* puede erpresarse como:

-

L = pi* x 7 = 7* x j*

7. La energia cinética medida desde el centro de masas T* puede expresarse como:

1 * 2
T = —pr? = b
2 2u

donde i es la masa reducida de ambas particulas.

8. El momento de inercia medido desde el centro de masas I* puede expresarse como:
I* = ,UT2

donde 1 es la masa reducida de ambas particulas.

m -
© ~
—

Demostracion.
1. Trivial.

2. Por una parte, por definiciéon:

ok ow ok

=77 =7y
Por otra parte, sea R la posicién del centro de masas desde un sistema de referencia inercial cualquiera.
Entonces tenemos:

F1:R+_’1* _‘QZR“FFQ*
Por definicion, es:
T=7 —7=R+7 — (R—’_FQ*) =7 =Ty =7

3. Partiendo de la proposiciéon [84 en la pagina 216] sabemos que desde un sistema de referencia inercial se
cumple:

- 5, M2 - 5
T1:R+M’F 2:R7
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Como también es:

Llegamos a:

- ma 5, = 5 M1
R+7 =R+ — R4+7y =R— —7
M M
y claramente lo anterior es equivalente a:
mo mi
. . . .
Ty = —7T ra — ———7r
YT M 2 M

4. Por (1) sabemos que es:

5. Por (4) sabemos que:
D * ~ ) S ~ S )
P*=0& mir] +mary =0& myr] = —mary
Por otra parte, claramente sabemos que el momento de la primera particula es:
Se o
miry =p
Como es 7* = 7" — 7y, derivando obtenemos:
e

. ik Sk o S
TT=T] —Tqg & T] =T +7Tq

Sustituyendo, en la expresion anterior, obtenemos:

. s, o o my o o mi
P =m (r*+r2*>:mlr*+—m2r2*:m1r*f—p*
Mo N~ mo
:—p*

mi\ _x Sk - 1 i 1 Sk
@(1—1—);0 =miT &P —m11+mr =M =
ma m2 ma
mimsg -, 5
:77"*:#7"*

mi + Mo
N—_——
=p

6. Por definicion de momento angular (ver definicién [13 en la pagina 20)), tenemos:

L = i x 7 mariy x 75 =7 x (] ) +75 x (mai)
——

o * =

=p =—p
donde sabemos las igualdades marcadas bajo las llaves por (5). De esta forma:

—
*

* =% % —x s — —x . -
L* =7 xp* =7y xp* = (] —75) X P

=7 xp
donde este tltimo paso es por definiciéon. Por (5), sabemos que es p* = ,w%’ *, de manera que:

L =7 x (™) = x 7

7. Por definicién de energia cinética, tenemos:

1 1
T* —— * 2 - * 2
2m1r1 + 2m2r2
Por (5) sabemos que es §* = m 7 = —myiy, por lo que:

1 p*2
myri? = — m?pr2 =
1 171
M) ~—=— M

* 2

=p
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1 * 2
myry? = — mary? = p
mo S — mao
=(=7*)?

De esta forma, podemos reescribir lo anterior como:

1 *2 *2 1 1 1 1 me +m *2
T*:* p +p :7p*2 il :7p*2 # :p
2 \m mo 2 mi Mo 2 mims 21
—_————

8. Por definiciéon de momento de inercia tenemos:
I* o * 2 *2 T*
=myr]° +mery® =2

Por (7), sabemos que:

1
T* i .k D
il
Sustituyendo, llegamos a:
I = M?”*?

Q.E.D.

Observacion 70. Notese que segin el apartado (3) del teorema [23 en la pagina 217] si yo conozco el centro de
masas de dos particulas y soy capaz de medir las distancias relativas al centro de masas r; y 5, automaticamente,
conozco el cociente entre las masas mo y my, y viceversa.

meo ]

mq T‘;

Ejemplo 32. La estrella Sirio es un sistema binario con estrellas A y B de las cuales conocemos las distancias
relativas al centro de masas del sistema r] y 73, entonces, aplicando la observacién @ puedo obtener la razon
de las masas de ambos objetos.

¥
M2 _ T—i ~ 22
mq To
n
Teorema 24. Sea S un sistema de n particulas y sea M = Z m;. Desde cualquier observador inercial, siendo
i=1
R la posicion del centro de masas de S segin dicho observador inercial, se cumple:

1. El momento lineal del sistema coincide con el momento lineal del centro de masas.
P=P., =MR

2. El momento angular del sistema puede expresarse como la suma del momento angular del centro de masas
y el momento angular del sistema visto desde el centro de masas.

8. La energia cinética del sistema puede expresarse como la suma de la energia cinética del centro de masas
y la energia cinética del sistema vista desde el centro de masas.

1 .
T:Tcm+T*:§MR2+T*
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Demostracion.

1. Por definicion de momento lineal para varias particulas (ver definicion [10 en la pagina 18]), tenemos:

5235 Z = Y- M S — MR- P,
i=1 i=1 i=1 Zml
i=1 .
=R

Sabemos que se cumple:

Sustituyendo, obtenemos:

Estudiemos el tercer término:

n n .
S mRx i =3 miR x (Fi—R) = RBx
i=1 =1

Analogamente con el segundo término:

n . mn .
S mi x B=Y :mi<Fi—R) x B =
=1 =1

=

X R

S (e

i=1

Notese como:

(4.2.2)

n mn .
S () = [ S (-7
i=1 i=1
Ahora, vamos a probar que el argumento de la derivada es nulo.
n n n n n
Zmi (Fi - ﬁ) = Zmif;- - Zmiﬁz Zmif} - ]%Zmz =
i=1 i=1 i=1 i=1 i=

Nl
=M

n Zmlrl n n
—Zmln MR = Zmrl M21 Z ZerZ—O

En consecuencia por la ecuacién es también:
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Por consiguiente, el segundo y el tercer término de la ecuaciéon [4.2.1 en la pagina anterior| se anulan y el
momento angular queda:

n . n .on
- Lo ety =S o,
L:ZminR—l—Zmiri X T :RXRZmH—L =
i=1 i=1 i=1
—I -

=MRxR+L*=Len+L*
3. Por definicién de energia cinética, tenemos:

=1

i=1 i=1 i=1 =1

Estudiemos el ultimo término:

Y el término entre paréntesis justo es:

N >
mif =M= = MR* =0
2 i

porque trivialmente es R* = 0 y, en consecuencia, su derivada también es nula. Asi, de la expresion que
tenfa para la energia cinética, inicamente me quedan:

- 1 2 - 1 ~*2_1 2 * *
T:ZimiR +Z§mm = GMR + 1" =Top, + T
i=1 i=1

Q.E.D.

Corolario 37. Sea un sistema de dos particulas con masas my y ms. El momento angular del sistema puede
escribirse como la suma del momento angular del centro de masas y el momento angular de una particula de
masa reducida | cuya posicion fuera el vector que tiene como origen la sequnda particula y como extremo la
primera particula (el vector 7). Andlogamente ocurre con la energia cinética. Es decir:

E:Mﬁxﬁ—km?x?

1 . 1
T:*M 2 =2
5 R +2ur

Demostracion. Por el teorema [24 en la pagina 220} tenemos:

1 .
T:Tcm+T*:§MR2+T*

Ahora, por el teorema [23 en Ta pagina 217}

Q.E.D.
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Corolarlo 38. Sea un sistema de dos particulas con masa my y mo. Supondremos que la inica fuerza externa
Fem que. actua sobre ambas particulas es conservatwa y, ademds, es tal que existe un campo g tal que Fleemt =
mig y Fggewt = mag. Si, adicionalmente, F = F1<;2 es una fuerza conservativa con potencial asociado Vi tal
que Vi = §! (1 — 2), entonces el lagrangiano del sistema usando la posicion del centro de masas R y la posicion
relativa entre ambas particulas ¥ = 71 — 7o como coordenadas generalizadas es separable en dos lagrangianos

independientes.
L= Lan + L

1 .
Lom =T + MG -7 = 5MR2 +M§-Z
* * 1 -2
Lr=T" = Vg (r) = gu* = Vg ()
Demostracion. Si Fogy es conservativa, su campo asociado ¢ también lo sera. Por ser conservativo ¢ inicamente

puede depender del vector posicion respecto al centro de fuerzas &; pero por la observacion [68 en la pagina 216|
g no puede depender de Z. En consecuencia, g debe ser constante. Por lo tanto, su potencial asociado sera:

= . d . I Lo
Fmt:mg@fﬂ:mg@th:f/mgodx:Cfmyx
x

donde C' es una constante que podemos suponer cero. De esta forma, escribamos el lagrangiano del sistema:

L=T-V

Por el teorema |24 en la pagina 220, podemos expresar la energia cinética del sistema como:

T=T.,,+T"

y, en consecuencia, tenemos:

1 .
£:Tcm+T*—V:§MR2+T*—V

Por el teorema |23 en la pagina 217, podemos expresar T* en funciéon de 7; obteniendo:

1. . 1
L=-MR*+ -pi? -V
2 gk

Ahora, obtengamos el potencial. Sobre ambas particulas actiia el campo externo ¢y, adicionalmente, tendremos
el potencial asociado a la fuerza F', que, por hipotesis, sabemos que depende exclusivamente de 7.

V=—mig -1 —mag T2+ Vi () = =g (mif1 + mafa) + Vi (7) =

L MiT1 + Mafs

= —F- (my7y +maf) + Vi (F) = — MG - m + Ve (7) = —MgG- R+ Vg (7)

De esta forma, obtenemos:
1 . 1 -
L= 5MR?Jr iuf2+M§’~R—VF () =

1 o1
= §MR2+M§-R+§MQ —Vr (P)

=Lem =L*
Q.E.D.

Observacion 71. Podemos resumir los conceptos més importantes vistos hasta ahora volviendo al problema de
dos cuerpos con el siguiente dibujo:
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Misma situacion desde observador CM

m
i )
Fy m

2

En general, la estrategia a seguir para resolver los problemas de este tipo sera:

1. Resolver el problema del centro de masas.

2. Resolver el problema de una particula (normalmente del tema anterior), hallando 7.
3. Obtener 7} y 75
4

. Determinar 77 y 75.

4.3. Interacciéon gravitatoria

Proposicion 85. Sean dos cuerpos con masa my y me, respectivamente. Si las fuerzas internas son gravitato-

rias, es decir, F= f%f donde ¥ = 71 — 75 y la unica fuerza externa Flot que actia sobre ambas particulas
. .

es tal que existe un campo G tal que Fi ezt = M1G Y For et = Mog, entonces ambos cuerpos orbitan en torno

al centro de masas del sistema, es mds, visto desde el centro de masas, las trayectorias de las particulas son co-

nicas y el centro de masas es uno de sus focos. Ambas particulas estdn en todo momento en lugares opuestos del

centro de masas, es decir, sus trayectorias vistas desde el centro de masas estan en oposicion de fase. Ademds,

podemos expresar los parametros a,b,l, L, T y e de dichas conicas en funcion de los pardmetros de la conica que
mimsa

describiria una particula de masa p = en torno a una particula inmovil de masa M = my +mgy como

mi + me
Stque:
€=e€1 = €2
ma my
lh=—1 lo = —1
T M T M
mo mq
alzﬁa a2:ﬁa
mo mq
by =—b by = —b
T M T M
- mo = - mi =
Li=-—L" L;y=—L"*
Y 2T M

T=T1=T250<e<1

donde los pardmetros sin subindice son los de la conica que describiria la particula de masa p en torno a una
particula inmovil de masa M, los pardmetros con subindice 1 se corresponden con los pardmetros de la conica

de la primera particula y los pardmetros con subindice 2 se corresponden con los parametros de la conica de la
sequnda particula.
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—_ - — N -

m2/ / h t \
/ y a1 C \l’
Q9o ! a //
AN
£\ - I /
PN T E
N /
\\\\ t////
T

29/11/2018 Dibujo 3 (6rbitas en torno al centro de masas, circunferencias)
29/11/2018 Dibujo 4 (6rbitas en torno al centro de masas, parabolas)
29/11/2018 Dibujo 5 (6rbitas en torno al centro de masas, hipérbola)

Demostracion. Como existe un campo ¢ tal que ﬁu—em =migy FB{_mt = msg, podemos aplicar el teorema
len Ia pagina 215| de manera que obtenemos que resolver el problema de dos cuerpos es equivalente a resolver
una ecuacion diferencial para el centro de masas y otra para la distancia relativa:

oA = Gmims
/J’]" = F = —77“2

Por la observacion |69 en la pagina 216|, podemos reescribir F como:

GMup
2

F=— 7

Por la proposicién |71 en la pagina 166, sabemos que # viene dada por:

rlecos (0 —b6p) +1] =1

La ecuacién anterior describe la trayectoria de una particula de masa p en un campo gravitatorio generado por
una masa M.
Por otra parte, por el teorema [23 en la pagina 217 tenemos que:

Fr= 2 =Dy
M M
De esta forma, claramente ambas particulas particulas describiran coénicas en torno al centro de masas, pues 7
es una coénica y 7 y 75 no son més que un factor de proporcionalidad multiplicado por 7. Ademas, podemos ver
claramente en las féormulas anteriores que las particulas siempre se encontraran en lugares opuestos del centro
de masas. Estudiando los signos, vemos que 7" y 7 estan en fase y que 77 y 75 estan en oposicién de fase. Si

expresamos las ecuaciones anteriores en médulo, obtenemos:

mo *7m1
VA I

MT‘

r =
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Sustituyendo r en cada caso y sustituyendo en la ecuacion dada por la proposicion [71 en la pagina 166] obte-
nemos:

M N m
m—er [ecos (0 —0g)+ 1] =1 < r][ecos (0 —0y) + 1] zlﬁgz

M my
—rylecos (0 —6g)+1] =1l ry[ecos (0 —0y) + 1] =1— =1
2 [ecos (6 — 6o) + 1] 2lecos (9 —b) +1] =170 =1
Como podemos ver en las ecuaciones anteriores hay un semi latus rectum equivalente para la trayectoria de la
primera particula y otro para la trayectoria de la segunda particula y la excentricidad de ambas cénicas es la
misma.

Por la proposicién |74 en la pagina 178] si es 0 < e < 1, tenemos que:

l l

- b —
“Tioe V1 —e?
y si es e > 1 tenemos:
l b l
Q= —— e —
e? —1 e2 —1
De esta forma, obtenemos que si 0 < e < 1:
ll mo { mo
a; = = — = —a
L7 1 e M1—e2 M
12 mi l mi
Ao = = — = —Qa
2T 12 M1-e2 M
b — L me L ma,
'TVi—ee Myi—e M
b, — lg o mi l o mlb
T Vi—e Myi-e M
Y, analogamente, si es e > 1:
ll mao l mo
a1 = = — = —Qa
T2 1 Me—-1 M
ZQ mq l mq
as = = — = —Qa
2T 21 Me-1 M
by — ll - mo l o mo
Vel Mye-1 M
b2 _ lz _ mi l mq

Z-1 MJye-1 M

Calculemos el momento angular respecto al centro de masas de ambas particulas:
Ly =mqr] x 7
Ly = mofy X 7y

Ya sabemos que:

mo : mao -
Sx . Sk h
7"1 = —7r = ’[“1 = —
mi : my -
— %k — —k fond
Ty = ——1" =Ty = ———

En consecuencia:
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Por otra parte, sabemos que:

. 1.
L*=uyrxrerxr=-L"
I
Sustituyendo, llegamos a:
- 1 mao\2 - mim2 M - mo -
! /.Lml M M?2 mimso M

- 1 mi\2 - mgm% M - mi -
;== (—) [*= [r="u
2 ,um2 M M2 mims M

Vamos con el periodo. Por la segunda ley de Kepler (ver teorema |19 en la pagina 143), tenemos:

mab L 2umab

- = <:> frd

T 2u T L
7T(’171-b1 _ 22 o T - 2m1£ra1b1 _ leﬁ;%b _ mzl\;ng 27TLab _ 27rgab _ T

1 1 1 M
=p
Tagby _ L, -7 2maTasbs _ QmQWm%a%b _ mamy 2mab _ 2mpab T
Tz 2my Lo L M L L
~——

=p

Q.E.D.

Ejemplo 33. Vamos a ver qué diferencia hay en el periodo de la 6rbita de la Luna en torno a la Tierra,
suponiendo que la Tierra esta fija (como en el tema anterior) y considerando a la Tierra movil.

Considerando la Tierra fija, por la tercera ley de Kepler (ver corolario 27 en la pagina 187)), obtenemos:

T 2_ a’ T = 4723
o) Gmr —\ Gmyp

Por otra parte, considerando la Tierra movil, aplicando la proposicion [85 en la pagina 224] sabemos que el
mprmry,

periodo de la érbita de la Luna alrededor de la Tierra, sera el mismo que el de una particula de masa p——
mr mry,

orbitando entorno a una masa My + M, fija. Notese que la a esta Orbita relativa es la misma que la a de la
orbita de la Luna al suponer la Tierra fija, porque en ambos casos estamos hablando de cémo varia la posicion
relativa 7. Asi, en este segundo caso, por la tercera ley de Kepler (ver corolario [27 en la pagina 187)), llegamos

a:
T\ ? a® , 472q3
(5) = 7=

g mT—l—mL) G(mT—i—mL)

De esta forma:

AT T /47r2a3< 1 >
B B G vymr o mr+mp
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Sustituyendo con los valores numéricos my = 6-10%4 kg, mp = ﬁmT, G =6,67-10"1! I\L'Tnf, a=3,84-10% m;

obtenemos que:
AT ~4h

Notese, por tanto, que en un sistema de dos particulas, el periodo de la érbita depende de ambas particulas.

Ejemplo 34. Consideremos la o6rbita del sistema Tierra-Luna en torno al Sol. Como ya dejamos caer en el
ejemplo [31 en la pagina 216 vamos a considerar que el campo gravitatorio creado por el Sol es el mismo para
la Luna y para la Tierra. Nos interesa calcular cuanto oscila la direcciéon Tierra-Sol a lo largo de un periodo
lunar; en otras palabras, queremos calcular el angulo « del dibujo de abajo.

Sol 7 \

Para hacer dicho calculo, necesitamos conocer el valor del semieje mayor ar de la érbita que describe la
Tierra entorno al centro de masas Tierra-Luna. Por la proposicion [85 en la pagina 224] tenemos:

mp,
ap = ——a
mp, +mr
Llamando A a la distancia entre la Tierra y el Sol, que serd méas o menos la misma que entre el centro de
masas Luna-Tierra y el Sol, podemos calcular el angulo o como sigue:

t ar mrp, a
ang=—=——"———
A myp, +mr A
Sustituyendo los valores numéricos mz = 6-10%* kg, my, = 811—3mT, A=1,5-10" m, a = 3,84-10% m; llegamos
a:
a 6,47

Ejercicio 12. Sean dos particulas de masa m que se mueven alrededor de otra en 6rbitas circulares bajo su
influencia gravitatoria mutua, siendo 7T el periodo de sus 6rbitas (que es mismo para ambas, por la proposici(‘)n
fen la pagina 224). En un momento dado, ambas particulas se paran; es decir, pasan a tener velocidad nula, y
empiezan a caer una hacia la otra. ;Cuanto tiempo transcurrird hasta que choquen?

Soluciéon. Lo primero que debemos obtener es el periodo de la érbita circular. Aplicando la tercera ley de
Kepler (ver corolario [27 en la pagina 187)), sabemos que se cumple:

2 3
T To

An2 ~ GM

donde 1 es el radio de la orbita circular que traza la particula de masa p alrededor del centro de fuerzas y

M = 2m. Despejando, obtenemos:
s/ T2G2m i,/TQGm
= = 4-3.].
"o \/ 472 272 ( )
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Por otra parte, por el teorema [22 en la pagina 215 tenemos:

ur=F
donde:
. omm m? ~m
M_m—i-m_Qm_ 2

y 7 es la distancia relativa entre ambas particulas. Asi, sustituyendo el valor de ﬁ7 obtenemos:

m._ _Gmm _ —Gm? o _2Gm
2 r2 2 2
Notemos que:
o d?r d (dr d . dr dr dr
T == — e = — (’[")
dt?2  dt \ dt dt drdt ~ dr
Al sustituir en la ecuacion anterior, llegamos a:
dr . 2Gm .. dr
i S drr = fQGmﬁ

Integramos a ambos lados:

7 ‘s d
/ vdy = / —2Gm—§
0 0 P

donde los limites de integracion son los indicados ya que la particula de masa p parte del reposo (el enunciado
indica que ambas particulas se paran) y la posicion inicial de la particula de masa p es 9. Resolviendo las
integrales anteriores, tenemos:

Ahora, viene uno de los puntos clave del ejercicio. Como las particulas caen una hacia la otra, necesariamente
su distancia debe disminuir, luego debe ser 7 < 0; es decir, en este caso, la solucién negativa es la que tiene

r
sentido fisico. Asi, descartamos la solucién positiva y haciendo uso de que 7 = a0 llegamos a:

0
/ — / —2VGmdT

T T0

De nuevo, integramos a ambos lados:

pues la posicién inicial de nuestra masa p es 7o y, su posiciéon en el momento del choque sera 0, pues ambas
particulas coincidiran en el centro de masas. Ademés, podemos tomar nuestro origen del tiempo en el momento
en el que empiezan a caer, de forma que es ty = 0. Asi, llegamos:

0
/ A s amt e
70

(4.3.2)
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Nuestro problema se ha convertido, de esta forma, en resolver la siguiente integral

Viadr

/ 1_ 1 / To—r VvTo—T
r o TTo

Ahora, tomamos el cambio de variable 72 = ry — r. Entonces
rTr=7T0— 7'2

2rdTr = —dr & dr = —27dr1

Sustituyendo, obtenemos:
— 72 —27d
Vro — 13/ (=21dr) /_2 o/ — 72dr =

/ 1 L T
T0

T

2\/>Uro /2r01/1——d7—/ 27”0“1— dr

A continuacion, tomamos el cambio de variable sen « = ——. Por consiguiente:
To

Ju—

dr
cos ada = — < drt =+/r¢ cos ada
To

Sustituyendo, obtenemos:
dr 3 3,
/ _— / 2r¢ V/1 —sen? acosada = /727"02 cos” ada
| M ——

1_ 1
r 0 =cos «

Notemos que:
cos 2a = cos

2o —sen? a
y, por otra parte, por la identidad fundamental de la trigonometria, tenemos
sena +cosPa=1<sen’?a=1-—cos’a

Sustituyendo, obtenemos:
2 2 2 2 1
cos2a =cos“a—1+cos“a=2cos“a— 1< cos“a = f—l—icosQa

Al sustituir en la integral, obtenemos:

/ — / 2r§ ( cos2a> da = /—7‘0% (14 cos2a)da =

3 3 2 3 2
(o o) o) o2

3
= —rd (a4 senacos )

Ahora, deshacemos el cambio de variable
T T
Sen @ = — <> (@ = arcsen \/i
To

V7o
Por la identidad fundamental de la trigonometria, tenemos

cosa =11 —sen?a = 17 —
To

230

Licencia: Creative Commons


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 4. EL PROBLEMA DE DOS CUERPOS
4.4. COLISIONES

Lain-Calvo

Al sustituir en la expresion del resultado de la integral, llegamos a:

3 T T2

2

/ dr T n
—— = —72 |arcsen | — —
11 0 Vo)  \/To ro
T To
_ 72 3
T U {arcsen (T > + l\/ro - 72}

3 3
2

3 T
= —r§ |arcsen ( + —
\/7"0> V1o To

A continuacion, deshacemos el cambio:

72 =T —T&S T =\rg—T

= —7"5
0 VTo 0

3 70 r T0 r
= —rd |arcsen (\/ — — — | +,/ 5 — 5 V7| =
o To

obteniendo: p
3 — —
/77“ {arc sen (\/TO T) +\/T(; T\/To — 1o+ r] =

=

_ 1
70

<

To To

3 r r o or2
= —r§ |arcsen 1—— ) +y/——=
To To o

Con esto, podemos calcular el tiempo t que nos pedian a partir de la ecuaciéon [4.3.2 en la pagina 229;

: 0
; 1 /0 dr ré (W) T r2
=— = arcsen - — ——=| =
2VGm Jy, /1 _ L 2/Gm 70 70 7’3

T 70 To
3 3
T rg m
= [arcsen1 + 0 — (arcsen0 + 0)] = -
2VGm 2

2V Gm

Sustituyendo el valor hallado para rg en la ecuacion [4.3.1 en Ta pagina 228 obtenemos:

[ T2Gm\* = \/TQGm_Z\/T%?m_ T T
4/Gm Vo o2r2 4V 2m2Gm 42 42

272

4.4. Colisiones

m
U1 my Uy

mao
U

mo 172

Cuando tengamos un choque entre dos particulas, denotaremos con v a la velocidad de la primera particula
antes del choque y denotaremos con i a la velocidad de la primera particula tras el choque. También, deno-
taremos con p; al momento lineal de la primera particula antes del choque y denotaremos con ¢ el momento

lineal de la primera particula tras el choque. Haremos lo analogo con la segunda particula.

231
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Teorema 25. En un choque entre dos particulas puntuales mdviles se conserva el momento lineal desde cualquier
sistema de referencia inercial y desde el centro de masas.

P = cte

Demostracion. Por el teorema |23 en la pagina 217, sabemos que siempre es:

P*=0
luego, en particular, el momento lineal desde el centro de masas en un choque se conserva.
Por el teorema|24 en la pagina 220} sabemos que podemos expresar el momento lineal del sistema en cualquier
sistema de referencia inercial como:

P=P,,
como el momento lineal del centro de masas no varia tras el choque, el momento lineal se conserva. Q.E.D.

Definicion 94. Llamaremos factor de pérdida de energia (Q a la resta de la energia cinética de las particulas
después y antes del choque.
1 2

1 1
Q=T -T; = §m1U% + §m2u§ -3 §mgv§ =gm (u% —v7) + 5m2 (u% —v3)

Observacion 72. Notese que si es @ = 0, la energia se conserva, si es (Q < 0 se pierde energia y si es @ > 0 se
gana energia.

mﬂ}% —

Proposicion 86. FEl factor de pérdida de energia QQ no depende del sistema de referencia.

L — -
Demostracion. Sea O un observador y sea O’ otro observador tal que R = OO’, con R no necesariamente
constante. Entonces para el observador O, el factor de pérdida de energia () viene dado por:

1 1
Q:Tf—ﬂ=§m1 (u%—vf)—FimQ (u%—v%)

Mientras que para el observador O’, el factor de pérdida de energia Q" viene dado por:
1 1
Q' = Tf T! = 5Mm (u/127v'12)+§m (uézfvéz)

Por otra parte, tenemos:
U :>’u/12=R2+’U,§+2R'ﬁ1

+
¥, =R+0 =>v,2=R*+v?+2R -5,
172:>u2 R2+U,2+2R Uo
_'2:>U2 R2+’U2+2R Vs
;1 52 2 DG 52 2 DX 1 52 2 Eg—- 52 2 E—
Q :§m1 (R +ui+2R-u; — R 7v172R~v1)+§m2 <R +us +2R- Uy — R +v2—2R~U2):
1 2 2 oo 1 2 2 O,
=-m (ul—v1+2R-[u1—v1])+§m2 (u2—02+2R-[u2—vg])=

2

1
= 51 (u2 — vl) + —mg (u — v2) + R (mq ) + matls — MUy — Maty) =

SR (i + P2 — G — §)
Y, por el teorema 25}

Yy, en consecuencia:

Q.E.D.

Licencia: Creative Commons 232


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 4. EL PROBLEMA DE DOS CUERPOS
Lain-Calvo 4.4. COLISIONES

Definicion 95. Llamamos coeficiente de restitucion e de un choque unidimensional a la expresion:

U2 — U1

a V1 — VU2

Choque
|
l
|
I
I
|
I

— — ! — —
1 V2 : U1 U
S EEEE— S EEEE—
|
m1 mo : mq mo

I
I
|
l
|
I

Proposicion 87. FEl coeficiente de restitucion e no depende del sistema de referencia.

Demostracion. Sea O un observador y sea O’ otro observador tal que se encuentra a distancia R de O, con R
no necesariamente constante. Entonces para el observador O, el coeficiente de restitucion viene dado por:

U2 — Uy

V1 — V2
mientras que para O’ viene dado por:
I
p Uy — Uy
U1 — V)
Notese que es:
/ 5 l >
uy = R+ up up = R+uy
vh =R+ vy vi =R+ v
De esta forma, tenemos:
r R+us— R—uy Uz —up

C R4v —R—wvy v1—2

Q.E.D.
Observacion 73. Notese que por la proposicion en particular, desde el sistema centro de masas, tenemos:
uy —uj
CE

Definicion 96. Diremos que el choque entre dos particulas es elastico si el factor de pérdida de energia es
nulo @ = 0 (alternativamente, si el choque es adimensional, si e = 1) y diremos que es inelastico si el factor
de pérdida de energia es negativo @ < 0 (alternativamente, si el choque es adimensional, si 0 < e <1 ).

4.4.1. Descripcion desde el sistema centro de masas

Proposicion 88. Sean dos particulas con masa m1 y ma que colisionan . Desde el sistema de referencia centro
de masas se dan las siguientes igualdades:

Lk .
b1 =P = —P2
—k sk sk
4 =q = —(q3

El dngulo que forma la direccion de Py con la direccion de qi* es el mismo que forma la direccion de Py con

la direccion de @5. Llamaremos a dicho dngulo dngulo de dispersion desde el centro de masas 0* y no
podemos obtener dicho dngulo dnicamente a partir del sistema de referencia centro de masas.
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Si, ademds, el choque es eldstico, entonces se da:

Demostracion. La demostracion de las primeras dos igualdades viene dada por el teorema [23 en la pagina 217}
Por otra parte, como P} = —p3 v ¢ = —d5'*:

Prea = (=03) (—@) =7P; - @
y en consecuencia, hay un tnico angulo de dispersion 6*.

Si el choque es elastico, como por la proposicion [86 en la pagina 232 el factor de pérdida de energia no
depende del sistema de referencia, debe ser:

Q=0&T;=T;

Aplicando el teorema [23 en Ia pagina 217] sabemos que:

* 2 *2

o |

I
pues ¢*,p* > 0. Q.E.D.

4.4.2. Descripcion desde el sistema de laboratorio
Definicion 97. Llamamos sistema laboratorio a aquel sistema de referencia para el cual es pp = 0.

Proposicion 89. Sean dos particulas con masa m1 y ma que colisionan. Desde el sistema laboratorio se dan
las siguientes igualdades:

L . p1 = q1 cos 8 + go cos

n=Eates { g1 senf = go sen o
donde 0 es el dngulo que forman los vectores ¢ y p1 (lo llamaremos dngulo de dispersion) y « es el dngulo
que forman los vectores @ y p1 (lo llamaremos dngulo de retroceso). Los vectores q1,q> y p1 estdn siempre
en el mismo plano.

Si, ademds, el choque es eldstico, entonces tenemos la siguiente igualdad:

2
g2 = %plCOSOé siqa # 0
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Demostracion. Como la fuerza de interaccion (la fuerza de choque) se produce en la direccion perpendicular a
sus superficies y, por tanto, en la direccién que une sus centros de masas; desde dichos puntos, la fuerza que
actua es central. Por la proposiciéon |7 en la pagina 22| como la fuerza es central, el momento angular se conserva.
Por el corolario |7 en la pagina 22| el movimiento estara restringido a un plano.

Por el teorema [25 en la pagina 232| se conserva el momento lineal:

L Lo p1 = qq1 cos 6 + gg cos
pl_q1+q2®{O:qlseDO—quena

Por otra parte, si el choque es eléstico, por la proposicion [86 en la pagina 232| el factor de pérdida de energia
no depende del sistema de referencia y, en consecuencia, debe ser:

2 2 2
q1 q3 p1

=0T, =T, & =
Q ! 2m1 * 2777,2 2m1

De la segunda ecuaciéon para el momento, obtenemos la relacion entre ambos angulos:
q1 senf = ¢ sen «
Por otra parte, de la ecuacion vectorial del momento, obtenemos:

Q=P —G=¢G=pi+¢ -2 P& =pi+¢—2pigacosa
——

=p1q2 cos &

Sustituyendo el valor hallad de ¢7 en la ecuacién de la energia, llegamos a:

pI+a3 —2pigzcosa g3 pi
+ = &
2ma 2mo 2ma

mq my
S pl=pl+4¢ —2pigacosa+ —qs < g5 — 2pigacosa+ —qs5 =0
ma ma

Suponiendo ¢y # 0, lo anterior es equivalente a:

Qo — 2p1 cosa + @qg =0& q (1 + ml) =2p1cosa & g = 2&pl cos o =
mo mo mp + ma
2m2
= Wpl COS «x
Siesgs =0, entonces py =q1 y 0 =a=0. Q.E.D.

4.4.3. Descripcion en el sistema laboratorio a partir del sistema centro de masas

Teorema 26. Sean dos particulas con masa m1 y meo que colisionan. Se dan las siguientes relaciones:

P1=q + ¢
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- mi
1=—p +q"
ma
p=p"—q"
q2 q1

senf  sena

@2  q
sen 0* sen o

donde 0 es el dngulo dispersion (el dngulo que forman py y q1) , « es el dngulo de retroceso (el dngulo que

forman Py y @2) y 0* es el dngulo de dispersion desde el centro de masas (el dngulo que forman p* y q*). Estas
relaciones quedan resumidas con el siguiente tridngulo (llamado tridngulo mdgico):

Si, ademds, el choque es eldstico, se cumple:

200+ 60" =71

*

0
q2:2p*sen5 siqa #£ 0

Ahora el subtriangulo derecho del tridngulo mdgico es isdsceles:
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Demostracion. Tenemos la primera relaciéon por la proposicion [89 en la pagina 234}
Relacionemos p1, P2, 1 y Ga con p™ y ¢™*:

5 = mi R +p"
6 = ﬂg = mgl‘:t; — ﬁ*
1 = mlﬁ +q"
7> = maR — q*
De la segunda ecuacién, obtenemos:
:, P

En consecuencia, sustituyendo, llegamos a:

- |2 my . mi+mo\ o, M _,
o v (2 (P
mo m

=k
sk

- =p -7

G2 =m2
ma
Las dos relaciones de 4ngulos son consecuencia de aplicar el teorema del seno al triAngulo magico.
Bien, ahora si el choque es elastico, por la proposicion [88 en la pagina 233| es p* = ¢* y, en consecuencia el
subtridangulo derecho del tridngulo mégico es isosceles. Asi, tenemos:

2m2 2TI’L2 ™ o* 2m2 o*
= —pP1COSx = ——pP1COS | — — — | = ——p1sen —
q2 Vi b1 i p1 Y4l

Antes, hemos obtenido que:
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sustituyendo, tenemos:

e M 0L O
= - sen — = sen —
q2 M mzp 9 P D)

Q.E.D.

Definicion 98. Sean dos particulas con masa mj y mso que colisionan. Se llama energia transferida al
blanco a la energia cinética de la segunda particula (la que estd inmovil en sistema laboratorio) tras el choque.

También llamamos proporciéon de energia transferida al blanco al cociente entre la energia transferida
al blanco y la energia cinética total del sistema.

Proposicion 90. Sean dos particulas con masa mi y ms que colisionan eldsticamente. Entonces la energia
transferida al blanco viene dada por:
* 2 9*
2
sen” —
mao 2

Th =

Demostracion. Por definiciéon de energia cinética tenemos:

2
q
BJ:?L
ma
Ahora, por el teorema [26 en Ta pagina 235] tenemos que:
dp*2sen? L 9p*2 0*
Tgf:p 2 _ P sen? —
’ 2mo mo 2

Q.E.D.

Proposicion 91. Sean dos particulas con masa my y mo que colisionan eldsticamente. La energia cinética del
sistema (tanto antes como después del choque) puede expresarse como:

_ M2p* 2

T= 2
2mims;

Demostracion. Como el choque es elastico, la energia cinética debe conservarse. En el sistema laboratorio, antes
del choque tnicamente se mueve la primera particula. Asi:

2
T=T,=T; =1L
2m1
Por el teorema [26 en la pagina 235 tenemos que:
]\/121)* 2
T m% _ M2p>¢< 2
2mq 2mym?3

Q.E.D.

Proposicion 92. Sean dos particulas con masa my y mo que colisionan eldsticamente. La proporcidn de energia
transferida al blanco viene dado por la expresion:

Tgvf o 4m1m2 2 9*

T ~ a2 M

Demostracion. Partimos de las proposiciones [90] y [0I} De manera que:

* 2

2p 20" 2 2 6* 2
Toy  my SEDT 3 2p*Tsen” F2mimi  Amymy 5 0°
T Mz2p 2 M2p*2mgy M? 2
2mim3

Q.E.D.

Corolario 39. Sean dos particulas con masa my y may que colisionan eldsticamente. La mdxima transferencia
de energia se produce cuando el choque es frontal.
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Demostracion. Estudiando la expresion de la proposiciéon [92 en la pagina anterior] vemos que su valor es maximo
cuando:

0* 0*

™
sen— =1 —=_-§" =
2 2 2 i
para un 6* restringido a [0,7]. Y un angulo de 6* = 7 se corresponde claramente con un choque frontal, pues
0* es el angulo que forman entre si p™* y ¢™*. Q.E.D.

Corolario 40. Sean dos particulas con masa my y mo que colisionan eldsticamente. La mdxima transferencia
en energia si el choque es frontal (0* = ) se produce cuando my; = mg. Simy < ma 0 My > ma, la proporcion
de energia transferida tiende a cero.

Demostracion. Partimos de la proposiciéon [92 en la pagina anterior] Si el choque es frontal, la expresiéon de la
proporcion de transferencia en energia al blanco queda:

T27f - 4m1m2 o 4m1m2

T ]\42 (ml +m2)2

Claramente la expresion anterior es simétrica en my y mo, asi que aquello que le ocurra a m1, le ocurrira también
a mo. Vamos a derivar para obtener los puntos criticos:

d% _ 4mg (m1 + m2)2 — 4mima2 (mq + ma)
dm (m1 + ma)"

Igualando la derivada a cero, obtenemos:
mo (m1 + m2)2 = 2m1m2 (m1 + mg)
como m1,mg > 0 debe ser m; + msy # 0 y, en consecuencia:
mi 4+ meo = 2mq & Mo =My

De manera que el tinico punto critico es m; = my. Para ver que es maximo, vamos a estudiar el limite de la
funcion original cuando tiene a cero y cuando tiende a infinito, que son los extremos de nuestro intervalo de
estudio:

. Ty ) dmyimsy
lim S — lim —— =0
mlﬁo T mlﬁo (ml + m2)
., Iyy , dmima . 4dmimg
lim —~= lim ———= = lim 5— =10
mi—oo T mi—00 (ml + m2) mi—00 my
En consecuencia, m; = ms es un méximo absoluto de la funcién %f . Ademaés, con los limites anteriores
hemos probado que la proporcion de energia transferida al blanco tiende a cero si es m; < mo 0 si es mo >
miy. QED
Ejemplo 35. Si tenemos un choque elastico entre un protén y una particula alfa con % = i, el méximo

porcentaje de energia transferida es un 64 %.

Proposicion 93. Sean dos particulas con masa my y mo que colisionan. La relacion entre el dngulo de dispersion
desde el centro de masas 6 y el dngulo de dispersion viene dada por la expresion:
q* sen 0*

tanf = ———————
Z—;p* + q* cos 0*

Demostracion. Partimos del triAngulo méagico del teorema [26 en la pagina 235 En el subtridngulo izquierdo
podemos ver facilmente que el angulo de abajo a la derecha es m — *. En consecuencia, el angulo de arriba a
la derecha es m — 0 — (m — 0*) = 0* — 6. Ahora por el teorema del seno, tenemos:

A q

sen (6* —0)  senf

*
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Por el lema [10 en la pagina 133 tenemos que:

sen (0* — 60) = sen 6* cos @ — cos 6" sen §

Asi, sustituyendo, tenemos:

my p* my %
m2p q* mzp *
sen f* cos — cosf*senf  senf sen 0* 225 — cos 0
* * * *
mip sen 6 my p sen 6
—— = —cosf" & —— +cosf =
ma q* tan 6 mo q* tan 6
sen 0* sen 0* q* sen 0*
S tanf = my p 0 = 1 p*+q* cos O* = M % + g* cos o*
preplond + cos mp PT T4 cosvT ma P q

"

Q.E.D.

Corolario 41. Sean dos particulas con masa my y ma que colisionan eldsticamente. La relacion entre el dngulo
de dispersion desde el centro de masas 0* y el dngulo de dispersion viene dada por la expresion:

sen 0*

tan = ———
% + cos 6*

Demostracion. Partimos de la proposiciéon 93 en la pagina anterior}

q* sen 0*
ML p* + ¢* cos O*

mao

tand =

Si el choque es eléstico, por la proposicion [88 en Ta pagina 233 tenemos que p* = ¢*. En consecuencia:

q* sen 0* sen 0*
tane = ma . x * 9* = ma 9*
| + g* cos e + cos

Q.E.D.

4.4.4. Casos particulares

Sabemos, trivialmente, que 6* € [0,7] porque 6* es el angulo que forma p* con ¢* y el angulo entre dos
vectores varia entre 0 y 7. Sin embargo 6, en general, no puede variar desde 8 = 0 hasta § = 7. Aunque esta
claro que 6 nunca podra ser mayor que 7.

Proposicion 94. Sean dos particulas con masa my y mo que colisionan eldsticamente. Entonces o € [O, g]

= Si es m1 > mo, entonces se da:

0*=0=0=0
" =mn=60=0
ma _ mp2 my
tan@mdz: my my < m1
%—i—l %—Fl
T
9m(iz<z
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= Si es my < mo, tenemos:

0 =0<0=0

Vr=nesb=nrm

Gmda; =7
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= Si es mi; = mo, entonces:
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Demostracion. Por el teorema |26 en la pagina 235 si el choque es elastico, se da:

T 0*
a4+ =ra=-——
o+ s « 5 5

y como §* € [0,7], o« € [0, 5].
Partimos del corolario 41 en la pagina 240}

sen 6*

tanf = —————
% + cos 0*

Derivando, obtenemos:
dtang €O 0* (% + cos 0*) — sen 0* (—sen 0*)
dox

2
(% + cos 9*)
Igualando la derivada a 0, llegamos a:
=1
ma2

—_———
m
A cosO* +cos?0* +sen? 0F =0 < cosOF = —
mo mq

= Si es m; > mg, como la funcién tan 6 es estrictamente creciente, tenemos que el valor maximo de 6 se
alcanza cuando:

mo m
cosf* = ——= = senf* = ——g
m1 my
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donde hemos aplicado que sen (arccosz) = /1 — 22 |'| Si llamamos z al cociente x := %, obtenemos:

V1— 22 V1—22 xv/1— 22 T T
T =z = < <l=0<-—
Tt Rt z+1 rz+1 4

x

tanf =

Por otra parte:
" =0=senf*=0=tanf0=0=60=0

0" =m=senf*=0=tanf0=0=60=0

Noétese que, en principio, = 7 podria ser una soluciéon de las dos ecuaciones anteriores, pero como hemos
visto antes es § < 7, asf que no puede ser.

= Si es m; < msg, No existen ningtn punto critico, en consecuencia, no existe ninguna limitaciéon a priori.

Tenemos:
9*:0:>{izrslz*_(l)@tan9:o+:>920
senf* =0
* m
0* =1 = {cosf"=—-1= m72_1<0:>tan9:0_:>9:7r
—~~
<1

= Por ultimo, si es m; = my, entonces, por el teorema [26 en la pagina 235| se cumple:

T 6*
2a+0"=rea=—-——
Ho=r 2 2
Asi, el angulo superior derecho del subtriangulo derecho es « y el angulo superior derecho del subtriangulo
izquierdo es el complementario de «, que es:
s 0*

Z _a=2
2 2

En consecuencia, en el subtriangulo izquierdo, tenemos:

' o+ o+

Q.E.D.

4.5. Secciones eficaces (sistemas centro de masas y laboratorio)

4.5.1. Repaso de conceptos de dispersion

En el tema anterior estudiamos varios conceptos relacionados con la dispersién de particulas en la que el
blanco estaba siempre fijo. Gracias a los conceptos nuevos vistos en este tema, vamos a ser capaces de resolver
la colisiéon colineal de dos haces de particulas en movimiento. Para ello, vamos a repasar todas las magnitudes
fisicas que introdujimos en el tema anterior y vamos a ver como se expresan desde el centro de masas y desde
el sistema laboratorio. Como en el sistema laboratorio el segundo objeto esta quieto, los blancos lo estaran, de
manera que las definiciones de todos los conceptos son exactamente iguales a las del tema anterior.

lEsto puede verse en la pagina https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&oldid=
876493420#Relationships_between_trigonometric_functions_and_inverse_trigonometric_functions.
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OO00O000O0
OO0O0O00O00O0
OO00O00O0O0

Proposicion 95. El nimero de particulas (y magnitudes derivadas) es el mismo en el sistema centro de masas
y en el sistema laboratorio. Ambos sistemas también miden el drea de la misma forma. Lo tunico que es diferente
es la seccion eficaz diferencial.

1.
Ninc = Nz‘*nc
2.
¢inc = ¢:nc
3.
Qinc = Q;nc
4.
NdiSP = N;isp
.
(bdisp = (lszisp
6.
Odisp = QZisp
7.
Ny = Ny
8.
c=o0"
9. d d
g g
—dQ) = da*
dQ) d*
10. En general:
dﬁ do
dQ = dQ*

donde las magnitudes sin distincion son las referidas al sistema laboratorio y las que llevan una * son las
referidas al sistema centro de masas.
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Demostracion. Las relaciones (1) a (7) son triviales; se deben a que no puede haber un mayor ntimero de
particulas en el sistema centro de masas y que en el sistema laboratorio o al revés. Como el area se mide igual
bajo ambos sistemas, se dan también (7) y (8). (9) se da porque, por (8) es do = do*:

j—ng =do =do* = dcg* aa”
Ahora bien, en general es:
do do
Q7 dor
porque en general es:
d§) # dQ*

y esto ultimo se debe a que, como hemos visto en las secciones anteriores, el angulo de dispersiéon no es el mismo
en el sistema centro de masas que en el sistema laboratorio. Notese que en la seccion eficaz asociada do si que
es la misma, porque d) y dQ)* estan relacionados. Es decir, es lo mismo decir: «una seccion eficaz do para un
angulo solido d€2» que «una seccién eficaz do para un dngulo solido d€2*». Q.E.D.

Como ya vimos en el tema anterior si yo conozco la secciéon eficaz diferencial de la colision que tengo entre
manos, puedo responder ya a cualquier pregunta sobre el sistema mediante el teorema [21 en la pagina 197 (o
derivados) simplemente integrando. Por ello es por lo que en este tema vamos a centrarnos en la seccion eficaz
diferencial y en cémo cambia ésta del sistema centro de masas al sistema laboratorio.

4.5.2. Relacion entre la seccidon eficaz diferencial entre el sistema centro de masas
y el sistema laboratorio

Proposicion 96. Sean dos haces planos de particulas que estdn lanzados uno contra el otro de forma colineal (en
exactamente la misma direccion). Consideraremos que las particulas del primer haz tienen masa my, mientras
que las del seqgundo haz tiene masa mo. Supondremos que todas las particulas del primer haz estan lanzadas a la
misma velocidad y haremos lo mismo con el sequndo haz. Si my < ma (o equivalentemente si hay una relacion
univoca entre 6 y 0*) y las colisiones son todas eldsticas, entonces la seccion eficaz diferencial en el sistema
laboratorio estd relacionada con la seccion eficaz diferencial en el sistema centro de masas por la expresion:

m2

3
27%

14 9m 0* (m)
do _ do + my €08 * ]

aQ — do 1+ T cos 6

Demostracion. Partimos de la proposicion [95 en la pagina anterior], de forma que tenemos:

do do ., do do dQ*
@™ = 0™ g T a0

*

Nuestro objetivo es, por tanto, estudiar el cociente . Por la proposicion |78 en la péagina 201 podemos

expresar el angulo so6lido en coordenadas esféricas, obteniendo:

dQY*  sen0*df*dy*

dQY  senfdfdy

Ahora, nos damos cuenta de que el angulo ¢ es el mismo en ambos sistemas de referencia, por tanto:
=" = dp=dp”

En consecuencia, la expresiéon anterior queda:

dQ*  senf*do* ‘d(cos 6%)

A0~ senfdd d (cos®)
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donde los valores absolutos se deben a que la seccion eficaz diferencial debe ser siempre positiva, por tanto, el
O . : : : . . . d (cos 0"
20 due relaciona dos secciones eficaces diferenciales debe ser positiva. Sin embargo, el cociente 7d( ( 9))
cos
puede ser negativo o positivo dependiendo del caso.
Hallamos la relacion entre 6 y 6* para colisiones elasticas en el corolario [41 en la pagina 240}

factor

sen 0*

my *
oy +cos 0

tanf =

Notese que si es m; < mg, la relacion entre 6 y 8* es univoca. Por otra parte, sabemos que:

2
my 2 p* my *
) 1 1 m§+COS 0 —|—2m2 cos
cos”f = 29 sen2 f* - =
I+tan“0 1+ — - DL 4 cos? 0% 4+ 2T cos 0* + sen? 0%
—% +cos? 0*+2 L cos 6* m3 mz
m3 ma
'ITL2 2 2
my 2 px M1 e O* my *
m§+c05 0 +2m2 cos B (m2+cos€) )
a m—%+2mcosﬁ*+1 7m—%+2mc089*+1
m3 mo m3 mo
Si llamamos z := cosf, z* := cos6*, C' = oL nosotros queremos calcular:
’ ’ ms?
d (cos 0*) dz*
d (cosf) dz
y podemos reescribir la expresiéon de arriba como:
2
2 (C+2")

ST 220+ 1
Ahora mismo hemos obtenido z? = f (2*) donde f es la funcién dependiente de cos 6* que hemos hallado arriba,
diferenciando, obtenemos:

df (z*) dz* 2z
2\ _ * _ * _
d (%) =df (2*) & 2z2dz = e dz* < = d];(z*)
Hallemos af (Z* ) :
z
df (z*)  2(C+2%) (C?+202* +1) — (C +2%)*2C
dz* (C? + 202 + 1)
2(C+ z%)

[C*+2C2*+1-C(C+2z")] =

T (C2 4202 +1)°
2(C+z%)
(C? + 202 +1)°

2(C+ =%
(C?2 4202 +1)°

= [C?+2C2* +1-C* - Cz*] = [Cz* + 1]

. 3

dz* \/% _ [C? +2Cz* +1]2
- 2(C+z* « - *

dz e (O 41 Cz +1

Deshaciendo todos los cambios de variable, obtenemos:
3
2

2
{1 + 2% cos 0* + (m) }

d(cos0*)| m2
d(cos®) | 14 7 cos 0
Y, por ende:
273
my * my
dQ  dQ* | d(cosf) | dQ* 14 T cos 0

Q.E.D.
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Proposicion 97. Sean dos haces planos de particulas que estdn lanzados uno contra el otro de forma colineal (en
exactamente la misma direccion). Consideraremos que las particulas del primer haz tienen masa mq, mientras
que las del seqgundo haz tiene masa mo. Supondremos que todas las particulas del primer haz estdn lanzadas a
la misma velocidad y haremos lo mismo con el seqgundo haz. Si my1 > ms y las colisiones son todas eldsticas,
entonces la seccion eficaz diferencial en el sistema laboratorio estd relacionada con la seccion eficaz diferencial
en el sistema centro de masas por la expresion:

2 % 212
my * my my * my
& L] et + ()] ] 2o+ ()]
sy 0*=67 0*=63

aa 1+ 2 cos 07 1+ 2 cos 03

donde 07 y 05 son los dos dngulos que se corresponden con 6 y el subindice en los corchetes las secciones eficaces
diferenciales indica «evaluado eny. Nétese que la seccion eficaz diferencial es inica, lo que pasa es que es preciso
evaluarla en dos dngulos diferentes.

Demostracion. Simy > mg, entonces la relaciéon entre 8* y 8 dada por la proposicion 41 en la pagina 240|no es
univoca; hay dos valores de 6* para uno de 6. Por tanto, parte de las particulas que para el sistema laboratorio
salen con angulo 6, para el sistema centro de masas saldran con 67 y otra parte saldra con 65. En consecuencia,
para contar todas la particulas que en sistema laboratorio salen con 6 tendré que sumar las que para el centro de
masas salen con 67 y las que salen con 03. En consecuencia, por la proposicién [95 en la pagina 245| tendremos:

[d"dﬂ] - [ do dQ*] 4 [ do dQ*]
0 05

ds s - |,

Dividiendo por df2 a ambos lados, obtenemos:
do] _[dod2) | [do a0
dQ 0_ dQ< d§) 0 dQ< d§) 03

Y para cada uno de estos términos si que hay una relaciéon univoca entre 6 y 67 y entre 6 y 65. En consecuencia,
podemos aplicar la proposicién [96 en la pagina 246|y llegamos al enunciado. Q.E.D.

4.5.3. Particulas «rechazadas» del blanco

Si tenemos dos haces de particulas que lanzamos unos contra otros, a veces, dependiendo de las razon entre
las masas de las particulas de los haces %, es posible que salgan «rebotadas» o «rechazadas» particulas del
segundo haz. En ese caso, nos gustaria saber cuéntas particulas de dicho segundo haz salen en un determinado
angulo solido d2* (medido segin el sistema centro de masas) o para un d2 (medido desde el sistema labora-
torio). Para hacer dicho célculo ya sabemos que conviene conocer la seccion eficaz diferencial de las particulas
«rechazadasy. Para hallar dicha seccion eficaz diferencial recurririamos al sistema laboratorio o al sistema centro
de masas (donde podemos aplicar los conocimientos del tema pasado) y seguramente intentariamos aplicar la
proposicién [81 en la pagina 204] si las particulas con las que trabajamos son lo suficientemente buenas. En
cualquier caso, no vamos a hablar de eso ahora (pues es temario del tema anterior). Unicamente vamos a hallar
cudl es la relacion entre la seccion eficaz diferencial para los blancos rechazados segun el sistema laboratorio y

segun el sistema centro de masas.

Proposicion 98. Sean dos haces planos de particulas que estdn lanzados uno contra el otro de forma colineal (en
exactamente la misma direccion). Consideraremos que las particulas del primer haz tienen masa my, mientras
que las del sequndo haz tiene masa mo. Supondremos que todas las particulas del primer haz estdn lanzadas a
la misma velocidad y haremos lo mismo con el sequndo haz. Si las colisiones son todas eldsticas, entonces la
seccion eficaz diferencial de las particulas «rechazadasy en el sistema laboratorio estd relacionada con la seccion
eficaz diferencial de las particulas «rechazadasy en el sistema centro de masas por la expresion:

d—g = d—a 4cosa
df2 rechazadas_ dsr rechazadas

donde o es el dngulo de retroceso.
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Demostracion. Partimos de la proposicion [95 en Ia pagina 245] de forma que tenemos:

da} {da} {da] {da} aa*
— dQ=|— dV & | —= = |—
|: dS2 rechazadas s rechazadas dQ rechazadas sy rechazadas ds

*

Nuestro objetivo es, por tanto, estudiar el cociente

. Por la proposicién |78 en la pagina 201) podemos

expresar el angulo solido en coordenadas esféricas, obteniendo:

dQy*  sen 0*df*dy*
dQ  senadadyp
Ahora, nos damos cuenta de que el angulo ¢ es el mismo en ambos sistemas de referencia, por tanto:

o =" = dp =dyp*

En consecuencia, la expresién anterior queda:

dQ*  sen0*df* |d(cos0")
dQ  senada

- d (cos @)

donde los valores absolutos se deben a que la secciéon eficaz diferencial debe ser siempre positiva, por tanto, el

a” . . . . .. . . d (cos 6*
10 que relaciona dos secciones eficaces diferenciales debe ser positiva. Sin embargo, el cociente d(())
cos a

puede ser negativo o positivo dependiendo del caso.
Hallamos la relaciéon entre 8* y « para el caso de colisiones elasticas en el teorema [26 en la pagina 235}

factor

0" +2a=m1=0"=1—-2a
En consecuencia:

cos 0 = cos (T — 2a) = — cos (2a) = — cos® a + sen® a = —2cos? o + cos? a + sen® o =
—_—
=1
=1-2cos’
Llamando z = cos «, tenemos:

d(cos6*) d 5
—=—(1- =—-4z=—4
d(cos ) P ( 2z ) z cos o

Por ende:

=|—4cosa| =4cosa

dy* | d(cos6*)
aQ

d (cos )

En conclusion:

d—a = d—a ar d—a 4cosa
df rechazadas a e rechazadas df a dQr rechazadas
Q.E.D.

4.5.4. Ejemplos

Ejemplo 36. Consideremos dos haces de esferas rigidas dirigidos el uno contra el otro. Las esferas del primer
haz tienen radio R; mientras que las esferas del segundo haz tienen radio Ry. Supondremos que los choques son
elasticos.
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d1

T

q
—»1/

—
Llamando R := R; 4+ R, podemos relacionar el parametro de impacto b con o como sigue:

b= Rsena

Como el choque es elastico, por el teorema [26 en la pagina 235 tenemos que:

0*+2a:7r¢>a:ffﬁ:>sena:cose—*
2 2 2
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Asi, tenemos:
*

0
b= Rcos —
COS 2

Como las esferas tienen simetria axial respecto a la direccion incidente, podemos aplicar la proposicion
obteniendo la seccién eficaz diferencial bajo el sistema, centro de masas:

do b 5 &

dQ*  sen@*

db

db R? o* o R72$en9* B JiQ
do*

:72 _ - — -
Lsent "M 2 9 T T senor 4

Aplicando la proposicion [96 en la pagina 246| tenemos que la seccion eficaz diferencial en el sistema labora-
torio es:

3 3
2 2

ma ma

2 2
{1 +2% cos 0* + (m) ] {1 +2% cos 0* + (m) ]

do  do

R2
dQ -~ dOx 1+%cos€* e 1+’m”—;cosﬁ*

Imaginemos que ahora queremos hallar la seccion eficaz diferencial de retroceso en sistema laboratorio. Para
ello, como las esferas tienen simetria axial respecto a la direccion incidente, podemos aplicar la proposicion
len la pagina 204] obteniendo:

db
do

I
dQ rechazadas sen

donde era b = Rsen « como hemos visto al principio de este ejemplo. Asi:

do Rsen«
LZQ = |-Rcosal = R?cos o
rechazadas sen o

Para hallar la seccion eficaz diferencial de retroceso en el sistema centro de masas, podemos aplicar la
proposicién [98 en la pagina 248] con lo que llegamos a:

do

d d
|:d?2:| rechazadas - |:d5* :| rechazadas feosas R2 cosar = deosa |:dQ*

o [ 4o _E
Qo rechazadas a 4

Por lo que vemos, desde el sistema de referencia centro de masas, para nuestro ejemplo se da:

:| 4
rechazadas

RQ
Iy

CLU | do
dQ B dr rechazadas

Y, ademés, ambas secciones eficaces diferenciales son isotropas; es decir, no dependen del angulo.

Ejemplo 37. Tenemos dos haces de particulas cargadas de la misma masa m y de la misma carga q. Disparemos
ambos haces de particulas uno contra el otro de forma colineal. Queremos calcular la seccién eficaz diferencial
tanto desde el centro de masas como desde el sistema laboratorio. También deseamos hacer lo mismo para la
seccion eficaz diferencial de retroceso.

Si estudiemos el caso de dos particulas, por el teorema [22 en la pagina 215] nuestro problema es equivalente
a tener una particula sin masa, inmévil y de carga g generando el campo y tener otra particula de masa p = 3
y carga ¢ orbitando a distancia r de la carga generadora del campo.
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En la seccion [3.5.4 en Ta pagina 212 ya hallamos la seccion eficaz diferencial correspondiente a esta situacion.

De forma que obtenemos:
2
do Kq?
dQ* | mv?sen? &

Aplicando la proposicion [96 en la pagina 246 obtenemos que en sistema laboratorio la seccion eficaz diferencial
queda:

2|2 21 2
my * my 201 mi * (m)
do  do 1—|—2m2 cos +(m2):| - K¢ [ —i—2m2 cos 0* + T, }
A dOx 1—}—%6086‘* o 1—|—%c050*
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como en nuestro caso es mj; = ms, obtenemos:

2
do l Kq?

3
2

[2 4 2 cos 6]
1+ cos0*

3
2

m:

2% [1 4 cos 6%]
1+ cos 6*

_ _
muv? sen? %

qu ?
| movZsen2 &

2

2
Kq2 3
W :22 \/1+0080*
muv“ sen 5

Segun la proposicion

*

94 en la pagina 240

cuando es my = Mo, se da 6 =

do _[_Ke 7,
dQ | mv2sen2d

2 de forma que tenemos:

e

V1 + cos 26
Por el teorema [26 en la pagina 235| tenemos:
. T 0* 0*
0 +2a:7r(:>a:§—?:>sen—:cosa

De esta forma, sabemos que la seccion eficaz diferencial de retroceso, viene dada por:

d Y
dsr rechazadas B mv2 COSZOz

Por la proposiciéon [98 en la pagina 248 obtenemos que:

do _ | 4o
dQ2 rechazadas B Qo

Examinemos con mas detalle las trayectorias que describen las particulas. Vamos a realizar un razonamiento
similar al realizado en la demostracion de la proposicion [85 en la pagina 224}

~ ‘;
~
~

K 2
4dcosa = { g

2
} 22} 4cosa
rechazadas muv“ cos” «

La trayectoria de la o6rbita relativa viene dada por:

rlecos (6 —6p) — 1] =1
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Cuando r — oo, debe ser ecos (6 —0y) — 1 — 0 < cos (0 — by) = % Ademas, notese que segun el dibujo que
hemos hecho es 6y = 7. Recordemos que, por la proposicion [84 en la pagina 216| era:

ma

- o

rN=——T

T M

T_‘;:iml_,
M

Si multiplicamos la ecuacién ecuacién de la trayectoria por 7, obtenemos:

m m
ﬁr ecos |[0— 6y | —1| = TQZ
s —~ g ma
=Ty =:ly
Anélogamente, multiplicando por “7:
m m
ﬁlr ecos|0— 6y | —1| = Mll
~—~ - \l,/
=iy

—
=3

Notese que en ambos casos obtenemos una hipérbola de la misma excentricidad, tinicamente cambia [. Por
ello, el angulo que forman entre si las asintotas de la hipérbola es el mismo en el sistema centro de masas que

visto desde el sistema laboratorio (estudiando el movimiento relativo), este angulo es 6*.
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Capitulo 5

Sistemas de referencia no inerciales

5.1. Rotacion de sistemas de referencia

Sea S : (O;z,y, z) un sistema de referencia inercial ortonormal con origen en O y con coordenadas z, y, z.
Anélogamente sea S’ : (O, x1,x2,x3) un sistema de referencia ortonormal no inercial con origen en O’ y con
coordenadas 1, T2, x3. Llamaremos X, Y, Z a los ejes del sistema de referencia S y llamaremos X7, Xo, X3 a los
ejes del sistema de referencia S’. Adicionalmente, llamaremos %,j,fc a los vectores ortonormales de la base de
R3 asociada a S y llamaremos é;, é, é3 a los vectores ortonormales de la base de R? asociada a S’. Asimismo,
llamaremos 7 al vector posicion de una particula desde el sistema de referencia S y denotaremos con 7 al vector
posicién de esa misma particula desde el sistema de referencia S’. Por tltimo llamaremos R al vector que une

el origen de S con el origen de S’. Es decir, R = 00'. De forma que se cumple 7= R + 7.

X3

2

) 4
N

~
>
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Con lo visto hasta ahora, la posicién de una particula vendria dada en ambos sistemas de la siguiente forma:

S:F=uxi+yj+zk

S/ : Fl = (Elél + (EQéQ + (E3é3
Utilizaremos la notacién de Leibniz para designar una derivada temporal segtun el sistema S y la notaciéon

de Newton para indicar una derivada temporal segun el sistema S’. Como para el sistema S’, el esta quieto,
siempre sera:

é;=0vi=1,2,3

Sin embargo, en general, para el sistema .S sera:

d S
T #0Vi=1,2,3

Observacion 74. Si un vector @ no es constante para S/, entonces al menos una de sus coordenadas x1, T2, T3
no puede ser constante. Anélogamente, si 4 no es constante para S, entonces al menos una de sus coordenadas
x,vy, 2z no puede ser constante.
Observacion 75. La derivada de un escalar X respecto al tiempo es la misma en ambos sistemas de referencia,
porque los escalares no dependen de una base.

dx .

A

dt
En particular esto es cierto para las coordenadas z,y, z, 1, x2, 3 que, como son escalares, no dependen de
ninguna base.

5.1.1. Rotaciones

Teorema 27. Sean S : (O;x,y, z) un sistema de referencia inercial ortonormal y S" : (O, x1, T2, x3) un sistema
de referencia ortonormal no inercial tales que su origen es comin O = O'; es decir, es R=0. Entonces, existe
un & € R? tal que la variacion de los vectores unitarios de S’ seqin el sistema inercial S viene dada por la
exPresion:
dé;
dt

=Gxé Vi=1,2,3

.. de; . . ., .
Demostracion. Como — es un vector, en particular, podemos expresarlo como combinacion lineal de la base
dt bl )

é1, €2, €3. Entonces tenemos que Jax; Vk,l = 1,2, 3 tales que:

dér o
k .

— = agé
at Z k1€l

1=1
Por otra parte, como la base del sistema S’ es ortonormal, tenemos:
éi . éj = 5ij

De esta forma, derivando a ambos lados en la ecuacién anterior, obtenemos al aplicar la regla del producto:
dé; — dé;

‘o T

Pero, por la hallado antes, podemos expresar las derivadas de los vectores como combinacién lineal de la base
de S/, por lo que llegamos a:

éJZO

3 3
é; - E ajkék + E ikl - éj =0«&
k=1 k=1

3 3
= E ajkék -é; + E airCr - éj =0
k=1 k=1
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Como era ¢; - & = §;;, obtenemos que lo anterior es equivalente a:

Qi + G55 = 0
y lo anterior debe cumplirse para todo %, j; por lo que tenemos:
g 0V G — aj; = —a; Vi,j =1,2,321# ]
aﬂ—&—a”—OVz,j—l,Zﬁé{ 95 = 0Vi=1,2.3

En consecuencia, la matriz formada por los a;; es antisimétrica:

0 a2 a3
(aij) = | —a12 0 a23
—ai3 —azz O

y asi, s6lo hay tres elementos linealmente independientes. Definimos el vector & como:

w = (—023,a13, —012)
De esta forma:

€1 €2 €3
WX e =|—a a3 —ajz| = —ai2é2 —aizés3
1 0 0
. 1
d61 R R
o = (aij) 0] = —aiz2é2 — ai3és
dt
0
é1 €2 €3
WX éy=|—az3 a3 —ajz| = a12é1 — a23é3
0 1 0
R 0
des (a;j) | 1 a1261 — ag3é
— = (ay; = a1261 — G2363
dt *
é1 €2 €3
WX é3=|—az3 a3 —aiz| = ai13é; + agzés
0 0 1
R 0
d63 n R
— = (a;;) | 0| = ai3é1 + azsés
dt 1

Con lo que efectivamente existe & € R? tal que:

dé;
dt

=dxé Vi=1,23

Q.E.D.

Observacion 76. Notese que, en general, las componentes w1, ws,ws del vector & que aparece en el teorema
len Ia pagina anterior] no representan la variaciéon de ningin angulo.

Ejemplo 38. Suponemos & = wés. En este caso, aplicando el teorema [27 en la pagina anterior] obtenemos:

dé él () ég

%:wxélz 0 0 w|=uwé
1 0 0

e & & &3

%:wx@f 0 0 w|=-wé
0 1 0
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dA Al A2 é3 R
% —Gxés=0 0 w|=0
0 0 1

Si tomamos 7 = €1, entonces, por el teorema anterior, tenemos |27 en la pagina 256}

déey dr . L. oo

E:%:wegzwxelzwxr

Es decir, en este ejemplo, los ejes X1 y Xo estan girando en torno al eje X3. Por tanto, en este caso, w si que
representa la variacién de un angulo.

\, \ \
? ?

A X

Proposicion 99. Sean S : (O;x,y,z) un sistema de referencia inercial ortonormal y S" : (O, x1,x2,x3) un
sistema de referencia ortonormal no inercial tales que su origen es comin O = O'; es decir, es R = 0. Sea
it € R un vector cualquiera. Entonces:
du
dt

Demostracion. Por nuestros conocimientos de algebra lineal, sabemos que existen 1,2, x3 € R tales que:

=U+d XU

3
U= LElél + LEQéQ + Igég = E I’Zéi
i=1
Por una parte, por la regla del producto, tenemos:

3

3
= E jfiéi‘f'g Ti€;
i=1

i=1

S

Sin embargo, como los vectores é; son constantes para S’, deber ser é; = 0 Vi = 1,2, 3. En consecuencia:

3
U= E T;€;
=1

Por otra parte, por la regla del producto, tenemos:
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Por la observacion [75 en la pagina 256| tenemos que lo anterior es igual a:

i < 5. dé;
=Y ey
dt ~ 2t

V.

=u

donde el primer sumatorio es justo como varia el vector « para S’, es decir, 4. Ahora, aplicando el teorema
len la pagina 256 al segundo sumatorio, obtenemos:

5 3 3

dii 2, A PO o Lo

E u—i—E T;W X € = U+ w X E Ti€ | =Uu+wXu
i=1

i=1

Q.E.D.

Corolario 42. Sean S : (O;z,y, z) un sistema de referencia inercial ortonormal y S" : (O, 21, 2, x3) un sistema
de referencia ortonormal no inercial tales que su origen es comin O = O'; es decir, es R = 0. Sea @ € R? un
vector cualquiera tal que es constante para el sistema de referencia S’. Entonces:

du

— =0 XU
dt

Demostracion. Partimos de la proposicion [99 en la pagina anterior] De forma que sabemos:

du

E +d XU

ISR

Pero si 1 es constante para el sistema de referencia S’, entonces debe ser @ = 0, de forma que llegamos a:

du

— X U
dt

&L

Q.E.D.

Observacion 77. Todo vector # que satisfaga la ecuacién dada en el corolario visto desde el sistema de
referencia S, es un vector de longitud constante que gira en torno al vector & con velocidad angular w.
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. W

5.1.2. Traslaciones

Teorema 28. Sean S : (O;x,y,z) un sistema de referencia ortonormal y S' : (O',x1,x9,x3) otro sistema de
referencia ortonormal tales que estdn alineados; es decir, se cumple & = é1, §J = éo y Z = é3. Entonces:

dé; S
=é=0 Vi=1,2,3
dt ’
Demostracion. Trivialmente para S’ se da é; = 0 Vi = 1,2,3 y trivialmente para S se da % =0, % =0 y
% = 0. Como son & = é;, 9 = éa y 2 = é3, se cumple el enunciado. Q.E.D.

Observacion 78. Si tenemos dos sistemas de referencia alineados S y S’, como sus bases vectoriales asociadas
son las mismas, un vector tendra la misma descomposicién, es decir, las coordenadas del vector seran las mismas
en ambos sistemas. Lo que ocurre, es que si yo quiero hablar de un punto en el espacio (por ejemplo, la posicion
de una particula), entonces habra dos vectores diferentes un @ para el sistema S y un @ para el sistema S’ que
me describan el mismo punto. No obstante, las coordenadas del vector u seran las mismas en ambos sistemas y
lo mismo ocurriré con las coordenadas de u’.

Proposicion 100. Sean S : (O;x,y,z) un sistema de referencia ortonormal y S": (O’ x1,x2,23) otro sistema

de referencia ortonormal tales que estdn alineados; es decir, se cumple T = é1, §j = é3 y 2 = é3. Sean R = O0’,
U@ un vector cualquiera que tiene su origen en O y U el vector que tiene su origen en O’ y su extremo en el
extremo de u. Entonces:

;_@_@+@_ﬁ+;’
YSa T a T ar Y
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Demostracion. Como son & = €1, § = éa y 2 = é3 y, como por la observacion [78 en ITa pagina anterior] las
coordenadas de cualquier vector son las mismas en ambos sistemas de referencia, derivar con respecto a un
sistema de referencia es igual que derivar con respecto al otro sistema de referencia. En consecuencia:

. da )
= EV&GRS (5.1.1)
y, en particular, es:
., du
U= —
dt
Tenemos que se cumple:
i=R+d
Derivando, tenemos:
di _ dR | dit
dt — dt  dt
Por la ecuacion [5.1.1} tenemos que lo anterior es equivalente a:
di 5 -
— =R 7!
I +u
Q.E.D.

5.1.3. Ejemplos

Ejemplo 39 (Fuerza de Lorentz y ciclotron). Consideremos una particula de carga g y velocidad ¢ inmersa en

un campo magnético B. Por la ley de Lorentz, la fuerza que actia sobre dicha particula es:

. ~ di di q 5
F=qixB=m= & — =—2Bxi=&,x7
qu mdt dt m v We v
~——

=:d.

~—— = cte. Asi una particula sobre la que acttia una fuerza magnética constante siempre describiréa

q
donde w, =
. . m .
un movimiento circular.

Por otra parte es:
2 v? v muv

Y < R
Wl = — = = —
¢ R wev  we ¢B

Este es el principio que se usa en el ciclotron. Veamoslo graficamente
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®

ol

<l

donde sometemos ambas partes del ciclotron a una diferencia de potencial V' = Vjcosw.t. La velocidad
maxima que se puede obtener es:
qBR

m

Umax =

Cuando la velocidad de la particula es cercana a la de la luz, hay que tener en cuenta efectos relativistas y
entonces la frecuencia w,. disminuye si la velocidad aumenta.

Ejemplo 40 (Fuerza eléctrica y magnética). Ahora, suponemos que tenemos una particula de masa m y carga

q sometida a un campo eléctrico E y a un campo magnético B. De esta forma, la fuerza que actia sobre la
particula es:
v = - - dU g
m—=F=qFk+qix B — = —
dt =T it~ m
Si, ahora suponemos que B = Bk y E= Ej', tenemos:
q q

ZBxi= (—v,,B, 1
m m

—vaBJ))

dv,
dt

d

Yy _ ngB Sy = —EB/ngdt = —gmB +C

dt m m

~
De esta forma, tenemos:
dv 2
p=Tr 4y p=9 <fixB+C)B:f Kl I o4

dt m m m
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En consecuencia, hemos llegado a la ecuacion diferencial:

d’x q 2
qr t(pB) w=cte

que es justo la ecuacién de un oscilador arménico. Asi, existen w, ¢ € R que permiten expresar v, y v, como:
v
Uy = Vg cos (wt + ¢) = & = — sen (wt + ¢) + Ky
w

v
vy:fvosen(thrgﬁ)éyz;ocos(wth(b)JrKg

donde K; y K> son constantes. Como podemos ver, claramente la trayectoria es una circunferencia, como

esperabamos.
Ahora, volvemos al caso E # 0, para resolver el sistema de ecuaciones diferenciales ahora, lo que hacemos
E
. . — - - Vig = & . .
es un cambio de variable @' = ¥ — ¥ tal que ¥ 18’ y asi obtenemos las ecuaciones:
’Uly =
_ / + R
vy =0, + vy =0,

~—
=0

/
Vg = Uy + Vig

—% =—v\B
da;t m Y

v q

Y /
—=_2LyB
dt m v

Llegamos a la misma ecuacién diferencial que antes pero con variables v/, y v?’J. De esta forma, las soluciones
era de la forma:

vl = v cos (wt + ¢)

v, = —vg sen (Wt + @)

Y deshaciendo el cambio de variable:
E
Vs =g + v cos (wt + @)

vy = —vg sen (wt + )

2(0) =0,y (0) =0
0, (0) = (0),v, (0) = 0"

vy=0&senp=0&¢=0,7

Resolviendo para el caso particular { obtenemos:

E E
’UI=0<Z>§+’U0COS¢<:>¢=7T,’UQZE

Asi, aplicando sen (z + 7) = —senz y cos (z + m) = — cos z, llegamos a:

=—(1- = =A+ [ (11— =A+ —St——-=s
Vg B( coswt) = x (t) /B( coswt) dt Bt B sen wt

E FE FE
Vy = Esenwt = C—i—/Esenwtdt =C - Ecoswt

E
Como z (0) = 0, debe ser A =0.7Y, como y (0) = 0, necesariamente C' = B Ast:

o () = E . sen wt
B w
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y(t) = g (1 — coswt)

Graficamente, la trayectoria queda:

Y

5.1.4. Caso general

Teorema 29. Sean S : (O;x,y,2) un sistema de referencia ortonormal y S : (O, z1,x2,x3) otro sistema de
_ —_—
referencia ortonormal. Sean R = OO0', @ un vector cualquiera que tiene su origen en O y u' el vector que tiene

su origen en O’ y su extremo en el extremo de U. Entonces:
di dé+;,+4x .,
— = — 4 U+ XU
dt dt
Demostracion. Sea S” : (O’; A1, A2, A3) un sistema de referencia ortonormal que tiene su origen coincidente con
el origen de S’, pero que esta alineado con S, es decir, la base de R? del sistema de referencia S es la misma
que la de S’. De esta forma, S” no es mas que S’ trasladado un vector R y S’ no es méis que una rotacion
aplicada a S”. Por la proposicion [42 en la pagina 259, sabemos que:

dt

=ud +dxd
S

Por otra parte, por la proposiciéon [100 en la pagina 260 tenemos que:

@7@4» @ 7@4};,4}_,)(_,,
dt ~dt | dt|g, o TERE

Q.E.D.

5.1.5. Comparaciéon de velocidades y aceleraciones

Proposicion 101. Sean S : (O;x,y,z) un sistema de referencia ortonormal inercial y S’ : (O, x1, x2,x3) otro
sistema de referencia ortonormal. Sean R = OO', 7 el vector que describe la posicion de una particula para el
sistema de referencia S y 7 el vector que describe la posicion de la misma particula para el sistema de referencia
S’. Entonces:

dF  dR

d*’;_g‘i‘?ﬂ-i-(ﬁxf/
27  d2R - L
dT;:?‘Fﬁﬁ-LUX(QXW)—FQ@’XF—F@’XF
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X3

2\ 2

A 3

o>

Demostracion. Por el teorema [29 en la pagina anterior] tenemos:
dF AR .,
— 47 +dx7

dt — dt
Si volvemos a derivar, obtenemos:
d2F d2]§+d{?’+dcﬁx4+ﬁxd7‘”
2 2O —
dt? dt? dt dt dt

Aplicando la proposicion [99 en la pagina 258 obtenemos:

P7 &R - e ~

f=7+7?’+c3xf'+(c6+c6xoj> X7 4+ x

| — [ ——
do i
— dt

dit? dt?

Como & x & = 0, la expresion anterior queda:
@27 PR - Lo
= T 20 X T+ O X T+ DX (F X )
Q.E.D.

dt2  d?

Definicion 99. Consideremos la expresion para las aceleraciones de la proposicion [101 en la pagina anteriort

P?F PR - Lo
E;:W—FW—FQX(QXW)—FQQX’F/—FQXF

265
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v . ) . . .
1. e =: d es la aceleraciéon de la particula medida desde el sistema de referencia S.
PR y : . o
2. —= =: A es la aceleracion relativa entre los sistemas de referencia S’ y S.

dt?
3. 7 =: @ es la aceleracion de la particula medida desde el sistema de referencia S’.

=

4. El término & x (& x ) recibe el nombre de aceleracion centripeta.

5. El término 2@ x 7 recibe el nombre de aceleracién de Coriolis.
6. El término & X 7 recibe el nombre de aceleracién azimutal o aceleracién de Euler transversal.

Teorema 30 (22 ley de Newton para sistemas de referencia no inerciales). S’ : (O, x1, 22, x3) un sistema de
referencia ortonormal no inercial y sea 7 la posicion de una particula medida desde S’. Entonces, se cumple:
=y nl d2R — — — — Zy = —
mr :F—mﬁ—mwx(wxr)—Qm WX ) —mid XT
donde F' es la suma de fuerzas que actian sobre el sistema y R y & vienen dados respecto a un observador
wercial cualquiera.

- —_—
Demostracion. Sea S un sistema inercial cualquiera con origen en O tal que R = OO’, entonces, por la propo-

siciéon |[101 en la pagina 264] se cumple:

27  d2R - .
= T @ XT) 420X+ G X T

Como S es un sistema de referencia inercial, para él se cumple la segunda ley de Newton (ver axioma [l en la)

pagina 8)):
7 27 d’R
=M —— =MmM———
dt? dt?
L R
Smr =F — mﬁ

+mr +m& X (G X7)+2md x 7 +md X 7 &

Zy

—m&x(&xf’)—2m(¢6x% 7

) i »
Q.E.D.

Definicion 100. Consideremos la expresiéon de la segunda ley de Newton para sistemas de referencia no
inerciales (ver teorema |30)):

1. F es la suma de todas las fuerzas que acttan sobre la particula.

2R

mﬁ = —mA recibe el nombre de fuerza de arrastre.

2. El término —

3. El término —md x (& x ) recibe el nombre de fuerza centrifuga.

4. El término —2md@ x 7 recibe el nombre de fuerza de Coriolis.
5. El término —md& x 7 recibe el nombre de fuerza azimutal.

Observacion 79. Notese que hay aceleracion centripeta (hacia dentro), pero fuerza centrifuga (hacia fuera),
con signo negativo. De forma similar la aceleracion azimutal y la aceleracion de Coriolis tienen signo positivo,
mientras que las fuerzas acimutales y de Coriolis tienen signo negativo.

Observacion 80. La fuerza de Coriolis sblo existe en el caso de que el cuerpo lleve velocidad medido desde el
sistema S’ y la fuerza azimutal solo existe en el caso de la velocidad o direccion de la rotacion de S’ en torno a
un sistema de referencia inercial con el mismo origen no sea constante.
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5.1.6. Ejemplos

Ejemplo 41. Tenemos una mosca que se mueve sobre la mesa de un alfarero en linea recta desde el centro del
plato. Nos piden hallar la velocidad de la mosca y su aceleracion en funcién de un sistema inercial.

el

O/ 0 /I

Nos dan 7’ (t) como dato. Como las aceleraciones son las mismas en cualquier sistema de referencia inercial,
podemos escoger el sistema de referencia inercial que nos simplifique més los calculos. En concreto con el origen
en el centro del plato y tal que el eje de rotacion del plato sea el eje Z. De esta forma, en nuestro caso es:

G =0(t)és

7 (t) =1"(t)é1

=71y R=0. Aplicando la proposicién |101 en la péagina 264|, obtenemos que:

A7 d2R - .
#:W—i—ﬁ—i—wx("xf")—i&&xf’—&—wxf’z

=i'e; + éég X (éég X T’él) + Qéég x 7'éq + ééB xr'é; =
=i'e; + éég X 97"@2 + 29.7;/é2 + érég =i'e; — 9.27"lé1 + 297;%2 + éTé? =
= [i" = @] 1 + [0 + 207 ] &,

Esta es una forma de hacerlo. Ahora hagamos el ejercicio suponiendo que no sabemos nada de lo aprendido
en este tema. Para ello, vamos a operar directamente desde el sistema de referencia inercial descrito antes.
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=

e
0

h 4

X

Obtenemos las relaciones geométricas:

é1 = cos i + sen 0]
éy = —senbi + cos ]

7=1'(t) cos 0 4 ' (t) sen 0]

dr L\ A .
d—;:(f’cos@—r’senH@)i—i—(f’senH—i—rcosH@)j
d27? o/ ./ A 12 32 ’ s\ A .y ./ . ) =\ A
w7l = (r cos —2r'senf 8 —r' cosh0° —r Sen00)z+ (7" senf + 27 cosf 0 — rsenf 0 +7'cos€0)j

Reagrupando términos y volviendo a la base é;, s obtenemos:

A27 . . R
%g = [7’4’ — r’aﬂ é1 + [27’*’9 + r’e] éo

Ejemplo 42. Tenemos un vaso de agua sobre un plato que hacemos girar con velocidad angular w, queremos
obtener la forma que describe la superficie del agua.
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Sabemos que es @’ = 0 desde el sistema de referencia no inercial S’ que gira con el vaso, porque desde dicho
sistema de referencia nada se mueve. Escogemos nuestro sistema de referencia inercial con origen en el centro
del vaso. Por la segunda ley de Newton para sistemas no inerciales (ver teorema |30 en la pagina 266) aplicada
a un volumen dV del liquido de densidad p, tenemos:

.. 2 . .
0=pdVr = pdVdR —pdV & x (& ><F')—2pdV(JJ’><f')—pdVJJ’xf'
H,_/ —_— T

(=18

=0 =

donde el primer término marcado se anula porque R = O el segundo término marcado se anula porque como
segun el sistema S’ todo esta estatico, asi que 7 = =0 y, por tltimo, el tltimo término se anula porque el disco
gira con velocidad constante y la direcciéon de giro tampoco cambla por lo que & = 0. De esta forma, tenemos:

0=F —pdV& x (& x 7)
Sobre el dV de liquido actua la fuerza gravitatoria y las fuerzas de presion Fp, de manera que obtenemos:

0=Fp+pdVi—pdVd x (@ x 7)

Despejando, llegamos a:

Fp=—pdVi+pdVa x (& x )

La fuerza de presion serd perpendicular a la superficie del fluido. Como tenemos simetria de revolucion,
podemos suponer, sin pérdida de generalidad, que 7 tiene la direcciéon del eje X. De esta forma, la direccién
perpendicular a la fuerza de presion formara un dngulo « con la horizontal cuya tangente vendra dada por el
cociente entre las componentes horizontales de ﬁp y las componentes verticales de fp. Esto ultimo se debe a
que buscamos la direccién perpendicular a Fp, de forma que obtenemos:

dz pder w?r w? w? 4
g —tena= Vg 7 & dz grr(:)z 27‘+C

donde C' es una constante.
Podemos hacer el mismo problema por energias. Por una parte, vemos claramente:

ﬁg = —pdVglAﬂ & Vy=pdVgz
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donde hemos tomado como nula la constante aditiva. Por otra parte, tenemos que hallar la energia potencial
asociada a la fuerza centrifuga.

2
Fo = pdVw?ri & Vg = — / pdVw?ri - dif = — / pdVw?rdr = —pdV%rQ

donde también hemos tomado como nula la constante aditiva. Como las fuerzas de presién son perpendiculares
a la superficie del agua, la superficie del agua debe ser una superficie equipotencial. En consecuencia, tenemos
la ecuacion:

pdV w?r? w?r? w?

pdVgz — —— =cte & z — =Cez=—r’+C
2 2g 29

donde C es una constante.

.
Ejemplo 43. Tenemos un vaso de agua en un vagédn de tren acelerado con aceleracion A. Queremos ver qué
forma tiene la superficie del liquido.

A

h 4

g

g

Aplicamos el mismo razonamiento que en el ejemplo 42 en la pagina 268 Tomamos un sistema de referencia
inercial en reposo fuera del tren. Tomamos un dV del liquido de densidad p. Aplicamos la segunda ley de Newton
para sistemas de referencia no inerciales (ver teorema [30 en la pagina 266|) al sistema de referencia no inercial
del vaso:

0= pdVF = F — pdV a2

N
o =0

—pdVE x (& x 7) — 2pdV (wx ﬁ) — pdV X 7
| S —
=0 _5

donde todos los términos marcados se anulan porque el sistema de referencia no inercial no gira con respecto al
inercial. Asi, inicamente tenemos fuerzas de arrastre en nuestro caso. De nuevo, las fuerzas que acttian sobre
nuestro dV de liquido son el peso y las fuerzas de presion:

0=Fp+pdVi—pdVA< Fp=—pdVg+ pdV A

De nuevo, la fuerza de presion serda perpendicular a la superficie del fluido. Tomemos el eje X7 del sistema de
referencia no inercial segin la direccién de avance del tren. Al igual que antes, la direccion perpendicular a la
fuerza de presion formara un angulo « con la horizontal cuya tangente vendra dada por el cociente entre las
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componentes horizontales de Fp y las componentes verticales de Fp. Esto tltimo se debe a que buscamos la
direccion perpendicular a Fp, de forma que obtenemos:

dz pdV A dz A
g

=tana = = = —

A A

donde C' es una constante.

5.2. Movimiento cerca de la superficie de la Tierra o en ella

Notemos que la Tierra rota de oeste a este, por lo que el vector & de un sistema no inercial situado en su

2
superficie estara dirigido hacia el norte y su modulo serda w = % donde T es el periodo de la rotacion de la

Tierra.

Proposicion 102. Desde un sistema de referencia situado en la superficie de la Tierra, para una particula de
masa m, la sequnda ley de Newton para sistemas de referencia no inerciales puede aproximarse como:

mi’ & Fy 4+ mg — mdd x (Qxﬁ)—Qm(wer’)

.
donde R es el vector que va desde el centro de la Tierra hasta el origen de nuestro sistema de referencia, § es
el campo gravitatorio terrestre en su superficie y Fny son las fuerzas no gravitatorias que actian sobre nuestra
particula.

Demostracion. El mayor problema que plantea nuestra situacion es encontrar un sistema de referencia inercial
desde el cual operar. Como la Tierra gira alrededor del Sol, la Tierra no es un sistema de referencia inercial.
Asimismo, el Sol tampoco lo es, pues rota entorno al nicleo galactico. Y asi podriamos seguir. Es decir, los
sistemas completamente inerciales no existen en la naturaleza. Para todos nuestros resultados, supondremos que
el centro de la Tierra es un sistema de referencia inercial; es decir, despreciaremos todos los efectos debidos a la
traslacion de la Tierra. Esto tiene sentido, pues el periodo de rotaciéon de la Tierra es de 24 horas, mientras que
el de traslacion en torno al Sol es de 1 afio. Es decir, los efectos debidos a la traslacion de la Tierra son mucho
menores en amplitud (en médulo) que los debidos a la rotaciéon de la Tierra. La Tierra gira en torno a un eje
con velocidad constante. Como dicha velocidad es constante (en realidad no es constante, esta disminuyendo,
pero esto solo es apreciable a escalas geologicas), desde el sistema de referencia de la superficie de la Tierra no
aparecera una fuerza azimutal sobre las particulas; si bien si aparecera una fuerza centrifuga y una fuerza de
Coriolis.

Por la segunda ley de Newton para sistemas de referencia no inerciales (ver teorema [30 en la pagina 266))
debe cumplirse:

. = PR L :
mr":F—m——mwx(wxr—')—2m<wa¥)—mwxf’
dt? —_———

donde R es el vector que va desde el centro de la Tierra hasta el origen de nuestro sistema de referencia y el
dltimo término se anula por lo dicho antes. Como R es constante para el sistema de referencia de la superficie
de la Tierra, por el corolario [42 en la pagina 259| tenemos:

X:@ d<dﬁ> i(dxﬁ):&x(&xﬁ)

dt ) dt
En consecuencia, la segunda ley de Newton queda:
mi’ = F — m@ x (dﬁx (ﬁ—l—r"’)) —2m(c3><7%'>

Por ultimo, podemos descomponer la F' que aparecen en la expresion anterior en el peso mg y otras fuerzas
F,4. Haciendo eso, llegamos a:
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Como vemos, la fuerza de arrastre actta en realidad como una fuerza centrifuga extra. En los movimientos en
la superficie de la Tierra, podremos suponer R+ 7 ~ R, de forma que podremos considerar la fuerza centrifuga
efectiva constante, con lo que llegamos al enunciado. Q.E.D.

Observacion 81. Noétese que en el dltimo paso de la demostracion de la proposicion [I02 en la pagina anterior]
estamos despreciando la fuerza centrifuga real —md@ x (J x 7) en favor de un término que aparenta ser una

fuerza centrifuga —md X (LD’ x R ) = —mA, pero en realidad es una fuerza de arrastre.

5.2.1. Direcciéon de la fuerza de Coriolis

De la proposicion [I02 en Ta pagina anterior] podemos deducir que la fuerza centrifuga efectiva tiene una
componente radial que disminuye el peso efectivo y también crea una componente tangencial hacia el ecuador
(tanto en el hemisferio norte como en el sur).

\
4

W

S

También de la proposicion [I02 en la pagina anterior] podemos deducir que la fuerza de Coriolis que actta
sobre particulas que se mueven en la direccion radial de la Tierra se dirige hacia el este tanto en el hemisferio
norte como en el sur.
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AN\

W

=2/

v’ S

Igualmente, la fuerza de Coriolis que actta sobre particulas que se mueven en la direccién tangencial se
dirige hacia el oeste. Si uno mira en la direccién de la velocidad, en el hemisferio norte, la fuerza de coriolis irfa
hacia la derecha mientras que en el hemisferio sur iria hacia la izquierda.
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AN\

W

4

5.2.2. Gravedad aparente

Definicion 101. Llamamos gravedad aparente §' a la expresion:
7 =7-&x (w x 1%)

donde R es el vector que va desde el centro de la Tierra hasta el origen de nuestro sistema de referencia.

Corolario 43. En funcion de la gravedad aparente §' , podemos reescribir la expresion de la proposicion
comos

mi' & Fpg +mg —2mad x 7

donde § es el campo gravitatorio terrestre en su superficie y Fynq son las fuerzas no gravitatorias que actian
sobre nuestra particula.

Demostracion. Partimos de la proposicion [102 en la pagina 271k

m#"%an—i-mg'—mdix(JixR)—Zm(cI}xf”)@mi"ang—&-mg"—Zm@'xf’

=mg’
Q.E.D.

Proposicion 103. La gravedad aparente § se encuentra desviada de la direccion radial en un dngulo « cuya
tangente satisface:

w?Rsen2\ _ W’R
<

t <
ana < % <2

donde X\ es la latitud.
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Demostracion. A es el angulo que forma el vector R con la direcciéon perpendicular a &. Como es sen (:U + g) =
cos x, obtenemos:

Ha X (cD’ X R)H = |I&Il 3] HRHCOSA = w2Rcos A
Descomponemos la gravedad aparente en una componente tangencial («horizontal») y en una componente radial

(«verticaly).

gj, = w?Rcos Asen \

g, =g —w*Rcos® \

De esta forma, si llamamos « al angulo que forma la direccion radial con la gravedad aparente, obtenemos que
su tangente vale:
9h

/
v

tana =

Como g > w?2Rcos? A en la Tierra, podemos aproximar el valor de la tangente anterior por:

w?RcosAsen A w?Rsen2\ _ w?R
tana < = <
g 29 29
Al hacer esto, obtenemos una cota superior a la desviaciéon de la gravedad aparente con respecto a la direccion
radial. Q.E.D.

Observacion 82. Hallemos cual es la cota superior de la desviacion de la gravedad apareente mencionada en la
proposicién [103 en la pagina anterior] Sabemos:

2T
~ =7.292-10"% ¢!
WA T 7,292-107% s
R = 6371 km

De forma que:
WR=34 =0
S

Operando, obtenemos:
2

R
tanagw—<:>Oz<6'
29
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Es decir, cada 100 m avanzados en la direccién radial, hay una desviaciéon de 17 cm. Dicho de otra forma, en
los 6371 km del radio de la Tierra, el vector gravedad aparente se desvia 11 km.

Observacion 83. Notese que no hay fuerza centrifuga en el polo pues en este caso R y & tienen la misma direcciéon
y, en consecuencia, su producto vectorial se anula. Sin embargo, en el ecuador si que hay fuerza centrifuga. Si
medimos experimentalmente el valor de la aceleracion de la gravedad en el polo y en el ecuador, obtenemos:

m
Y9polo = 9,832 ?

YJecuador = 9 — WQR =9,7799 g

mm
9pol — Jecuador = 92 ST
5.2.3. El efecto de las fuerzas de Coriolis
Lo primero es notar que la fuerza de Coriolis tinicamente afecta a los cuerpos en movimiento, pues, en caso
contrario es ¥ = 0 y el término correspondiente se anula.
5.2.3.1. Caida libre

Proposicion 104. Sea un cuerpo de masa m que dejamos caer desde el reposo desde una altura h medida sobre
la superficie de la Tierra. Si suponemos que la gravedad aparente tiene direccion radial, mediante el método de
aprorimaciones sucesivas, hasta primer orden, obtenemos que la desviacion en la direccion paralela al ecuador
debida a la fuerza de Coriolis puede aproximarse por:

3
1 2h\ 2
'~ gwg’ cos A <g’)

W

]

Demostracion. Por la segunda ley de Newton para sistemas no inerciales aplicada a la Tierra (ver corolario
len la pagina 274), obtenemos:

./ = - — ~
mi’ & Fpg +mg —2mad x 7
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Si estamos en caida libre, no habré otras fuerzas, de forma que F,, = 0. Dividiendo toda la ecuaciéon por m,
obtenemos:
F g —2@x 7
Descomponiendo & en segiin nuestro sistema de referencia situado sobre la superficie de la Tierra, obtenemos:
W =wcos\j +wsen Ak

donde )\ es la latitud. Asi:

Gx7 =10 wcos\ wsen\| = (wcos A\ —wsen \y')i + wsen A\i'j — w cos ik

Como, por hipétesis ¢’ tiene la direccion de k, llegamos a las ecuaciones:

7' = 2wsen Ay — 2w cos \z’/
i = —2wi’sen A (5.2.1)
7 = —¢ +2wcos A\’

Como vemos, tenemos un sistema de ecuaciones diferenciales lineales. Para resolverlo, vamos a aplicar el método
de las aproximaciones sucesivas. Primero, supondremos que es w = 0. De esta forma, llegamos a las ecuaciones:

=0
i’ =0
2/:_9/

Como la particula parte del reposo es z’ (0) = 0,3’ (0) = 0,2 (0) = h, 2’ = (0),9" = (0), 2’ = (0), de forma que
llegamos a la conocida solucién:
1
=0 ¢y =0 z’:h—gg’t2

que se ensena en bachillerato.

Muy bien, la clave del método de aproximaciones sucesivas, es la siguiente. Ahora, daremos la solucion
hallada a orden 0 en w como valida y la usaremos para hallar volver a hallar las ecuaciones para &’,§ y 2.
Tenemos:

= 0 7y =0 2 =—g't
Sustituyendo estos valores en las ecuaciones [5.2.1] obtenemos:
¥ = —2wcos A (—g't) = 2wcos \g't
i =0

Resolvemos este nuevo sistema. La solucion para las componentes 3’ y 2z’ sera la misma que antes. No obstante,
la de 2’ cambiara:

¥ =2wcos\g't & i’ = A+ / 2w cos A\g'tdt = A + wg' cos \t?
Como debe ser & (0) = 0, obtenemos que A = 0.

/
A
&' =wg' cos \t? & o’ = B+ /wg’ cos \t2dt = B + %t?’

Como debe ser z (0) = 0, obtenemos que B = 0. Asi, nuestra solucion queda:

) wg’ cos /\t?’
3

/

Yy =0 Z=h-1igt

Por dltimo, para hallar la distancia que se desvia en funcién de la altura, despejamos ¢ de la ecuacién en z’.

Sabemos que cuando la particula impacte contra el suelo, sera 2z’ = 0.

1 2h 2h
z'=O<:>h:fg’t2<:>t2:—/<:>t: =
2 g g
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Sustituyendo en la expresion para z’, obtenemos:
3
,  wg'cosA (2h)?
r=——->"1"—
3 [

Estudiemos la expresién dada por la proposicion anterior [104 en la pagina 276y introduzcamos unos valores
numéricos para ver la magnitud del efecto. Si dejamos caer un objeto en un pozo de 100 m de profundidad de
una mina situada en el ecuador, el objeto se desviaria unos x’ & 2,2 cm hacia el este.

Q.E.D.

Observacion 84. Notese que existe una solucion exacta para el sistema de ecuaciones[5.2.1 en la pagina anterior]
ya que es un sistema lineal de primer orden (haciendo un cambio de variable sencillo). Vedmoslo:

7' = 2wsen Ay’ — 2w cos Az’
i = —2wi’ cos A
7 = —¢ + 2w cos \1’

Si tomamos x1 = @', 20 = ¢ v w3 = Z/, llegamos al sistema de ecuaciones:
9 bl

T1 = 2wsen A\xa — 2w CoS AT3

To = —2wT1 COS A
T3 = —g' + 2w cos Az
Obtenemos el sistema matricial:
T 0 2wsen A  —2wcos A T 0
To | = [ —2wsen A 0 0 To | + 0
T3 2w cos A 0 0 x3 —g

~—— ——  N——
=X :

|
kS
[
I
s}

Cuya solucién viene dada por:
t
X (t) = e X + / e"TAB (1) dr
0

En nuestro caso es Xy = (0). Asi que la solucion es tinicamente la solucion particular. Las expresiones matema-
ticas de la solucién salen complicadas. La mas sencilla es justo la que queremos calcular.

__gtcos\  gcosAsen (2wt)
2w 4w?

2’ (t)

En la solucion exacta es, por supuesto, y' (t) # 0. De hecho, ¢’ (t) <0Vt > 0;0 < A < 7. Por tanto, la fuerza de
Coriolis provoca también una desviacion hacia el ecuador, aunque esta desviacion es mucho menor la existente
en la direccion .

Observacion 85. Si estudiamos el problema desde un sistema de referencia inercial S, como la tnica fuerza que
actua es la fuerza gravitatoria, nuestro objeto describiré una conica. Como lo dejamos caer libremente, la 6rbita
descrita sera una elipse. Veamos que la energia de la 6rbita asociada seria menor que la de una o6rbita circular.
En ambos casos, la energia potencial asociada serd la misma y Gnicamente variara la cinética. La velocidad de
la 6rbita circular es:

GM m
e =1/ —— =790 —
v R S

Mientras que la velocidad de nuestra particula, suponiendo h < R es:
w(R+h)~wR = 464,5 =
S

En consecuencia, la energia serd menor que la de una orbita circular y serd a < R + h.
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5.2.3.2. Movimiento sobre la superficie de la Tierra

Proposicion 105. Sea una particula de masa m que se mueve hacia el ecuador sobre la superficie de la Tierra.
Supongamos que sobre ella no actian otras fuerzas ademds de la gravitatoria y la fuerza normal del suelo. Si
la particula se encuentra en el hemisferio norte, la fuerza de Coriolis la desviard hacia su derecha, mientras
que en el hemisferio sur la desviard hacia su izquierda. En ambos casos, se desviard hacia el oeste. Ademds, la
aceleracion de la particula viene dada por:

7 = —2wri’ sen \i

donde X\ es la latitud.

Demostracion. Por el corolario 43 en la pagina 274l tenemos:

—

mr’ & Fpg +mg —2md x 7

Por hipétesis, sobre la particula no actiian otras particulas mas alla de la gravitatoria y de la normal; por ende,
ﬁng =N. Ademas, si la particula se desliza sobre la superficie de la Tierra, la fuerza gravitatoria se compensa
con la normal, de forma que tenemos: ) )

7= 20 x 7'

De esta forma, si la particula se encuentra en el hemisferio norte, la fuerza de Coriolis la desviara hacia su
derecha, mientras que en el hemisferio sur la desviara hacia su izquierda. En ambos casos, se desviara hacia
el oeste. Si llamamos A a la latitud de la particula, podemos describir la fuerza de Coriolis que actia sobre la
particula como sigue: )

7 = —2wi’ sen \i

pues el 4ngulo que forman los vectores & y 7" es justo A o 5 + A (dependiendo de si se encuentra en el hemisferio
norte o en el hemisferio sur. No obstante, como se da sen A = sen (g + )\), podemos usar la misma expresion
para ambos casos. Q.E.D.

Proposicion 106. Sea una particula de masa m que se mueve libremente sobre la superficie de la Tierra.
Supongamos que sobre ella mo actian otras fuerzas ademds de la gravitatoria y la fuerza normal del suelo.
Entonces, la fuerza de Coriolis crea un movimiento circular, cuyo sentido de giro (visto desde arriba) serd
horario en el hemisferio norte y antihorario en el hemisferio sur. Ademds, la aceleracion de la particula viene
dada por:

7= 2wcos)\9'c’fc—2wsen)\(l% X F’)
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Demostracion. Por hipotesis, sobre la particula no actian otras particulas mas alla de la gravitatoria y de
la normal; por ende, F,,, = N. Ademads, si la particula se desliza sobre la superficie de la Tierra, la fuerza
gravitatoria se compensa con la normal, de forma que al aplicar el corolario |43 en la pagina 274] obtenemos:

7= =20 x 7
Por otra parte, descomponemos & en funciéon de los ejes de nuestro sistema de referencia no inercial:
W =wcos\j +wsen Ak

y hacemos lo mismo con la velocidad:

oy
7

=i'i+4]

Asi, obtenemos:

=2 (wcos)\j—i-wsen)\fc) X (:ic'%—f—y'j) =-2 [—x”wcos)\fc—kwsen)\fs x F’} &

& 7' = 2wcos AP’k — 2wsen \ (l;: X F")

Como vemos el segundo término se corresponde con una aceleracion que es siempre perpendicular a la direccion
de la trayectoria. Es decir, la fuerza de Coriolis crea un movimiento circular. Al hacer el producto vectorial,
obtenemos que dicho movimiento circular produce una rotacién en sentido horario en el hemisferio norte y en
sentido antihorario en el hemisferio sur (visto desde arriba). Q.E.D.

Observacion 86. Segun la proposicion [106 en la pagina anterior] sobre una particula de masas m que se mueva
sobre la superficie de la Tierra aparecera una fuerza hacia arriba si ésta se desplaza hacia el este o hacia el oeste.
Este término es, por supuesto, muy pequeiio en comparacion con la gravedad aparente ¢'.

5.2.3.3. Consecuencias meteorologicas

Es por el resultado de la proposicion [106 en la pagina anterior| que las borrascas giran en sentido antihorario
en el hemisferio norte y horario en el hemisferio sur. Con los anticiclones ocurre justo lo contrario. En el
hemisferio norte tenemos:

Otro fendémeno meteorologico debido a la fuerza de Coriolis es la desviacion de los vientos alisios, que vienen
del noreste y se desvian hacia el oeste por la fuerza de Coriolis.
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[
\

Vientos alisios

5.3. El péndulo de Foucault

Definicién 102. Se llama péndulo de Foucault a un péndulo muy largo con un periodo de oscilacién mucho
menor que el periodo de rotacion de la Tierra.

Proposicion 107. Para un observador situado en la superficie de la Tierra en el hemisferio norte, la trayectoria
de un péndulo de Foucault de periodo Ty con oscilaciones pequenas viene dada por las ecuaciones paramétricas:

2 2
x' (t) = A’ cos (wit + @) cos <77,Ttsen /\) + B’ cos (w1t + ¢) sen <77,rtsen /\)

y' (t) = —A’ cos (wit + ) sen (277,Tt sen )\> + B’ cos (w1t + ¢) cos (277,Tt sen )\>

2 1 2
donde w1 = 27 % + 7= R~ % y T es el periodo de la rotacion de la Tierra, A, B', ¢, ¢ € R son pardmetros
0 0

que dependen de las condiciones iniciales y A es la latitud.
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Puede verse una animacion aquﬂ

Demostracion. Podemos suponer, sin pérdida de generalidad que tenemos atada una particula de masa m en
el extremo del péndulo. Como las oscilaciones son pequenas por hipdtesis, el movimiento se restringe al plano
horizontal, por tanto, 2/ = 0. Asi, la velocidad de la particula de masa m queda:

7=+
Por la segunda ley de Newton para sistemas no inerciales aplicada a la superficie de la Tierra (ver corolario
fen la pagina 274), tenemos:

mi’ = Fr +mg —2ma@ x 7

donde Fr es la tension ejercida por la cuerda. Calculemos el término de la fuerza de Coriolis. Para ello, des-
componemos W segun el sistema de referencia no inercial en funcion de la latitud A:

W :wcos)\j'—i—wsen)\fc

De esta forma, obtenemos:
—2m (w cos \J + wsen )J%) X i = —2mw cos A\J X (x’% + y’j) — 2mwsen Ak X i =

= —2mwi cos Mk — 2mwsen Mk x

Ihttps://drive.google.com/file/d/1S7gKb0gTuWOTOF6L2mf 01XvoPfqYyNyU/view
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En el producto vectorial anterior, el primer término tiene direccién vertical, mientras que la direcciéon del segundo
término esta contenida en el plano tangente a la superficie de la Tierra. Para ver que el término en la direccién
k es despreciable, hagamos unas cuentas rapidas. Si suponemos, A = 7 y @’ = 10 £, entonces obtenemos que el
modulo de dicho término es 1,5 %3¢, Luego, evidentemente es despreciable frente a g'.

Como las oscilaciones son pequenas por hipotesis, podemos aproximar la oscilaciéon del péndulo por un
movimiento armoénico con w% -9 De esta manera, despreciando el término en 12:, la segunda ley de Newton

L
queda:

=/

. B e . . .
oo frtmg —2wsen Ak X 7 + 2wcos A’k ~ —ng’ — 2wsen Ak x 7'

7
m

Al expresar la velocidad en sus componentes, llegamos a:

/
i = —gfx’ + 2wsen Ay

/
7= fgf_" — 2wsen A (x'j fy"%) &

/
../:_7 /_2 )\./
Y Ly w sen A\

;,Como resolvemos este sistema de forma sencilla? Pues, en este caso, interesa tomar el cambio de variable
z := 2’ + 4y’ y hacer cuentas con las ecuaciones que tenemos para obtener una ecuacion para z. Para ello,
sumamos ambas ecuaciones multiplicando la segunda por ¢. De esta forma, obtenemos:

/

9

i+ = -7 (2 +iy') +2wsen A (' —i1') &
g/
& i=—22+2iwsen ) (i +1') &
g g
S Z= —T¢ 2iwsen Az & Z + 2iwsen Az + TE= 0
/ 4 2
Como gf =wi = % yesw= ?ﬂ-, obtenemos:
0
4m 472
Z4+ —isen i+ — =0
T T

que justo tiene la forma de un oscilador lineal amortiguado débil, pues:

1 < 1 4x2>0 472 < 472 <
— — 5 < = ew<w
T T8 T2 T8 0

1 1
T>75<:>?<?0<:> —

De esta forma, por la proposicion |38 en la pagina 98| obtenemos que la solucién de nuestro sistema es:

2wy
z=e 75X (Acoswit + Bsenwit)

[sen? \ 1 2
donde A,B€ Cyw; =27 2 + ) ~ T En consecuencia, obtenemos las soluciones de nuestra ecuacion
0 0

al hallar la parte real y la parte imaginaria de z. Aplicando la férmula de Euler (ver proposicion
pagina 74) y llamando A :=a + bi y B := ¢+ di, obtenemos:

z = {cos (—277_Tt sen A) + isen (—277,Tt sen A)] [(a + bi) coswit + (¢ + di) senwqt] =

2 2
= [(a + bi) coswit + (¢ + di) senws t] [cos <—77,Ttsen /\) + isen (—;tsen /\>] =

2 2
= (acoswit + csenwit) cos (;tsen )\) + (bcoswit + dsenwit) sen (;tsen )\) +

=z’
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2 2
i |— (acoswit + csenwit) sen (,;jt sen A) + (beoswit + dsenwt) cos (,;ft sen A)]

:y’
Los términos marcados entre paréntesis son soluciones de un oscilador arménico. De manera que, por la propo-

sicion |36 en la pagina 89| sabemos que existen A’, B’, p, ¢ € R tales que podemos expresar la solucion anterior
como sigue:

2 2
x' (t) = A’ cos (wit + ¢) cos <77Itsen )\) + B’ cos (w1t + ¢) sen (,;,Ttsen /\>

2 2
y' (t) = —A’ cos (w1t + ¢) sen (,;_Tt sen )\) + B’ cos (w1t + ¢) cos (,;_Tt sen A)

Q.E.D.

Observacion 87. En el polo norte, un observador inercial no veria el péndulo de Foucault girar. Sin embargo,
un observador no inercial si que lo verfa girar. Lo primer se debe a que para el observador inercial las tnicas
fuerzas que actian son la tension y la gravedad terrestre. Por tanto, para el observador inercial, el sistema
seria el péndulo de toda la vida. Sin embargo, para el observador no inercial, tendriamos las ecuaciones de la
proposicion [107 en la pagina 281| con A = 7, con lo que el observador no inercial si que verfa un giro.

En 1851, Foucault en el Panteén de Paris con datos m = 28 kg, L = 67 m y A = 48°50’, se obtuvo T'= 32 h
y Ty = 16 s.

5.4. FEfecto Larmor

Proposicion 108. Sea una particula de masa m y carga q sometida a una fuerza eléctrica generada por una

= 2V2mm
carga inmdovil ¢ y un campo magnético constante en el tiempo B tal que B < \[77_ donde T es el periodo
q

de la orbita eliptica que describiria q en torno al centro de fuerzas si fuese B=0. Si, ademds, las cargas q y ¢
son de distinto signo; entonces, para un observador inercial, la posicion de la particula viene descrita por:

l
€ COS <0(t)+%t—¢) +1

r(t) =

sistema de referencia no inercial sistema de refztjarenaa inercial

Puede verse una animacion aquﬂ

%https://drive.google.com/open?id=1yHLh9IteUknfzD0JLaDqCUHduNi7Q15i
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Demostracion. En esta demostracion vamos a usar la similitud existente entre la fuerza de Coriolis y la fuerza
magnética, en el sentido de que ambas son perpendiculares a la trayectoria. Para un observador inercial, la
segunda ley de Newton aplicada a la particula de carga q queda:

&2 Ko > 22 >
T Kqq, dr d“r kﬁ+idle
m dt

T A =it
donde aparecen los términos correspondientes a la fuerza electrostatica y a la fuerza de Lorentz y es k = K¢'q.
Bien, ahora nos hacemos la siguiente pregunta: jexiste un sistema de referencia no inercial con origen en el
centro de fuerzas de la fuerza de Coulomb tal que desde él en la segunda ley de Newton no aparecen términos
dependientes de la velocidad? Para un sistema de referencia no inercial que gira con velocidad constante w
respecto al centro de fuerzas del campo eléctrico, por la segunda ley de Newton para sistemas de referencia no
inerciales (ver teorema [30 en la pagina 266|), tenemos:

. d2R . .
’+qf”xB—md——mcD’><(cﬁxf“)—2m<d)'><77'>—md}><

. k
mr’ = ——=7¢ 2

7“/2

=0

donde el primer término marcado se anula porque es R = 0 y el ultimo término se anula porque es w = cte.
Dividiendo por la masa a ambos lados y reordenando términos, obtenemos:

7= I27‘”—a7><(c§><77’)—2(c3><77’>—iéxf”:
mr m
k _y q 5
- =G x @x ) —2[(8+ 55 B) x 7]
mr' 2 ( ) + 2m
De esta forma, vemos que, efectivamente si:
= q9 5
Ww=—-—B
2m

entonces el término dependiente de la velocidad (el término en 7) se anula. Bien, si nos quedamos con este
sistema de referencia inercial, al sustituir o, la segunda ley de Newton nos queda:

Notese que este segundo término siempre tiene direccion radial (#'), ya sea hacia dentro o hacia fuera.
Estudiemos el médulo del primer término:

|

— 7
mr' 2

:’k

mr' 2

Como la longitud del eje mayor 2a de una elipse es siempre mayor que la distancia de cualquier punto de la
elipse al foco se da siempre 2a > r’, tenemos:
L]

=2a— >r'—
a3 a’

A1
7

k
>2|—5
‘ma2

Y, por la tercera ley de Kepler (ver teorema 20 en la pagina 187)), tenemos:

k ,4m?
- mr' 2 T > T2
Como por hipétesis es:
2v/2mm q 2T q2 9 472
B« & BKL =& —B" <K —
qT V2m T  2m? T?
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tenemos:

q2 2
> By’ >
> 2m? -

NG
/2

q2 — —
———Bx (B X F’)
2m?

De esta forma, podemos despreciar el término que contiene al campo magnético en comparaciéon con el
originado por la fuerza de Coulomb. Insistimos en que esto so6lo es valido porque la fuerza centrifuga obtenida
(el término en B) tiene direccion radial.

Por consiguiente, la segunda ley de Newton en el sistema de referencia no inercial queda:

|-

k
mr! 2

A~/

Q

de manera que para el sistema no inercial la particula describe la misma elipse que describiria para un sistema
inercial si fuese B = 0. De esta forma, por la proposicion |71 en la pagina 166|, tenemos que la trayectoria desde
el punto de vista del sistema no inercial en polares queda:

’ r_pl 1 :l 4 / =
r'lecos (6" —6y) +1] =1« r' (0') ecos (0 —0y) +1

L2 . . . . .
donde [ = W Como es 7 = 7, al tener ambos sistemas de referencia el mismo origen, es 7 = 7’ y, asi, en
m
coordenadas polares en ambos sistemas de referencia, la componente radial sera la misma. Lo que variara sera
el angulo 6 que tendra un desfase que dependera de w y del tiempo y, por tanto, de B. No es dificil ver que la
relacion entre 0 y 6 sera:

=0 +wt+op

donde ¢ es un desfase inicial entre el sistema de referencia inercial y no inercial. Hemos hallado antes que es:

= q9 5
=——RB
w 2m
de forma que:
qB qB
0t)=06"(t) — =—t S0 (t)=0()+ —t—
=00-Ltroerm=00+i-y

donde el signo menos se debe a que & tiene direccion opuesta a B. Asi, la trayectoria vista desde un sistema de
referencia inercial vendra dada por:

l

r(t) =
ecos(ﬁ(t)—k%t—%—go) +1

Si llamamos ¢ := 6], + ¢, llegamos al enunciado. Q.E.D.

Definicion 103. Llamamos frecuencia Larmor a:

we L
2m
que es la mitad de la frecuencia del ciclotréon (ver ejemplo ).

Observacion 88. En electromagnetismo, el efecto Larmor se conoce como efecto Zeeman y se usa en espectros-
copia.

5.5. Las mareas
Definicion 104. Llamamos fuerzas de marea que ejerce un cuerpo de masa mso sobre una particula de masa
m situada sobre la superficie de otro cuerpo de masa m; al conjunto de las fuerzas gravitatorias generadas por

la masa mso que actian sobre la masa m vistas desde un sistema de referencia no inercial con & = 0 situado en
el centro del cuerpo de masa m;.
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5.5.1. Obtencion de las fuerzas de marea

Proposicion 109. Las fuerzas de marea que ejerce un cuerpo de masa ms sobre una particula mdévil de masa
m que se encuentra en la superficie de otro cuerpo de masa my vienen dadas por las erpresion:

- R 7
Fmarea = *GQO (m - 702>

donde G es la constante de gravitacion universal, R es el vector que va desde el centro del cuerpo de masa mq
al centro del cuerpo de masa my y 7 es el vector posicion de la particula de masa m con respecto al centro del
cuerpo de masa ms.

1%, "

- e > TN
R CM

Demostracion. Estamos ante el problema de dos cuerpos. Por la proposicién [85 en la pagina 224] sabemos que
ambos cuerpos orbitaran en torno al centro de masas. Escogemos un sistema de referencia no inercial con origen
en el centro del cuerpo de masa m. Aunque el cuerpo de masa m; rote sobre si mismo, escogemos el sistema
de referencia de tal forma que el sistema de referencia no rote; es decir, tal que @ = 0. Por la segunda ley de
Newton para un sistema de referencia no inercial (ver teorema [30 en la pagina 266|) aplicada a la particula de
masa m situada sobre la superficie del cuerpo de masa m1, tenemos:

d2-5 — — — - 2y - —
F—mw—mwx(wxr)—Qm(wXT)—mwxr

:l
mr =

donde D es el vector que parte del centro de masas del sistema y termina en el centro de la masa my. En nuestro
caso, como es W = 0, todos los términos excepto los dos primeros se hacen cero:

d2D

o
mr =

La F' que aparece en el término anterior puede descomponerse de la siguiente forma:

. Gmim ., Gmam ,
F=F,,— 7

2 r2
pues las fuerzas que actian sobre la particula de masa m son las fuerzas gravitatorias que las masas mi; y mo
ejercen sobre la masa m y el resto de fuerzas (no gravitatorias) que acttian sobre m.

Por otra parte, tenemos por la proposicion [84 en la pagina 216}

ﬁzﬁ;‘:%ﬁ

donde M = my 4+ ms. Como el sistema de referencia no inercial inicamente se encuentra trasladado respecto
de uno inercial situado en el centro de masas, por la proposiciéon [100 en la pagina 260] tenemos:

42D 5oy mo =
dt2 YT M
Ahora, por el teorema [22 en la pagina 215| tenemos que:
o Gmims » = Gmime »
R=—-——F—R&R=———F—R
K R2 LR2
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Sustituyendo, obtenemos:

dQﬁ _mag [ M  Gmims - . _Gm2]:2
a2~ M mimy  R2 T OR?
N——

1
W

Sustituyendo todo la hallado hasta la fecha en la ecuacion [5.5.1 en Ta pagina anterior] obtenemos:

.. _, Gmim Gmom Gma -
mi’ = Fng — —5—1 — ———7F—m|—-——"R| =
r r R
7 Gmim ., Gmam , n Gmng
= — 7 - 7
ng 2 r2 R2

fuerzas de marea

Las fuerzas de marea son justo los términos que son debidos a la masa ms por la definicion [104 en Ia pagina 286]

De esta forma tenemos: A
— 7 R
Fmarea = _GmZm ( )

2 R2
como querfamos demostrar. Q.E.D.

Lema 12. El teorema de Taylor-Young aplicado a la funcion:
1

fla)=——=

(1+2)°

nos dice que cuando x — 0, f (x) puede escribirse como:
f(@)=1-2z+o0(|z|)
Lema 13. El teorema de Taylor-Young aplicado a la funcion:
f@)=1+a
nos dice que cuando x — 0, f (x) puede escribirse como:
flz)=1+o(lz])

Corolario 44. Supongamos que la Tierra estd recubierta de océanos en su totalidad. Las fuerzas de marea que
ejerce la Luna sobre un dV de liquido de densidad p situado en la superficie de la Tierra vienen dadas por la
exTPresion:
o iR
Frarea = _GMLPdV <7_2 - .RQ>
donde My, es la masa de la Luna, R es el vector que va desde el centro de la Luna hasta el centro de la Tierra y
7 es el vector que va desde el centro de la Luna hasta la particula de masa m. Ademds, a lo largo de la direccion
de R =:1, las fuerzas de marea permiten la siguiente aproximacion a primer orden:

= 2GMppdV x -
Fmarea,m ~ Tl

donde x es la distancia a lo largo de la direccion de i al centro de la Tierra. Andlogamente, a lo largo del eje
perpendicular a la direccion R (llamaremos al vector unitario de dicha direccion j), las fuerzas de marea pueden
ser aprorimadas a primer orden de la siguiente manera:

= GMppdVy -
Fma'r‘ea,y ~ _Tj

donde y es la distancia a lo largo de la direccion de j al centro de la Tierra.

Este resultado no sélo es vdlido para estudiar las fuerzas de marea ejercidas por la Luna sobre la Tierra,
sino también para estudiar los efectos de las fuerzas de marea ejercidas por el Sol, cambiando la masa de la
Luna por la masa del Sol en las ecuaciones.
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Demostracion. Partiendo de la proposicion [104 en la pagina 286 obtenemos al sustituir mq = My y m = pdV:

- i R
Fmarea = —GMLPdV <73 - ?) (552)

A lo largo de la direccion de i = R, podemos descomponer la expresion anterior anterior como:

- 1 1 .
Fmarea,w = _GMLpdV <T’_2 - ﬁ) 1

Como, en este caso, es = R 4 x, tenemos:

B 1 1\.  GMppav [ 1 .
Fmaream:_ My pd —_— — — = — —1 —
S <<R+x>2 RQ)Z R (—(R;'?)Z )
GMppdv [ 1 . GMppdV 1 .
=TT R R+w2—1 1= — T2 m2—1 )
(“%%) 1+ %)

Como es x < R, podemos usar el lema [12 en la pagina anterior| para obtener una aproximaciéon a primer orden
de la expresion anterior:

_ 2GMLpdV:1:%

o . GMppadV ( T ) L

F marea,r ™~ T R2
Analogamente, a lo largo de la direccion de j’, podemos descomponer la expresion dada en la ecuaciéon Si

llamamos « al &ngulo que forman los vectores 7y R, podemos descomponer la expresion anterior como:

— 1 . R i
Farea,y = —GMppdV (r_2 [cos ai + sen aj} — #)
Viendo el dibujo de debajo de la proposicién deducimos:

Y
cosq = — senq = —
r T

Sustituyendo, obtenemos:

— 1 RA, Y~ i R 1 2 Y -
Fmarea,y = —GMLpdV (T_2 |:7Z + ;j:| — ﬁ) = —GMLpdV |:<’I"_3 — ﬁ) 1+ 7"_3]:|
Ya que, en este caso, es 72 = R? + 12, sustituyendo, obtenemos:
- R 1 N Y A
Fmarea = —GMppdV 3 T 59 ; —J
Y P ((R2+y2)g R2>1+R3]
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R 1 2 ~
:—GMLpdV 3 T oo ’l+%j =
2 2
(7= (1+ %))
R 1 2 ~
— —GMppdV || ———— - — z+%j =
2 2
& (14 4)
1 1 2 Y A
= —GMppdV _—_— =
LP R2 (1 y2 % R2 (s R?’]
%)

Sustituyendo en la expresion anterior, tenemos:

a 1 1Y\- A GMi pdVy
et () -2

Q.E.D.

5.5.2. Magnitud de las mareas

Proposicion 110. Supongamos que la Tierra estd recubierta de océanos en su totalidad. Las fuerzas de marea
que ejerce la Luna sobre la Tierra causan una diferencia de altura entre el punto mds bajo y el punto mds alto
del liquido que se puede aprorimar por la expresion:

_3M_R}
T 2MrR3

donde My, es la masa de la Luna, Ry es el radio de la Tierra, Mt es la masa de la Tierra y R es la distancia
que separa la Tierra de la Luna. La expresion anterior es vdlida para las fuerzas de marea ejercidas por el Sol
sustituyendo la masa de la Luna por la masa del Sol.

S

Demostracion. Probemos, primero, que las fuerzas de marea dadas en la proposicion [I09 en Ta pagina 287] son

conservativas:
s R 7
Fmarea = _GmZm <_ - 5

R2 r2
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Claramente, el término anterior tnicamente depende de posiciones, luego sblo tenemos que determinar que el
rotacional de la expresion es cero para ver que la fuerza es conservativa:

R 7

V X Frarea = V X

Como el rotacional es un operador lineal, obtenemos:

. . R -
V X Fharea = —Gmam |V X — —V X —

R2 2
=0

. . R —
donde el primer término se anula porque i cte. De esta forma, obtenemos:

= _ - r
V x Enarea = GQOv X ﬁ

y este término se anula porque % se corresponde con una fuerza descrita por la ley cuadratica inversa. Y por
nuestros conocimientos del temz: 3, sabemos que una fuerza asi es conservativa, por lo que su rotacional seréa
nulo. Asi V x ﬁmarea =0 y las fuerzas de marea son conservativas.
Sabemos que la superficie del agua es una superficie equipotencial. Por tanto, para un dV de liquido de
densidad p sera:
|4 (P) =V (Q) g V;narca (P) + pdVghl = Vmarca (Q) + pdVghQ

pues las tnicas fuerzas que actiian sobre un dV de liquido son las fuerzas de marea y las fuerzas gravitatorias.
Llamando: h := hy — hy (que es justo la diferencia de alturas, lo que queremos obtener), llegamos a:

Vmarca (P) + pdVgh = V;narca (Q) a4 pdVgh = V;narca (Q) - V;narca (P) (553)

Y, por el corolario |3 en la pagina 24] tenemos:

Q P
Vmarea (Q) - Vmarea (P) = - [WP‘}Q]marea = _/ Fmarea Sdir = / Fmarea -dr
P Q

Como la fuerza de las mareas es conservativa, podemos realizar la integral anterior por aquel camino que nos sea
mas facil. De esta forma, haremos la integral a lo largo del eje Y hasta el centro de la Tierra y luego a lo largo
del eje X hasta el punto P. Para ello, usaremos las expresiones halladas en el corolario [44 en la pagina 288|
Supondremos que la distancia de los puntos P y @ al centro de la Tierra es justo el radio de la Tierra. En

consecuencia:
P . 0 N —Rr .
/ Frarca - 7 = / Fmarea,ydy + / Pﬂmarea,acd-r ~
Q y=Rr =0

OGMpdV [22] BT
dy + ¢ LPV{I]

0 R i3 2

O GMppdVy Rt 9G M pdV x Rt GMppdVy
~— —dy + ——dx =
- R3 — R3
y=Rr z=0 y

0

_GMppdV [¢21T GMppdV ,  GMppdV ,  GMppdV .,
SR 2], TTm T op Mt s
_ GM,pdV R% 1+ 1) = §GMLpdVR%
B R3 2 2 R3
Sustituyendo en la ecuacion [5.5.3 obtenemos:
_3GMpdVR: 3GMLR?,
pdV gh ~ 5 IE & gh ~ 5 18
Ahora, podemos escribir g como sigue:
 GMy
=
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Sustituyendo en la ecuacion anterior, llegamos a:

GMy, 3GMyRY 3 MRj
RZ "7 2 RS " 2 MR8

Q.E.D.

Utilizando la proposicién [110 en la pagina 290, al introducir los datos numéricos M; = 7,35 - 10%? kg,
My =5,98-10** kg, , Ry =6,37-10m y R = 3,84 - 10% m, llegamos a:

hr, =~ 54 cm

Haciendo lo mismo para los datos del sistema Tierra-Sol: Mg = 1,99 - 10%° kg, My = 5,98 - 10?4 kg,
LRy =6,37-10m y R =1,495- 10'' m, obtenemos:

hs ~ 25 cm

De esta forma, vemos que aunque la diferencia de alturas debida al Sol es menor que la debida a Luna, la
diferencia de alturas debido al Sol no es despreciable frente a la de la Luna. Esto hace que si es Sol y la Luna
esté alineados, entonces sus efectos se suman y causan una diferencia de alturas de hy = hy, + hg = 79 cm;
este efecto se conoce con el nombre de mareas vivas. [gualmente si el Sol y la Luna estan justo en direcciones
perpendiculares, entonces su efecto se resta obtendriamos una diferencia de altura hpy = hy — hg ~ 29 cm; este
fenbmeno se conoce con el nombre de mareas muertas.

Si bien es cierto que la aproximaciéon que hemos introducida es correcta, especialmente en el centro de
los océanos mas grandes, la situaciéon real incluye muchas complicaciones; ante todo, la existencia de masas
continentales. Esto puede contribuir tanto a crear mares més grandes o mas pequenas que las calculadas. Por
ejemplo, un mar pequeno, como el Mediterraneo o el Mar Negro tendra mareas mas pequenas que las predichas
por nuestro modelo porque las masas continentales aislan dichos mares de los océanos més grandes. De forma
similar, las masas continentales pueden bloquear las mareas de un gran océano, confinandolas y creando, de
esta forma, mareas de mayor amplitud.

El tnico aspecto del que no hemos hablado todavia es por qué las mareas son diferentes cada dia. Esto se
debe a que la posicion de la Luna en el cielo es diferente cada dia. Esto, a su vez, a que el periodo de rotacion
de la Luna en torno a la Tierra es mayor que el periodo de rotacién de la Tierra.
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Apéndice A

Registro de cambios

A.1. Version 1.0.0

Primera version de los apuntes.

A.1.1. Version 1.0.1

Corregido el hecho de que hasta el capitulo tercero no aparece la secciéon en el encabezado.

En la proposicién 68, en la pagina 161, se ha cambiado «y la velocidad el momento circular viene dada
por la expresion:» por «y la velocidad del momento circular viene dada por la expresion:».

En la solucién del ejercicio 10 en la pagina 164, se ha anadido un espacio entre «por la proposicién 68 en
la pagina 160» y «tenemos».

Se ha cambiado el nombre de la seccion 3.4.2 de «Orbitas para la ley cuadratica inversa» a «Orbitas y
trayectorias para la ley cuadratica inversay.

En el ejemplo 8 en la pagina 31 se ha cambiado «otra bola que impacta con la varillay por «otra bola que
impacta contra la varillay.

En todos los dibujos de la seccién 1.7.1 «Expresion de la posicion, la velocidad y la aceleracion en coor-
denadas cilindricas y esféricas (ejercicio para casa)», se ha cambiado ¢ por ¢ para que cuadre con el
texto.

En la demostracion del lema 3 en la pagina 60, hemos cambiado el parrafo:

Asombrosamente, se cumple:

or; .
or;  oF dt g OF ,
G TR dt iy Njj=1,...,n
dg;  dt 0q; 94 9g; g

dt

por:
Asombrosamente, por el teorema de la funcion inversa, se cumple:

or; .

dt _ ori -

= = — = = = VZL,N, 21,...7

8qj 8(1]' dt dt 8%‘ 8Qj (9(]] ! J "
dt

oF;  OFdt  OF; dt
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A.1.2. Version 1.0.2

Al comienzo de la demostraciéon de la proposicion 105, en la pagina 276, se ha cambiado:
mi’ & Fny 4+ mg — 2ma x 7

por:
mr’ ~ F,y +mg —2mad x 7

En la demostracion de la proposiciéon 106, en la pagina 277, en la expresiéon matematica que viene a
continuacion de «Asi, obtenemos:», se ha llevado a cabo el siguiente cambio:

7 =—2m (w cos \J + wsen /\l;:) X (i’% + y'}) = -2 {fx"wcos)\l;: + wsen Ak x F’} &

por:
=2 (wcos bYi —&-wsen)\ﬁ:) X <a:’i + y’j) =2 [—Jb’w cos Mk + wsen Mk x F"} &

A.1.3. Version 1.0.3

En la demostracion de la proposicion 31 en la pagina 81, en la referencia dada a la proposicion 24, no se
mencionaba la pagina donde aparecia esta dltima; dicha pagina es la pagina 74.

Se ha cambiado el nombre de la seccion 1.8 «Coordenadas generalizadas, ligaduras y sistemas» a «Coor-
denadas generalizadas y ligadurasy.

Se ha cambiado el nombre de la secciéon 1.8.2 de «Tipos de sistemas» a «Coordenadas naturales y forzadasy.

A.1.4. Version 1.0.4

En la primera oracién de la demostracion del teorema 9 en la pagina 51 se ha cambiado «toeremay por
«teoremay.

En la primera oracién de la demostracion del teorema 14 en la pégina 64 se ha cambiado «toerema» por
«teoreman.

A.1.5. Versi6on 1.0.5

En el ultimo parrafo de la pagina 269 se ha cambiado «que actiia sobre particulas que se mueven en la
direccion radial de la tierra se dirige hacia el este tanto el hemisferio norte» por «que actiia sobre particulas
que se mueven en la direccion radial de la Tierra se dirige hacia el este tanto en el hemisferio norte»

En la tltima oracién de la observacion 83 en la pagina 273 se ha cambiado «Si medidos experimentalmente
el valor de la aceleraciéony por «Si medimos experimentalmente el valor de la aceleracion».

En el texto situado sobre la ultima expresién mateméatica que aparece en la demostraciéon de la proposicion
104 en la pagina 274, se ha cambiado «que se desvia en funcién de la altura, despejamos ¢ d e la ecuacién
en z'.» por «que se desvia en funcion de la altura, despejamos t de la ecuacién en z’.»

A.2. Version 1.1.0

Anadido el ejercicio 12 en la pagina 228. Como consecuencia, a partir de este momento hay un desfase en
el namero de las paginas con respecto a la versién 1.0.5.
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= En el enunciado del corolario 33 de la pagina 209 se ha cambiado:

- X

¢disp ~ ¢incnblUX = Nin,(ty

. X

Odisp ~ QincnblaX = Nincj

por:

. X

d)disp ~ ¢incnblUX = QD”"CX

. X

Odisp ~ QincNpo X = Q’i,m;y
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