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Lain-Calvo-Cano-Guerrero

Capitulo 1

Sistemas de particulas

1.1. Descripcion del Sistema

Postulado 1. Consideramos que cualquier cuerpo material estd formado por un conjunto de particulas lo
suficientemente pequenias como para suponer que son puntuales, pero mo tan pequenas como para tener que
trabajar con fisica cudntica.

Postulado 2. Sea un sistema de N particulas. Las particulas que integran dicho sistema pueden interactuar
entre ellas y pueden estar sometidas a fuerzas externas.

Notacion 1. Cuando tengamos un sistema de N particulas, a cada particula le asignaremos un subindice (un
namero natural) desde ¢ = 1 hasta i = N. A la fuerza interna que acttia sobre la particula i-ésima debido a
la particula j-ésima la vamos a denotar con F’ij; es decir, primero escribiremos el indice de la particula que
recibe la accion y después el indice de la particula que la genera. Por otra parte, a la fuerza externa que actia
sobre la particula i-ésima la vamos a denotar con un solo indice: F;

Postulado 3. Una particula no puede hacer fuerza sobre si misma, luego F;=0Vi= 1,...,N.

Teorema 1 (Equivalencia entre cuerpos con volumen y sistemas de infinitas particulas). Sea un cuerpo con
volumen, cuyos puntos forman el conjunto V-.C R™, siendo V medible Lebesgue y sea p: V — R la funcion
densidad volumétrica asociada al cuerpo tal que p es continua en casi todo punto de V 1y estd acotada en
mddulo en V' por una constante R € [0,00). Ademds, sea f : V — R™ (con n € N) continua en casi todo
punto de V' y también acotada en norma por una constante F € [0,00). Entonces, existen dos sucesiones

{mN;i}gi]pn Yy {FN;Z-}Z(»ZP” (que dependen de N € N) tales que:

2N)"

[ pers@av = i > it ()

conmy; ERyriy; €V Vi=1,...,(2N)" AVN € N.

Observacion 1. La demostracion del teorema [If no estd al alcance del estudiante de fisica de segundo de
carrera, pues para su comprension hacen falta conceptos de teoria de la medida y, sobre todo, de la integral
de Lebesgue.

No obstante, el resultado anterior es fundamental en fisica; ya que implica que un cuerpo (sélido, liquido
o gas) puede interpretarse como un sistema de infinitas particulas. Es decir, nos va a permitir extender todas
las leyes que conocemos para un sistema de particulas a cualquier cuerpo con un volumen.

/fo = ///Vp(F)f(F)dV (1.1.1)

Demostracion. Usaremos la notacion:
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més acorde con la teorfa de la integracion de Lebesgue. Como, p y f son continuas en casi todo punto, p y
f son integrables Lebesgue. Dado que el producto de funciones integrables es integrable, la integral anterior
esta bien definida.

Esta demostracién va a ser larga, por lo que vamos a elaborar un esquema de los pasos a seguir:

1.

10.

11.

. Particionaremos el recorrido de g en «hipercubos» K, ..

. Crearemos una sucesiéon de conjuntos En.;, .

Como p y f son continuas, podremos restringir la integral de la ecuacion [1.1.1 en la pagina anterior| a
un conjunto W C V en el que f y p sean continuas.

. Probaremos que g := pf estd acotada en moddulo por una constante G. Por tanto, cada una de las

componentes de g también esta acotada por G.

o
. Definiremos una sucesién de conjuntos medibles {{TNZ}Z]\; —( N_l)}]v ) Para un N fijo, los conjuntos

Tn; son disjuntos entre si y ademas:

N
[_Gv G] = U TN,i
i=—(N—1)

medibles, disjuntos entre si y cuya uniéon

stn

s [-G,G]".

medibles que son disjuntos entre si y cuya unién es W.

stn

. Construiremos una sucesiéon de funciones {gj\z}})\,oz1 a partir de los En.;,, ., que converge a g cuando

N — oco. Ademas, ||gn|| < G VN € N.

Usaremos el teorema de la convergencia dominada para demostrar:

= i
/Wg Ngﬂoo WQN

. Con el fin de aligerar la notacién cambiaremos los multiples indices i1, ..., 14, por un unico indice i.

. Expresaremos fW g como:

/ g—]\}gnoozl']/ Z TN@ fj TN@)XE]\”

siendo Z; el vector unitario j-ésimo de la base canoénica de R".
Demost den obt iones de funci impl dibles {p{ 1} o e
€mos oiaremos que ii pueden obtener sucesiones de funciones simples medibles { pN} Ne1’ { pN} Ne1’
j,+} { j,—} Vi=1 :
=1,...,n tales que:
{ N N1 y N Ne1 J ) ) q
(2N)™

/ Z (") 12 ( TNz)XENZ—/ P}ff\'fr—/ PNf]{}+—/ P}fzjx'}ﬂL/ ijvfzjv’i
w W w W

donde P} i, ON fj PN fN PN f]\’f también son funciones simples. Con esto, hemos conseguido ex-
presar fW pf como la suma de integrales de funciones simples.

. . . 2N)" | *°
Existe una sucesion de nimeros reales {{m Nﬂ'}z(‘*l) } tales que:
B N=1

(2N)™ (2N)™

/z () £ () e, = 3 mivaf? ()
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12. Llegamos al enunciado volviendo a unir todos los términos mediante la expresion dada en el punto

[la pagina anterior|

Dicho todo esto, podemos comenzar:

1. Notese que pf seré continua en donde f y p sean ambas continuas; ya que la composicién de funciones

continuas es continua. Llamemos C] al conjunto en el que p no es continua y C5 al conjunto en el que f
no es continua. Por hipdtesis es me (C7) = me (C2) = 0, ya que p y f son continuas en casi todo punto
de V. Por tltimo, denominemos W al conjunto W := V\(C;\C5. Como tanto p como f son continuas en
W, pf seré continua en W. Bien, ahora reescribamos la ecuacién [1.1.1 en la pagina 3f

/foz/Olprr/CprJr/V\cl\Czpf:/Wpf
= T

donde los términos marcados se anulan, pues la integral de cualquier funcién a lo largo de un conjunto
de medida nula es nula.

. Definimos g := pf. Como, por hipdtesis, p esta acotada en moédulo por R en V' y f estd acotada en
norma por F en V| g estara acotada por:

lgll = llefll = lplllf]| < RF = G
en W. Antes de proceder, notemos que:
7 (A <lgP <G VWeWAVj=1,...,n

donde con ¢’ nos referimos a la componente j-ésima de g. Asi, sabemos que la componente j-ésima de
g (7) variara como mucho de —G a G.

. Definimos los conjuntos:

(i-1)G iG\ .
Tn;i=|———, — =-(N-1),...,N-—-1 N
V. [ P B VTS A VYN €N

N-1)G NG] :[N—l
N

(
T = —_ N
N,N [ N N G,G| VN eN
[o.¢]
De esta forma, hemos definido una sucesiéon de conjuntos: {{TNz}Z]i —( N_l)}N X Noétese que estos

conjuntos son medibles pues son intervalos de R y todo intervalo de R es medible.
Probemos que para un N fijo, estos conjuntos son disjuntos entre si. Sea « € Ty ; y veamos que « ¢ T ;

Vj # i,

» Siie{—(N—-1),...,N — 1}, entonces, por definicién de T ; se cumple:

1—1 iG
G<zr<—
- N
Si es j > i, entonces es j > i + 1 y, en consecuencia:
Jj—1 1+1-1 iG
G > G=—>z
N - N N
Luego « ¢ T ; si j > i. Por otra parte, si es j < i, entonces es j < i — 1y, por consiguiente:
iG i—1
— < G<«zx
N = <

Luego = ¢ Ty ; si j <i. Por ende, x ¢ T ; Vj # i.
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» Sii= N, entonces por definicién de T y se da:

N -1

Necesariamente es 7 < N — 1, pues no puede ser j > N. De esta forma:

Luego « ¢ Ty ; Vj # i.

Por tanto, los conjuntos T ; son disjuntos entre si. Ademas, probemos ahora que es:

i=—

N
-G, G = Tn (1.1.2)
(N-1)

Probaremos esto por doble contenido.

» D:Seax € Ty, para algini € {— (N —1),...,N}.

e Sies i < N, entonces por definiciéon de Ty ; tenemos:

1—1 1G
G<r<—
<z N

Como es i > — (N — 1) e i < N, obtenemos:

-N ~-N+1-1 —~(N-1)—1 i—1 iG N
G_NG N G N G < NG_:U<N<NG G

Por tanto x € [-G, G].
e Siesi= N, entonces por definiciéon de Ty y tenemos:
N -1

TGSxSG

Como % > 0, obtenemos:
N-1

-G <0< G<zx <@

Luego z € [-G, G].

» C: Sea z € [—G, G]. Vamos a demostrar por reduccion al absurdo que = debe pertenecer a algin

Tn,;. Por tanto, supongamos que = ¢ Ty; Vi = — (N —1),...,N. Vamos a probar que, bajo este

supuesto y sabiendo que es x > —G, debe ser necesariamente x > G, lo que es absurdo. Vamos a

probar esto tltimo por una especie de «induccién» sobre 1.

e Como z ¢ Tn;Vi=— (N —1),...,N, en particular, z ¢ Ty _(ny_1). Luego, por definicion de
TN7_(N_1), tenemos:

—-(N-1)-1

s W=D=1ln N gy p>ZW=D

N N - N ¢

Como es x > —(G, debe ser:
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e Suponiendo que es x > %G, veamos que es T > %G siempre que sea i < N. Como = ¢ Tn 41,
tenemos que es:

i+1-1 i 1+1
<——G=—=G V > G
v N N =N
Como es x > %G, debe ser x > H'TlG.
e Por ultimo, sea ¢ = N. Utilizando el argumento visto hasta la fecha hemos probado que

necesariamente es x > %G. Veamos que tiene que ser > G. Como x ¢ Ty n, por definicion

de Ty N, se da:
N-—-1

N
T < G Vv m>NGfG

Como es x > %G, debe ser z > G.

Con esto llegamos a absurdo pues era —G' < x < G. Asi, x debe pertenecer a algin Ty ;.

En consecuencia, se cumple la ecuaciéon |1.1.2 en la pagina anterior]

4. Definimos los conjuntos K., .. 4, como:

KN;i1,...,in ::TNJ'1 X e XTN,in Vil,...,in:—(N—l),...,N A VN € N

donde n es la dimension del espacio de llegada de f: R™. Para que el lector pueda hacerse una idea de
lo que acabamos de hacer, es como si hubiéramos partido [—~G, G|" en «hipercubos» cerrados por unas
hipercaras y abiertos por otras.

Los conjuntos Ky, . 4, son medibles, pues se han obtenido como producto cartesiano de conjuntos

medibles (los T,; son medibles por el punto [3 en la pagina 4)).
Ahora queremos demostrar que los conjuntos K., . ;,son disjuntos entre si. Sea y € Ky, .. ,, en-

tonces, por definicion de Ky, 4, serd y’ € Tni; Vj=1,...,n, donde con el superindice j indicamos
la componente j-ésima de y. Como T, es el Gnico conjunto Tl ; que contiene a y’ por el punto
len la pagina 4| (y este argumento es valido para todo 7 = 1,...,n), el Gnico conjunto que se puede

expresar como producto cartesiano de los Ty ; que contiene a j es, precisamente Ky, . i, (el conjunto
de partida). De esta forma, los conjuntos K., ;. heredan la propiedad de ser disjuntos de los T ;.
Por ultimo, nos queda ver que, efectivamente:

N N
-c.ar= | - KNy, (1.1.3)
i1=—(N=1)  in=—(N—1)

Probaremos esto por doble contenido:

» C: Sea y € [~G,G]". Entonces serd y/ € [-G,G] Vj = 1,...,n donde con y/ denotamos la
componente j-ésima del vector y. Por el punto |3 en la pagina 4] sabemos que existe un (tnico)
ij€e{—(N—-1),...,N} tal que ¢/ € Tnyi; Vj =1,...,n. De esta forma, sera:

Y € TN,il X TN,ig X oo X TN,in = KN.‘

Asi Y € KN;il,...,in~

= D:Seay € Kni,.. i, Porla definicion de Ky, . 4., tenemos que yl € Tng; Vj=1,...,n. Porel
punto |3 en la pagina 4] sabemos que 3/ € [-G,G]Vj =1,...,n. Porello, y € [-G, G]".

Asi, efectivamente, se cumple la ecuacion [1.1.
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5. Definimos los conjuntos:
ENsin,iin = {7 €W t.q. g (F) € Ky, }

Como g es integrable Lebesgue por el punto [I en Ia pagina 4] en particular serd medible. Como g es
medible, la antiimagen de cualquier conjunto medible es medible. Ya que los K., ... 4, son medibles por
el punto (4 en la pagina 4}, los En;;, .. ;,también lo seran.

A continuacién, veamos que los En;, .. 4, son disjuntos entre si. Para ello, usaremos reduccion al absurdo.
Supongamos que existe un 7 € W tal que ¥ € Enyy,.. i AT € Enyy,. g, cOn Eng i 7 ENgiy,in-
Entonces, g (7) cumpliria g () € K., i, A g(7) € Knijy, g con Knuiy i # KNy j. ¥ esto es
absurdo, pues, por el punto (4 en la pagina 4| los K., .. i,son disjuntos entre si.

Por dltimo, debemos demostrar que:

Probaremos esto por doble contenido.

» C: Sea i€ W. Entonces, g () € Im (g). Por el punto |2 en la pagina 4 sabemos que g esté acotada
en norma por G. Luego, se da Im (g) C [-G, G]". Como, por el punto 4 en la pagina 4| es:

G
N N
[-G.G]" = U U Knjiy,in
= (N=1)  in=—(N—1)

necesariamente existen ii,...,i, € {— (N —1),..., N} tales que g (7) € Kny, .. i,. Por definicion
de Engy,..insse da ™€ Engy .-

= D: Sea 7 € Eny,,...i,- Por definicién de En;, . 4., es 7€ W.

6. Para cada uno de los conjuntos definidos en el punto [5 en Ta pagina 4] escogeremos un representante que
llamaremos 7y, . 4, de la siguiente forma:

. cualquier 7€ W si EnNgiy,in =0
PN eoin = A : e
ALyeetn cualquier 7 € Enyy i, S Enuy,in 0

Ahora, definimos la sucesion de funciones gy VN € N como:

N N

gvi= D> > g (PNiirin) XBxy i (7) (1.1.4)

i1=—(N—=1)  in=—(N—1)

donde x Enuy es la funcién caracteristica asociada a En, ... ;, que viene dada por:

,,,,, in

1 si 7€ Eniy..i . .
o = aetn =—(N-1),...,N
XEN;” ,,,,, in (fj {0 si 7?¢ ENVL‘L”" VZ17 yin ( )7 ’

in

Veamos que la sucesion {gny}x_; converge a g. Sea 7 € W. Por el punto [5 en la pagina 4] sabemos
que existe uno y sélo un En;, . 4, tal que 7 € Eny, . i.. De esta forma, todos los sumandos de la
expresion seran nulos salvo el que contiene a x ENyiy,orin Es decir, sera:

,,,,,

—\

IN (7) = 9 (PNsir,ein) XBniiy i (F) = 9 (PN i)
—_——

Como tanto 7 como T, ...i, pertenecen a En.;, i sedard g (7) € Ky, in ¥ 9N (F) = g (FNiy,.in) €
Knii,...in- Por tanto, ¢/ (7) € Tivi; y gn (F) = ¢7 (FNyin,.in) € T, Paraalgini; € {— (N —1),..., N}
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donde con el superindice j indicamos la componente j-ésima de las funciones g y gy. Por la definicion
de los Ty ;, tenemos que:

e, by izl i, i, 1, G
’QN(F) g(ﬂ‘SNG NN TN RO

Cuando N — oo, g{v (7) — ¢’ (f‘)‘ — 0, luego ggv (7) FYEV ¢’ (7). Como el argumento anterior es valido
—00

para todo j = 1,...,n, gy (¥) converge a g (¥) componente a componente y, por tanto, converge. Es
decir, se da:

lim gy (F) =g (F) VreW
N—o00

Por tltimo, probemos que es ||gn (F)|| < G Ve W A VN € N. Sea ¥ € W. Siguiendo el mismo
argumento que antes, obtenemos que:

gn (M) = 9 ("Niiy,..in)

Por tanto:
llgn (M) =119 (FNiy,i)ll S G VFEWAVYN €N

pues g esta acotada en norma por GG como vimos en el punto [2 en Ia pagina 4]

7. Planteamos la integral fW g, que esta bien definida por el punto |1 en la pagina 4[ Utilizando la sucesién
construida en el punto [6 en la pagina 4] obtenemos:

- 1
/Wg /W Ngnoogjv

pues gy N—> g. Como, ademaés, por el punto[6 en la pagina 4} se da ||gn|| < G donde G es una constante
—00

y, en consecuencia, integrable Lebesgue, podemos aplicar el teorema de la convergencia dominada para
sacar el limite fuera de la integral. Asf:

= i
/Wg e WQN
8. Nuestro objetivo es realizar una correspondencia biyectiva entre A := {— (N —1),...,N}" y B :=
{1,...,(2N)"}. Lo primero, notemos que ambos conjuntos tienen el mismo ntimero de elementos, pues:
[Al=(N—(-(N-1)+1)"=(N+N-1+1)"=(2N)"
|IB|=(2N)"—1+4+1=(2N)"
Luego una correspondencia biyectiva es posible. Definimos la aplicacion:

h: A — B
(il,...,in) — i:h(il,...,in)

donde:

i=2N)" i1+ N =1+ + (2N)*(in-2+ N = 1) + 2N (i1 + N = 1) + (i, + N) =

=1+ zn: (2N)"7 (i;+ N —1)
j=1

Licencia: Creative Commons 9


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 1. SISTEMAS DE PARTICULAS

Lain-Calvo-Cano-Guerrero 1.1. DESCRIPCION DEL SISTEMA
Por la definicion dada para ¢, dados (i1,...,iy,) esta claro que obtenemos un tnico posible valor de i.
Veamos que el reciproco también es cierto. Vamos a definir una aplicaciéon | : B — A y a verificar que
loh=1id.

() = (i1, ... in) =

Q(i_lJ‘N+1aV_l‘@N)”‘l(iﬁN—” ~N+41,...,

7j—1 n—1
i—1-Y (2N)" (i + N — 1) i—1-Y @N)" " (ix+N-1)
k=1 k=1
. ~N+1,..., ~N+1
(2N)" (2N)°
=1

donde con || indicamos «funcion suelo». Notese que para el calculo de i; es necesario haber obtenido
ij—1 con anterioridad. Probemos componente a componente que, efectivamente, [ o h = id:

j—1
i—1-=Y (2N)"" (i + N —1)
. k=1
! (2N)"
n 7j—1
1+> @N)" P iy +N—-1)—1— Z2N"kzk+N—l)
_ k=1 k=1 _N41=
(2N)"

n
> @N)"F (i + N - 1)
k=j

= : ~N+1=
(2N
) n
@N)"7 (i;+ N =1+ > @N)" " (ir+N-1)
k=j+1
. —N+1=
(2N
n
> @N)"F i+ N-1)
. k=j+1
=i, +N-1+ -N+1
! (2N)"
Por otra parte, como es iy, < N Vk =1,...,n, obtenemos:
n n n
DTN i+ N-1)< Y @N)"FeN-1)=@2N-1) Y @N)"F=
k=j+1 k=j+1 k=j+1
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n—j—1 n—i
1—(2N)" - _
(2N —1) 2N -1)————=-1 2N+ 2N)"
DI ) + (N < (2N)
Por tanto:
n
> @N)"F i+ N-1)

. ) k=j+1
2= |1, +N—1+ . —N+1=
J J (2N)n—]

eNU{0} -—

<1

=[i,;j+N—-1]-N+1=i;+ N-1-N+1=4;
Como este argumento es valido para todo j = 1,...,n, debe ser [ o h = id. Con esto, hemos demostrado
que h es suprayectiva. Necesitamos probar, también, que h es inyectiva. Para ello, tenemos que ver

que a n-tuplas distintas (i1,...,4,) # (J1,...,Jn) les corresponden imégenes a través de h distintas:
i="h(i1,...,in) # h(J1,...,Jn) = j. Para ello, haremos induccion sobre n.

= n = 1: Sean i1, j; € A. En este caso es:
Z:h(Zl):ll+N—1
j=h()=n+N-1
Trivialmente se da i = j & i = j1.

= Supongamos que la hipdtesis se cumple para n — 1 y veamos que también se satisface para n. Sean
(i1y yin), (J1y--eygn) €EAei=h(i1,...,in),J =h(j1,...,Jn). Estudiemos los siguientes casos:

e Si es i1 = j1, entonces, consideramos las n — 1-tuplas (ig,...,4,) ¥ (J2,-..,Jn). Por hipotesis
de induccién serd i = j < (i2,..., i) < (j2,...,7n) ya que es iy = ji. Es decir, serd i = j <
(i15 o yin) = (J1s- -1 Jn)-

e Si, sin embargo, es iy # j1, también consideramos las n — 1-tuplas (io,..., i) ¥ (J2,- .-, Jn)-
Llamemos i’ := h(ig,...,in) y j := h(j2,...,jn). Tenemos que ver que es i # j. Para ello,
estudiemos:

i=h(i1,... i) = (2N)"! (z’l—|—N—1)+§:(2N)”_k(ik+]\7—1)+1:
k=2

!

= (2N)"' (i + N = 1)+

G=h0n - dn) = @N)"T G+ N =1+ Y @N)" PG+ N —1)+1=
k=2

!

=@2N)" (i + N -1+
Por hipotesis de induccion, serd i’ = j' < (i,...,1n) = (J2,. -+, in).
o Sies i =7, entonces:
i—j=CN)" (G +N=1)+i =7 —CN)" (i +N-1) =

0

= (2N)""" (ir — 1)

L 2N)" >0 .
1/:]{:}2—]:0%21:]1

Como habfamos supuesto i; # ji, necesariamente sera i # j.

Y, claramente es:
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o Sies i # 7', entonces:

i—j=@N)""" (i1 — ) +i —j (1.1.5)
Por otra parte:
N (i = )| = @V i — il

Como es i1 # j1, serd |iy — j1| > 1y, por consiguiente:

’(2]\7)”‘1 (ix —jl)‘ > (2N)"! (1.1.6)
A continuacion, estudiemos:
n n
i3 = >N e N =)+ 1= @N) G N 1) - 1] =
k=2 k=2

n

Z 2N)"* (ir, — ji)

k=2

Por la desigualdad triangular es:

n

<N F i — gl

k=2

Dado que i, jx € {— (N —1),...,N} se da |ix — ji| < 2N — 1y, por consiguiente:

|i' — 5| gzn:(m)" FeN-1)=(2N -1 Zn:
k=2 k=2
n—2 n—
_ (2N —1) ; (2N) = (2N — 1) (2];7])\[_11_1 — N 1< N (11

Combinando las ecuaciones [T1.1.5] [1.1.6] y [T.1.7] obtenemos que es imposible que sea i = j,
pues ‘(QN)"_1 (i1 —jl)‘ > i — 5|

9. Este es un cambio a un s6lo indice usado frecuentemente en informética que permite pasar de varios

10.

indices a uno sélo. De esta forma, a partir de ahora denotaremos los conjuntos dados en el punto

la pagina 4 como En;; con i =1,...,(2N)", la sucesion {7ny,,...i, } y—q recibira la notacion {7y} _;

.,(2N)" y la sucesién de funciones dada en el punto [6 en la pagina 4| sera referida como:

N (F) = Z (7"Nsi) X B, (T)

Por el punto [2 en la pagina 4] sabemos que es g (7) = p (¥) f (¥) V7" € W. Por tanto, podemos expresar

la sucesiéon dada en el punto |6 en la pagina 4| como:

(2N)"

N () = Z (Pnsi) £ (PN3) X By ()

Por otra parte, sabemos que es:

¥ z):ij(FNz)ﬁj
j=1
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Sustituyendo en la ecuacién anterior, obtenemos:

(2N)"

N (1) = Z (Fv) [ DS (Fve) &5 | Xz, (F) =
j=1

n
n

N)
_Z Z p TN@ fj er)XENZ(F)‘TJ
7=1

=1

Sustituyendo en la expresion dada por el punto [7 en la pagina 4] llegamos a:

/ ]\}H)noo/ Z Z TN@ fj er)XENZx]

=1 =1

Como la integral es lineal, se da:
n (2N)"
— 5 2\ AT (P

11. Descomponemos p (7'n;) y I (Ni) en su componente positiva y negativa, es decir:
p(Fna) = pT (Fni) — p~ (Fnva)
fj (") = fj’—i_ (") — fj7+ (")

donde lo anterior lo hacemos Vi = 1,...,(2N)" y VN € N, siendo p*,p~, f»*, f»~ > 0. Bien, ahora
construimos sucesiones de funciones simples:

(2N)" (2N)"
= ot (Fve) Xy Py = Z P~ ("Ni) XEn,s
=1
enN)” enN)”
- = Z f]7+ (’FNJL) XEN;Z'? )7\}_ = Z f]7_ (FN,Z) XEN;Z’
i=1 i=1

VN € N. Nétese que lo anterior son funciones simples pues es pt,p~, f»T, f»~ > 0. Ademas, son
medibles, porque los E,; son medibles segiin visto en el punto |5 en la pagina 4}
A continuacién, estudiemos:

(2N)™
pJJ(TfJJ\}Jr = Z :0+ (FN;i) XEnN;i Z fj’+ (FN;k) XEN
i=1 k=1

(2N)™ (2N)"

= D T Fva) T (PNk) X B Xy, =
i=1 k=1 —
=04 kXEpN;

(2N)"

= Y () PP () X,
=1

donde el dltimo paso se debe a que los términos del doble sumatorio son no nulos tinicamente cuando
. . 2 L.
i = k. Cuando es i = k se da Xpy,, = XEx.; = XEnaXExg = (XEns) = XEn.; Pues los tnicos valores
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que toma x gy, son 1y 0y ambos cumplen 12 =1y 0% = 0. Notese que la funcion obtenida, es a su
vez, una funcion simple. Actuando de forma anéaloga para el resto de combinaciones, llegamos a:

(2N)

pn I =D o7 (i) 17T (i) Xy
=1

PNINT = D0 ot (Fva) 127 (Fvi) X

PN = D P () 2T (PN) X

que también son funciones simples.
Por tltimo, consideremos:

PR = NI = PR T NI =

@Nn)® (2Nn)™
= > TN PP (N Xew = D T () P (PN) X+
=1 1=1
@Nn)” @n)”
= > T Nn) T () X+ D 0T () 2T (Pv) X =
i=1 i=1
N n
Z f]+ (TN ) pi (FN;i> fj7+ ('FN;i)"i‘
—pt (Fni) 77 (Fva) + 0~ (Fvge) 77 (Fva) | XBwa =
@Nn)®
= > [p" Fva) =7 nad)] [P () = 127 ()] X =
=1
(@Nn)”
= (p+ _p_) (FNJ) (f]7+ f]_) (TN Z) XEN,Z -
- =
=p -
N n
Z i) 7 (i) X,

Haciendo la integral en W a ambos lados y aplicando que la integral es lineal, se obtiene:

(2N)"

[, 3 202 s = [ (st =i o+ i) -

:/ pfvfj’*—/ pfvf{ﬁ—/ pﬁff\}”r/ NI
w w w w

12. Aplicando la definicion de integral de una funcién simple, obtenemos que:

@n)"

/W PRINT =D pT (Pn) 7T (Fav) me (Envy)

i=1
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‘ @n)”
/W PNINT = D o (Frva) 7T (Pvi) me (Ewvg)
i=1
' @Nn)”
| AT = X 5 () P v me (B)
i=1
4 (@Nn)”
[ AT = X 5 () P v me (B
i=1
Por el punto [10 en la pagina 4] tenemos:
(2N)"
/ Z TNZ fj TN’L)XENZ_
(2N)™ (2N)"
= pT (Fna) 2 (P me (Eng) — Y p7 (Fnva) 7 (Fva) me (Eny) +
i=1 i=1
(2N)™ @N)®
- pT () J77 (Faa) me (Eng) + Y p~ (Fna) £77 (Fag) me (Ey) =
i=1 =1
(2Nn)™
= > ot ) P () — o7 (Pva) 27 (Fva) +
i=1
p+ (TN,z) fj7 (TN z) +p (TN 'L) f]’ (TN z)] me (EN z) =
(@n)”
= Z [0 (Fna) — p~ (Fna)] [ (Fva) — f77 (Fivy)] me (Ey) =
i=1
(2N)"
= (0" =p7) (Fna) | [ (7 = f77) (Pvya) | me (By) =
i1 | S——

=p =fi
(2N)"
Z O ("Nyi) me (Eny)
Llamando:
myy = p (Fyi)me (En,) Vi=1,...,(2N)" AVN € N
obtenemos:

2N)n (2N)7L

/ Z i) f? (PNa) X By, = Z my;i 7 (Fvii)

13. Sustituyendo lo hallado en el punto|l1 en la pagina 4] en la expresion del punto|9 en la pagina 4} llegamos

a:
(2N)™
=1 J =
IRE Ngnoozx] ; maif ()
(2N)" (2N)™

1z ] — 1§ . AT
_]\;gnoo Z MmN Zf _]\}gnoo Zl mN;zf (TN;z)

1=

=f(7n:i)
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Q.E.D.
Otro concepto que vamos a usar es el centro de masas (C.D.M).

Definicién 1. Sea S un sistema de N particulas y sean {Fi}fil las posiciones de dichas particulas segtin un

—

observador O. Llamamos posiciéon del centro de masas R a la media ponderada (a través de las masas) de
las posiciones de cada una de las particulas:

1 N

N
siendo M = Z m; la masa total.
i=1

Corolario 1. Sea V C R3 una distribucion volumétrica continua de masa dada mediante una funcion densidad
p:V — R. La posicion de su centro de masas R viene dada por:

ﬁ:]b///vp(F)FdV
dondeMz///vpmdv.

Demostracion. Partimos de lo que queremos demostrar:

il

JIJy o () av

Tomando f = id para el numerador y f = 1 para el denominador, por el teorema |l en la pagina 3| (siendo en

. . 2N)3 N 2N)3 o
nuestro caso n = 3), sabemos que existen sucesiones {m N7i}§:1) y {TNJ-}E:l) tales que podemos escribir lo
anterior como:

(2N)?
lim E mN,iFN,i
=1

1 N—oo —
M///vp(r)rdvz (2N)?

lim E MN
N—oo 4 7 .
1=

Como es [[fi, p(7) AV # 0, el denominador de la expresion anterior sera distinto de cero. Asi, el cociente de
los limites es el limite del cociente:

(2N)?
1 Z MNTN
Ny | e B
M ///V’O(T)Tdv N ]\}E)noo (2N)3 A}gnooR
my
i=1

Y lo anterior es justo la expresion dada en la definicion |1| para el centro de masas de un sistema de (2N )3
particulas. Q.E.D.
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1.2. Momento lineal y momento del centro de masas

Definicion 2. Sea S un sistema de N particulas. Llamamos momento lineal de la particula i-ésima p; al
producto de la masa de la particula i-ésima por su vector velocidad.

pi = myry

Definicién 3. Sea S un sistema de N particulas. Llamamos momento lineal total a la suma de los momentos
lineales de cada una de las particulas que forman S:

~ N
P .= Zﬁz
i=1

Corolario 2. Sea S un sistema de N particulas. Podemos expresar el momento lineal total del sistema como:

N .
P = Z m;T;
=1
Demostracion. El resultado se obtiene trivialmente al aplicar la definicién [2] en la definicién Q.E.D.

Proposicion 1. Sea S un sistema de N particulas tal que la masa de sus particulas no varia en el tiempo.
El momento lineal total del sistema puede calcularse como el producto de la masa total del sistema por la
velocidad del centro de masas.

P=MR

Demostracion. Partimos de la expresion M R. Por la definicién |1 en la pagina anteriorL tenemos que:

- d(1 &
MR=M (M Z;mr>

Como las masas no varfan con el tiempo, obtenemos:

1L A &
MR = MMZmid—; =D _mi;
i=1 =1
Y, por la definicion [3] tenemos: '
MR=P

Q.ED.

Observacion 2. La proposicion [1| nos dice que el momento lineal de todo un sistema de particulas S es el
momento lineal que tendria una tnica particula de masa M que se mueve tal y como se desplaza el centro
de masas del sistema. Por tanto, si no nos interesa cémo cambia la posicién relativa de las particulas del
sistema S, podemos tratar dicho sistema de particulas como si fuese una tnica particula. Esto lo hacemos, por
ejemplo, cuando estudiamos movimientos planetarios, pues suponemos que un planeta es un dnico cuerpo.
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1.2.1. Variacién del momento lineal

Teorema 2 (2? ley de Newton para un sistema de particulas). Sea S un sistema de N particulas tal que la

masa de sus particulas no varia en el tiempo. La variacion con respecto al tiempo del momento lineal total P
del sistema S es igual a la suma de todas las fuerzas externas que actian sobre cada una de las particulas.

Ademds, P coincide con la variacion del momento lineal de una inica masa puntual M sometida a una

aceleracion R, siendo R la aceleracion del centro de masas.

Demostracion. Derivando con respecto al tiempo a ambos lados de la definiciéon [3 en la pagina anterior]

obtenemos:

N
=3 g (mi)

i=1

’111

Ahora, como la derivada es lineal:

Como la masa de cada particula no cambia con el tiempo:
hd N ..
P Zmﬂ:; (1.2.1)
i=1

Por otra parte, por la segunda ley de Newton, el término mi7; es la fuerza resultante (neta) sobre la
particula ¢-ésima y puede obtenerse como:

mifi = 3" By + (122)

donde el primer sumando es la fuerza resultante sobre la particula i-ésima debida a las fuerzas internas y el
segundo sumando es la fuerza resultante sobre la particula i-ésima debido a las fuerzas externas. Sustituyendo

la ecuacion en la ecuacion obtenemos:

N N N
DI DILREA RS 9 A o
=1 | j=1 =1 j=1 =1
Por la tercera ley de Newton, las fuerzas internas se iran igualando a pares F'ij = —ﬁji Vi,7=1,...,N. Esto

va a hacer que el primer sumatorio de la expresion de P se anule, pues para cada par 7, j tenemos dos fuerzas
que son iguales y de sentido contrario. Veamoslo:

N N B N
:ZZ (sz—i-Fﬂ)+ZFz

i=1 j=it1 i=1
Por la tercera ley de Newton, es F;l = —F"Z-j Vi,j =1,...,N. En consecuencia:
. N N N
=3 3 (Fi-Fy)+ X R=3 R
i=1j=i+l i=1 i=1
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Por ultimo, derivando dos veces la definicién [1 en la pagina 16| llegamos a:

R Y .
R:M;miﬁ(@;mif}:MR

Sustituyendo en la ecuacion [1.2.1 en Ia pagina anterior] obtenemos:

P=MR
Q.E.D.

Observacion 3. El teorema [2 en Ta pagina anterior] constituye la segunda ley de Newton para un sistema de
particulas. Este nos dice que solo las fuerzas externas pueden variar el momento lineal total; es decir, las

fuerzas internas jamas podréan generar una aceleraciéon del centro de masas.
Por otra parte, el teorema citado nos indica que podemos aplicar la segunda ley de Newton al centro de
masas; es decir, podemos considerar el sistema como una particula puntual.

1.2.2. Sistemas de particulas aisladas

Definicion 4. Diremos que un sistema de N particulas esté aislado si no hay resultante de fuerza externas,
en otras palabras, si las particulas tnicamente estdn sometidas a fuerzas internas.

Corolario 3 (Conservacion del momento lineal para un sistema de particulas). El momento lineal total P de
un sistema de particulas de masa constante aislado permanece constante.

—

H
P = cte

Demostracion. Llamemos N al nimero de particulas de nuestro sistema aislado. Por el teorema |2 en la pagina

tenemos:

. N
F=Y"F
i=1
N
Como, por hipodtesis, nuestro sistema de particulas esta aislado, es F; =0 y, en consecuencia:
i=1
P=0< % — e P=cte

Q.ED.

1.2.3. Sistema de referencia centro de masas

En distintos escenarios, puede interesarnos describir un sistema de particulas desde un observador situado
en el centro de masas de dicho sistema, para lo cual hablaremos de la posicion relativa respecto al centro de
masas.

Notacion 2. Sea S un sistema de N particulas. Denotaremos con superindice * a aquellas magnitudes medidas
desde el sistema de referencia centro de masas del sistema .S. En particular, denotaremos con 7;* a la posicion
de la particula i-ésima con respecto al centro de masas de S.

Proposicion 2. Sean R un sistema de referencia inercial cualquiera y S un sistema de N particulas. Si
llamamos 75 a la posicion de la particula i-ésima segin R y R a la posicion del centro de masas del sistema
S segun R, entonces la posicion de la particula i-ésima vista desde el centro de masas viene dada por:

—x — =g
r; =1 — R
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Demostracion. Claramente, tenemos:

Q.E.D.

Proposicion 3. Sea S un sistema de N particulas. El momento lineal total del sistema visto desde el centro
de masas es nulo.
P*=0

Demostracion. Por la definicién [3 en Ta pagina 17] tenemos:

N
D * ok
PT = E m;T;
=1

Por la proposicién |2 en la pagina anterior], podemos expresar lo anterior como:

N X N N . N .
1=1 i=1 =1 i=1

Aplicando la proposicion [I en la pagina 17} llegamos a:

Pr=P-P=0
Q.E.D.

Observacion 4. La proposicion [3] es un resultado logico. Si hemos dicho que el sistema de particulas se mueve
como una Unica particula situada en el centro de masas, desde el centro de masas no deberiamos ver ningin
momento lineal.

Ejemplo 1 (Sistemas de masa variable). Nos referimos a sistemas cuya masa va variando con el tiempo, por
ejemplo, un cohete. Si un cohete suelta un dm en un instante dt¢; entonces, por conservaciéon del momento
lineal, el cohete se movera en sentido opuesto al sentido en el cual hemos lanzado el dm.

Vamos a suponer un cohete que esté inicialmente en reposo (reposo no significa que esté quieto, inicamente
que no actiia sobre él aceleracion alguna). Supongamos que el cohete expulsa masa con velocidad relativa .
De momento, no nos preocupamos por el ritmo con el que se eyecta la masa. Para simplificar, supondremos
que no hay fuerzas externas (despreciamos la gravedad). Si la masa inicial del cohete es My y su velocidad
inicial es vg, jcudl es la velocidad que se alcanza cuando la masa del cohete ha descendido hasta un valor M?
Es decir, queremos hallar la velocidad del cohete en funcién de la masa que nos queda.

Inicialmente, tenemos que nuestro cohete tiene una cierta velocidad v y una cierta masa M. Posteriormente,
se habra eyectado un dm de masa que tendra velocidad — (u — v) visto desde un observador inercial y el cohete
tendré velocidad v + dv.
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Asi, por el corolario |3 en la pagina 19

= 5 —
ﬂFe:vt = P = cte = Puntes = Pdespués <~

& Mv=dm(v—u)+ (M —dm)(v+dv) &
< My =vdm — udm + Mv — vdm + Mdv — dmdv & —udm + Mdv — dmdv =0

Despreciamos diferenciales de segundo orden dmdwv ~ 0, obteniendo:
Mdv = udm

Por otra parte, la masa que expulsa el cohete dm es la masa que pierde el cohete dM. Por consiguiente
dM = —dm, de forma que:
Mdv = —udM

Y la ecuacion diferencial anterior es susceptible de resolverse por integracion directa:

d dM vd M q v
Mdy = —udM & <2 = 52 & ”:—/ Lo Z] =—muf, <
u M v U My M U v ’

v”% 1 M@ 1 M+
= —1n — V= —uln— (%
u M(] M[) 0

Si lo que queremos obtener es la masa en funciéon de la velocidad, obtenemos:

v — g M M v=ug v=vg _Av

» —lnm@ﬁ:eiT@M:Moeiu :M()e w

. ) » dm
Notese que los resultados anteriores no son funcién de —.

dt
Q.EF.

1.3. Momento Angular

Definiciéon 5. Sean S un sistema de N particulas y O € R3 un punto cualquiera del espacio. Llamamos
momento angular J; de la particula i-ésima con respecto al punto O al producto vectorial de la posicion
de la particula i-ésima 7; segin O y su momento lineal p;, también segin O.

-

Ji =T X P

Observacion 5. Recordemos que a la hora de trabajar con el momento angular es importante déonde se en-
cuentra nuestro origen de coordenadas. Es més, el momento angular no es una propiedad de un sistema de
particulas, sino que es una propiedad del conjunto formado por un observador concreto y un sistema de
particulas.

Corolario 4. Sea S un sistema de N particulas. Podemos expresar el momento angular de la particula i-ésima
respecto al punto O como:

-

Ji = mr; X 7

donde 7; y 7; vienen dadas segin O.
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Demostracion. Partimos de la definicién [5 en la pagina anteriorf

Q.ED.

Definiciéon 6. Sean S un sistema de N particulas y O € R3 un punto cualquiera del espacio. Llamamos
momento angular total .J del sistema S respecto al punto O a la suma de los momentos angulares respecto
de O de cada una de las particulas de S.

Ji=3

i=1

~

Corolario 5. Sea S un sistema de N particulas. Podemos expresar el momento angular total de S respecto
de O como:

N
J:E m;iT; X T
i—1

Demostracion. El resultado se sigue trivialmente al aplicar el corolario[d en Ja pagina anterior]en la definicion 6
Q.E.D.

Proposicion 4. Sea S un sistema de N particulas tal que la masa de sus particulas no varia en el tiempo.
El momento angular total de S respecto a un punto O € R? es susceptible de expresarse como la suma del

momento angular total de S respecto a su centro de masas y el momento angular que tendria una particula de
N

masa M = E my; situada en el centro de masas R y que se moviera con la velocidad del centro de masas R

=1
respecto al punto O. Es decir:
J=J"+Jop.wm.

stendo:
N

Tx __ —% o
Jr = g T; X MyT;
=1

jC.D.M. = Mﬁ X é
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Demostracion. Partimos de:

F=itt R= =7 + R

pues la derivada es lineal. Sustituyendo en el corolario [5 en la pagina anterior] obtenemos:

N N
f:Zmi (Ff—i—ﬁ) X (ﬁ*—kﬁ) :Zmi [Fi* X7+ 7 x R+ Rx 7+ RxR| =
i=1 i=1
N N . N N )
=S e xS e x B S Boxomiit 4 mifi xR
i=1 i=1 i=1 i=1

Como el producto vectorial es distributivo respecto a la suma y R y R no dependen de i, podemos reescribir
lo anterior como:

N N ] N N _
TS i ( m> i Fix (Z m> n (Z m> AxhE (s
=1 1 =1 =1

1=

Por otra parte, por la definiciéon [1 en la pagina 16| tenemos:

N N
o 1 —k % o ~
R* = i ;_1 mT; & ;_1 m;T; = MR* =0 (1.3.2)

pues, trivialmente, la posicion del centro de masas con respecto al centro de masas R* es nula. Ademés, como
la masa de cada particula permanece constante en el tiempo:

N N N

% 1 ok S 1 Sk Sk S o

R :M,Elmiri =R :M,Elmiri <:>Elmﬂ‘i =MR" =0 (1.3.3)
1= 1= 1=

ya que, trivialmente, la velocidad del centro de masas desde el punto de vista del centro de masas es nula.
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En consecuencia, aplicando las ecuaciones|1.3.2 en la pagina anterior]|y[1.3.3 en la pagina anterior]en [1.3.1]
len la pagina anterior] llegamos a:

N N . .
f:Zmiﬁ*xﬁ*—i—(ZmZ-)ﬁxﬁ:Zmiﬁ*xﬁ*—i—MRxR

=1

Aplicando el corolario[5 en Ia pagina 22| sabemos que el primer sumando de la expresiéon anterior se corresponde
con el momento angular del sistema S con respecto al centro de masas J *, mientras que el segundo término
es el momento angular con respecto de O que tendria una particula de masa M situada en el centro de masas
de Sy que se desplazara a la velocidad del centro de masas de S. Asi, obtenemos:

J=J+ jC.D.M.
Q.E.D.

1.3.1. Variacién del momento angular

Definiciéon 7. Sean S un sistema de N particulas y O € R3 un punto cualquiera del espacio. Llamamos
momento de fuerzas o torque de la particula i-ésima N; con respecto de O al producto vectorial del
vector posicion de la particula i-ésima con respecto de O y la fuerza resultante que acttia sobre la particula
1-ésima.

N; =173 X Fres,i

Definiciéon 8. Sean S un sistema de N particulas y O € R3 un punto cualquiera del espacio. Llamamos

momento de fuerzas total N del sistema S respecto al punto O a la suma de los momentos de fuerzas
respecto de O de cada una de las particulas de S.

N=Y N,

i=1

~

Corolario 6. Sean S un sistema de N particulas y O € R® un punto cualquiera del espacio. Podemos expresar
el momento de fuerzas total de S respecto de O como:

N

N N
NZEFiXFms,z‘ZE EF@‘XFz’j+§FiXFz’
i—1

i=1 i=1 j=1

donde recordamos que Fj; representa la fuerza interna que realiza la particula j-ésima sobre la i-ésima y F;
representa la fuerza externa que se ejerce sobre la particula i-ésima.

Demostracion. Se llega al resultado al sustituir la definicion [7] en 8]y al tener en cuenta:
N
Fresi = Zﬁ' X Fij + F;
j=1

Es decir, usando que la fuerza resultante que acttia sobre la particula i-ésima tiene una componente de fuerzas
internas (que se puede obtener como la suma de las fuerzas que ejercen el resto de particulas del sistema sobre
la particula i-ésima) y una componente de fuerzas externas Fj. Q.E.D.
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Proposicion 5. Sea S un sistema de N particulas tal que la masa de sus particulas no varia en el tiempo.
La variacion del momento angular total de S seqin un punto O € R3 con respecto al tiempo coincide con el
momento de fuerzas total del sistema respecto del punto O.

. N N N
T=N=Y N "#xF;+Y ©xF
=1

i=1 j=1

Demostracion. Partimos del corolario |5 en la pagina 22}

N
J:E miT; X 75
=1

Derivando a ambos lados, obtenemos:

Como la derivada es lineal:

Como la masa de cada particula no varfa con el tiempo, aplicando la regla del producto, obtenemos:

. N N
J = E mmxﬁ+§ mT; X T;
: ——
=1 = =1
=0
donde el primer término se anula porque el producto vectorial de un vector por si mismo es nulo. Reescribiendo
la expresion anterior llegamos a:

. N
T =37 x (mift)
i=1
Por la segunda ley de Newton el término entre paréntesis es la resultante de todas las fuerzas (internas y

externas) que acttian sobre la particula i-ésima. Asi, tenemos:

N

-

J=

1

S

X I'res,i

Il
—

7

Aplicando la definicion [7 en la pagina anterior], obtenemos:

. N
F=S N,

=1

~

Por ende, por la definicién [8 en la pagina anterior] llegamos a:

—

J=N

Por altimo, haciendo uso del corolario |6 en la pagina anterior, obtenemos:

. N N ~ N
Py By Yok
i=1

i=1 j=1

Q.E.D.
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Definicién 9. Decimos que una fuerza es central cuando siempre esta dirigida hacia un punto O € R3
llamado centro del movimiento. Es decir, sea R cualquier punto de R3, entonces:

Foes CentralﬁF( ) S (‘ED

Teorema 3 (Teorema de conservacion del momento angular). Sea S un sistema de N particulas tal que la
masa de sus particulas no varia en el tiempo. Si todas las fuerzas internas son centrales, entonces la variacion
del momento angular J del sistema S con respecto de O € R3 coincide con el momento de fuerzas resultante
de las fuerzas externas que actian sobre S respecto del punto O. Es decir:

ewt 5 erFz

Demostracion. Como la masa de las particulas que forman S no varia con el tiempo, podemos aplicar la
proposicion [5 en la pagina anterior|, obteniendo:

N

ZZ”XEJ‘FZ'F;Xﬁ

=1 j=1
Consideremos el primer sumando:
N N
SNk =0 > (7 x By 7 x B
i=1 j=1 i=1 j=i+1
Por la tercera ley de Newton, tenemos que F;; = —Fj;. Sustituyendo, obtenemos:

N

i=1 j=1 i=1 j=1+1 i=1 j=1+1

Notese que 73 — 7 es el vector que nace en la particula j-ésima y muere en la particula i-ésima. Como las
fuerzas internas son centrales (por hipotesis), por la definicion |§|, F;j; ird en la direccién que une las particulas

i-ésima y j-ésima, es decir, serd Fj; || 73 — 7. En consecuencia, como el producto vectorial de dos vectores
paralelos es nulo, obtenemos:

N N ~ N N ~ =
>3 A=Y 3 () Ay =0

i=1 j=1

Sustituyendo el resultado anterior en el enunciado de la proposicion [5 en la pagina anterior] llegamos a:

J ZT‘ZXF ZNextz: _’ext

pues recordamos que F; era la resultante de las fuerzas externas que actian sobre la particula i-ésima. Q.E.D.

Ejemplo 2. Veamos lo que quiere decir el teorema [3] con un sistema de dos particulas 1y 2.
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O

Podemos definir un vector que indique la posiciéon de una particula con respecto de la otra. Llamaremos
a dicho vector 7:= 7 — 7. Estas dos particulas podran interactuar entre si de alguna forma, es decir, habra
fuerzas internas. Imaginemos que la particula 2 ejerce una fuerza repulsiva sobre la particula 1 en la direccién
de 7. Por la tercera ley de Newton la particula 1 ejercera una fuerza en la mlsma direccién, pero en sentido
contrario. Llamaremos F := F12 Por tanto, por 1 la tercera ley de Newton, F= —F21 Bien, vamos a introducir
todo esto en la expresion para la variacion de J. i Pueden las fuerzas internas cambiar el momento angular?
Ahora lo veremos. Para nuestro sistema de dos particulas, se tiene:

Fl><F12+7_"2><F21:7_"1XF—FQXF:(Fl—FQ)XF:FXF

Solo en el caso de fuerzas centrales, el producto vectorial 7 x F' se anula. Es decir, en general, las fuerzas
internas si que generan momento angular. Sin embargo, si las fuerzas son centrales (F' || 7), entonces, el
producto vectorial anterior se anula y las fuerzas internas no crean momento angular.

Corolario 7. Sea S un sistema de N particulas tal que la masa de sus particulas no varia en el tiempo. Si
todas las fuerzas (tanto internas como externas) que actian sobre las particulas del sistema son centrales,
entonces el momento angular total del sistema S con respecto de cualquier punto O € R3 se conserva: J = cte.

En particular, st no hay fuerzas externas y las fuerzas internas son centrales, el momento angular se
conserva.

Demostracion. Como las fuerzas internas de nuestro sistema son centrales por hipotesis (al serlo todas las
fuerzas), podemos aplicar el teorema [3 en la pagina anterior, obteniendo:

J:]\_fext:ZﬁXE

Ahora bien, por la definicién |9 en la pagina anteriorL como todas las fuerzas son centrales, serd F; || 7; y, en
consecuencia, serd 7; X F; =0Vi=1,...,N. Asi:

J=0= J=cto

En particular, F = 0 es una fuerza central, pues 0 | ¥ Vo € R3. Por tanto, si no hay fuerzas externas
F;,=0Vi=1,...,N, las fuerzas externas son centrales y se cumple el enunciado del corolario. Q.E.D.

Proposicion 6. Sea S un sistema de N particulas tal que la masa de sus particulas no varia en el tiempo. Si
todas las fuerzas internas del sistema S son centrales, la variacion con respecto al tiempo del momento angular
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J* segqun el centro de masas coincide con el momento de fuerzas resultante de todas las fuerzas externas visto
desde el sistema de referencia centro de masas. En otras palabras:

N
S
= r; X L'

i=1

Demostracion. Sea O el origen de un sistema de referencia inercial. Por el teorema[3 en Ia pagina 26 tenemos
que debe cumplirse:

Sustituyendo en la ecuaciéon anterior obtenemos:

N N N
i Z<R+ ) < Fi= ZExEJrZﬁ*xﬁi_ﬁx( E>+ijxﬁz» (13.4

i=1 =1

donde hemos podido intercambiar la suma con el producto vectorial, pues éste es distributivo con respecto a
la suma.
Por otra parte, por la proposicion |4 en la pagina 22

-, -, - — —

J = J*+MR><R<:>J* J—MRXR=

=J =J—|MRExR+MRxR|=J-MRxR=J—-Rx (MR)
——
=0
donde el término marcado se anula pues el producto vectorial de un vector por si mismo es nulo. Por la
segunda ley de Newton para un sistema de particulas (ver teorema |2 en la pagina 18]), tenemos:

. . N
JooFo R (y«i)
=1

Sustituyendo el valor hallado de J en la ecuacién llegamos a:

. N N N
J*:Rx( E>+Zﬁ*x i—Rx(

Q.ED.

Observacion 6. La proposicion [6 en la pagina anterior] nos esta indicando que el momento angular desde
el centro de masas s6lo puede variar si existe un momento de fuerzas desde el centro de masas. En general,
podremos ignorar el movimiento del centro de masas, aunque el observador del centro de masas no sea inercial.

Ejemplo 3. Sea O nuestro origen de coordenadas. Tenemos un disco de radio r cuyo centro es O. Hacemos
una fuerza en un punto del disco. Dicha fuerza es susceptible de ser descompuesta en dos componentes F y

F ', una componente paralela a la direccién radial F’” y otra perpendicular F|.
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2\

La componente paralela es una fuerza central y, en consecuencia, no provoca variaciéon del momento
angular.

Fxﬁn — 0 = No cambia J
Sin embargo, la componente perpendicular a la direccion radial si que general variacién del momento angular.
FXﬁL#6:>Sicambiaj
Como podemos ver, la Gnica componente que es capaz de crear un torque es la componente tangencial de la
fuerza.

Ejemplo 4 (Sistema Tierra-Luna). Vamos a suponer que los planetas son solidos rigidos y que son puntuales.
Ambas aproximaciones son, evidentemente, falsas. En cualquier caso, tenemos la siguiente situacion:

AN
N

r

Tomamos nuestra referencia O en un punto cualquiera del espacio, entonces, por la proposiciéon

tenemos:
L MM oL
Jr= T s T T

donde el primer factor del primer sumando es la masa reducida p del sistema Tierra-Luna y los segundos
sumandos se deben a la rotacién de la Tierra en torno a si misma y a la rotacién de la Luna en torno a si
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misma. Como la fuerza externa que tenemos (la debida al Sol) es central, podremos decir que el momento
angular anterior se conservara. Ademas, como la masa de la Luna es muy pequefia en comparacion con la de
la Tierra, podremos despreciar el tltimo sumando de la expresiéon anterior.

Como hemos dicho antes, la Tierra no es un solido rigido perfecto, pues arrastra una masa de agua y una
masa de gas que son més elasticas que la propia Tierra. De esta forma, cuando la Tierra rota, va arrastrando
consigo toda la masa de agua y toda la masa de gas. Por eso, tenemos una masa de forma de ovoide rotando
en torno a la Tierra. Es decir, siempre hay algo de inercia y, por consiguiente, siempre hay una friccién entre
la Tierra y la atmosfera y los océanos. Por tanto, siempre se va a ir disipando energia. Por consiguiente, la
Tierra siempre va a ir perdiendo algo de energia cinética de rotacién; es decir, wr decrece, luego f:’; también
decrece. Obviamente, esto en escala de tiempo humana es dificil de ver; pero esto es facilmente observable en
escalas geologicas. Por ende, en escalas geoldgicas, la componente correspondiente a la rotaciéon del sistema
Tierra-Luna en torno a su centro de masas debe aumentar mientras el término de la rotacién de la Tierra
en torno a s{ misma decrece para que el momento angular total permanezca constante. Recordemos que el
momento angular total debe conservarse pues la fuerza del Sol es central. Como conclusion de todo esto, vemos

3 3 3 cm cm
que la distancia Tierra-Luna va aumentando poco a poco entre 3 ;== y 4 —==.

1.4. Energia de un sistema de particulas

Definicion 10. Sea S un sistema de N particulas. Llamamos energia cinética de la particula i-ésima al
producto de la mitad de su masa por el cuadrado de su rapidez.

1.
T = imirf

Definicion 11. Sea S un sistema de N particulas. Llamamos energia cinética total del sistema S a la
suma de las energias cinéticas de cada una de las particulas que forman S.

N
T;:ZT,-
=1

Corolario 8. Sea S un sistema de N particulas. Podemos expresar su energia cinética total como:

N 1 .
1=1

Demostracion. El resultado se obtiene trivialmente al aplicar la definicion [10] en la definicion [T1} Q.E.D.

Proposicion 7. Sean R un sistema de referencia afin cualquiera y S un sistema de N particulas. La energia
cinética total del sistema S segin R puede expresarse como la suma de la energia cinética del sistema S
dada segun el sistema de referencia centro de masas y la energia cinética que tendria una particula de masa

N .
M = Z m; y velocidad R. Es decir:

i=1
T=T"+Tcp.um.

donde:

=1

1 5
Tep.m. = iMRQ
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Demostracion. Por la definicion [11 en la pagina anterior], tenemos que segin R, la energia cinética del sistema

es:
N 1 .
=1

Por la proposiciéon |2 en la pagina 19, tenemos:

ri=r—-R&erm=R+7 =r=R+7]

pues la derivada es lineal. Sustituyendo lo anterior en la ecuacién para T, llegamos a:

N 1 I . \2 N 1 I . L.
T = *mi(R—i-?:;*) :Z—mi(RerFi*?JrQRﬂ*):

2 2

= =1
N 1 N 1 N
=1 =1 =1

1 o2 ol . . (L.
— QMRQ + Zimiﬁ“ +R- (Z mlﬁ> (1.4.1)

Notemos que:

1 N N
i=1 =1

pues R =10 ya que el centro de masas no se desplaza segin el centro de masas. Sustituyendo esto en la

ecuacion [L4TL
1 ;2 N 1 s
I' = §MR + ;_1 5

Q.E.D.

1.4.1. Variacién de la energia cinética

Proposicion 8. Sea S un sistema de N particulas tal que la masa de sus particulas no varia en el tiempo.
La variacion con respecto al tiempo de la energia cinética total del sistema viene dada por la expresion:

. N N . — N . —
T=) Y7 Fy+y i F
i=1 j=1 i=1

donde el primer sumando se corresponde con las fuerzas internas y el sequndo sumando se corresponde con
las fuerzas externas.

Demostracion. Partimos del corolario |8 en la pagina anteriorf

N

R LIRS NP
—ZQmZTZ—ZQmZ (T‘l"’l“i)
=1

=1
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Como las masas de las particulas que forman parte de S no varfan con el tiempo, al derivar la expresion
anterior (al ser la derivada lineal), llegamos a:

N1 .. N 1 L.
7= Z gy (7 7) = > gme (i) + o gmi (7o)

Como el producto escalar es conmutativo, podemos reescribir T como:

N N
T =Y i = 3 f (i)
i=1 =1

Por otra parte, por la segunda ley de Newton aplicada a la particula i-ésima, obtenemos:
N
Asi, sustituyendo en la expresion dada para T, obtenemos:

N N
Py (SRR
i=1 j=1
Como el producto escalar es distributivo con respecto a la suma, obtenemos:

T ZZTz sz‘i‘zrz %

=1 j=1

Q.E.D.

Corolario 9. Sea S un sistema de N particulas tal que la masa de sus particulas no varia en el tiempo. Si
todas las fuerzas internas son perpendiculares al vector velocidad de cada particula, es decir, 7L F‘ij Vi, j =
1,...,N; entonces la variacion de energia cinética total del sistema S con respecto al tiempo se debe unicamente
a la potencia generada por las fuerzas externas.

N
P-3 i F
=1

En particular, si 7 =0Vi=1,..., N, entonces la energia cinética total del sistema se conserva T = 0.

Demostracion. Partimos de la proposicién [8 en la pagina anterior}

T ZZ’M sz‘i‘zrz %

=1 j=1

Ahora, bien, como por hipotesis es 7 L F‘ij Vi,j=1,..., N, tenemos:

¥ L FyVi,j=1,....N& 7 F;j=0Vi,j=1,...,N

Sustituyendo en la expresiéon dada por la proposicion [§ en Ta pagina anterior], llegamos a:
N .
BN
i=1

En particular, si 7 o= O Vi = 1,..., N, se cumple 7oL F” Vi,j = 1,..., N, luego se da la expresion

anterior. Ademas, como es rl =0Vi= 1 , N, al sustituir, obtenemos 7" = 0. Q.E.D.
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Ejemplo 5. Supongamos que tenemos un sistema de dos particulas 1 y 2. Por la tercera de ley de Newton,
tenemos:

Asi:
ME —mF =7 F

y este término no tiene por qué anularse. De hecho, las fuerzas internas no contribuyen a T’ si:
= 77 = 0 Ejemplo: reacciéon en un pivote.
= 7 1 F Ejemplo: movimiento circular.

Proposicion 9. Sea S un sistema de N particulas tal que todas las fuerzas internas son conservativas y
tal que la masa de cada una de sus particulas permanece constante en el tiempo. Entonces la variacion con
respecto al tiempo de la suma de la energia cinética del sistema T y el potencial de las fuerzas internas Vin:
se debe unicamente a la potencia generada por las fuerzas externas.

d
dt T+‘/znt Zz; 7

Demostracion. Como todas las fuerzas son conservativas, sabemos que existen funciones V;; : Q C R?> — R

dV;; .
Vi j=1,...,N.
dr;

con €2 abierto tales que F;j = —ﬁVij =—
Por la regla de la cadena, tenemos:

dVi; dV;; dr; = R
_d;]:_dFZ;dT;:_VVU'T:F”'T":”'F”

Sumando a los indices ¢ y j a ambos lados desde 1 hasta IV, obtenemos:

Sl d‘/z] d‘/mt
2> B DI o L ZZVw =&

i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1

pues la derivada es lineal. Sustituyendo en la proposicién [8 en Ia pagina 31| llegamos a:

N
: det = dT de’nt -
T = + 1"Z F, & Qi = E ;- F;

=1

Como la derivada es lineal, lo anterior es equivalente a:

Mz

d
(T + Vipt)
dt + Vint) <

Q.E.D.

Proposicion 10. Sea S un sistema de N particulas tal que todas las fuerzas internas son conservativas y
tal que la masa de cada una de sus particulas permanece constante en el tiempo. Entonces la variacion con
respecto al tiempo de la suma de la energia cinética del sistema T segun el centro de masas y el potencial de
las fuerzas internas Vi, se debe dnicamente a la potencia generada por las fuerzas externas segun el centro
de masas. En otras palabras:

d N
o T+ Vi) =D 7 Fy
=1
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Demostracion. Partimos de la proposicion [9 en la pagina anterior}

d N
a (T+‘/int) = ZF’F’
=1
Por la proposicién [7 en la pagina 30}
d N
X (T* + Tepar. + Vi) = Y 75 Fy &
i=1

q 1 - N .
* A Larp2) LB
& T <T +th+2MR ) ;_1 7y - F;

Como la derivada es lineal, podemos escribir lo anterior como:

a(T +th)+dt<2MR > :Zri‘Fi@

Q.ED.

Observacion 7. Notese que en el enunciado de la proposicion [10 en la pagina anterior] el potencial de las
fuerzas internas no lleva *. Esto no es necesario, porque como las fuerzas internas son conservativas, dicho
potencial debe ser Gnicamente funcién de la distancia entre las particulas Vj; = §! (75 — 7). Esto se debe a
que el vector resta de dos vectores nunca depende del origen del sistema de referencia afin tomado.

Teorema 4 (Teorema de conservacion de la energia mecéanica para un sistema de particulas). Sea S un
sistema de N particulas tal que que la masa de cada una de sus particulas permanece constante en el tiempo.
St todas las fuerzas que actiian sobre todas las particulas son conservativas, entonces la energia mecdnica total
T +V del sistema se conserva.

E=T+YV =cte
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Demostracion. Si todas las fuerzas son conservativas, en particular lo son las externas. En consecuencia,
dvi .

— Yi=
d?“i

sabemos que existen funciones escalares V; :  C R3 — R con (2 abierto tales que: Fi = —ﬁVi = —
1,...,N.

Por la regla de la cadena:

AV AV dF s
a dr ar T

Sumando a ambos lados en ¢ desde 1 hasta N, obtenemos:

)
o

N

N
dV; L=
DWW
i=1 i=1
Como la derivada es lineal, lo anterior es equivalente a:
N
: d‘/ext

por el principio de superposiciéon. Como todas las fuerzas internas son conservativas, podemos aplicar la
proposicion 9 en la pagina 33}

N
d d‘/e:tt
T in ) -Fz =
3 (T + Viur) ; T

d dVeat
— (T + Vipt) = —
< dt( + Vint) dt

Como la derivada es lineal, obtenemos:

d
—(T+V)=0&E=T+V =cte

d
7(T+V;'nt+‘/e:vt):0<:>dt

dt
Q.ED.

Observacion 8. En el caso del teorema [4 en la pagina anterior], V si que depende del sistema de referencia
usado, pues V; = F (7).

1.5. Ecuaciones de Lagrange para un sistema de particulas

Definiciéon 12. Sea S un sistema de N particulas tal que todas las fuerzas que acttian sobre todas las
particulas del sistema son conservativas. Llamamos lagrangiano o funcién lagrangiana a la resta de la
energia cinética total del sistema y su energia potencial.

L:=T-V

Teorema 5 (Ecuaciones de Euler-Lagrange). Sea S un sistema de N particulas tal que todas las fuerzas
ternas son conservativas y tal que que la masa de cada una de sus particulas permanece constante en el

tiempo. Entonces:
d (0L oL
94, j 9qi,j

Demostracion. Como todas las fuerzas que acttian sobre S son conservativas, sabemos que existe una funcion
escalar V : 2 C R? — R con ) abierto tal que:

ov ov
o7 Vi=1,...,.Ne&mi;=—F— Vi=1,...,N;j=u1z,9,2 (1.5.1)
T j

—

m;r; = —
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donde V sera la funcion potencial de la resultante de todas las fuerzas.
Por otra parte, por el corolario [8 en la pagina 30

N 1
_ T —*2 —»2
N EZ: 2 873 873 (; "Ml )

Como la derivada es lineal, obtenemos:

or X . i

o, =2""or,

N1
= E §m12f;5z]:mlf; Vi:1,...,N
i=1 =1

0 | £ . .
donde §;; = {1 : z f 7 es 1a delta de Kronecker. De esta forma, lo anterior es equivalente a:

oT

:miﬁj Vi = 1,...,N;Vj=$7y,2 (152)

Ademas, sabemos por las proposicion [IT en Ta pagina 30 que T no dependeré de las posiciones y como V es
el potencial asociado a una fuerza conservativa, V no dependera de las velocidades.

or - oT
— =0 Vi=1,.... N& =0 Vi=1,....N;Vj==z,y,z (1.5.3)
8” On,j
ov. 4 ov
—— =0 Vi=1,....N& —=0 Vi=1,...,N;}Vj=2,y,2 (1.5.4)
or; O7i
De esta forma, por la definicién [12 en la pagina anterior| al ser la derivada lineal:
oL 0 oT av
-2 r-v)-
8?“2',]' 67"1',] 87“1 J 67"2'73'
Por las ecuaciones [1.5.3] y [1.5.1 en la pagina anterior], obtenemos:
oL
— =myi; Yi=1,....N;Vj=uxy,z2 (1.5.5)
87‘1"]'

Por otra parte, por la definicién [12 en la pagina anterior| al ser la derivada lineal:

T
0L _ 0 p_yy= 9L _ OV
87‘@]‘ 87’7;,] 87“1 g 8Ti,j
Por las ecuaciones y obtenemos:
oL . d [ oL } . ,
Fop =MmiT;; = N <ah7j> =m;ty; Vi=1,...,N;Vj=1xy,z (1.5.6)

Por ende, juntando las ecuaciones y llegamos a:

d oL oL
Bl g i=1,....Nij=my,z
t <3qz‘,j) 04i g Y

Q.ED.
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Proposicion 11. Sea S un sistema de N particulas tal que todas las fuerzas internas son conservativas y
tal que que la masa de cada una de sus particulas permanece constante en el tiempo. Si las fuerzas externas
que actian sobre las particulas de S son tales que existe un campo § : R® — R3 constante en el espacio
(G # T (7)) tal que F, = m;gVi,...,N, entonces el lagrangiano del sistema S es susceptible de separarse en
dos lagrangianos, uno para el movimiento del centro de masas y otro para el movimiento de las particulas de
S en torno a su centro de masas.

Demostracion. Hallemos la energia potencial asociada a las fuerzas externas:

dV;
- =m;§ Yi=1,...,N
dT’i
Por el teorema del gradiente:
Vi=— [ mig-dii + K = —mig -7 + K

T
Podemos suponer sin pérdida de generalidad que K = 0. Sumando a todas las particulas, obtendremos el
potencial asociado a las fuerzas externas:

N
N N Z T
=1

N
Vear =) Vi= —miﬁ-ﬂ:—ﬁ-(Zmiﬁ):—Mﬁ- i
i=1

=1 i=1

Por la definicién [1 en la pagina 16| tenemos:

%xt:_Mg'ﬁ

Ahora bien, por la definicién [12 en la pagina 35| tenemos:

L=T-V

Por la proposicion [7 en Ta pagina 30|y usando que V = V¢ + Vi, obtenemos:

N
1 :, L = 1 I
L=T" +Tcpu — Vear = Vit = gME? + Mg R+ cmii? = Vint

=1

donde el altimo término inicamente depende de la distancia entre la particulas. Asi, podemos escribir:

1 5 L o=
Lopm. =Topm — Vext = §MR2 +Mg-R

N
* * 1 Sk
L5=T" = Vipy = Y oty > = Vint
=1

Q.E.D.

Observacion 9. Como consecuencia de la proposicién |'_1__f|, el lagrangiano de un sistema de particulas puede

separarse en un lagrangiano que sélo depende de R y R y otro que depende de 7 y f;" . Por ende, podemos
aplicar las leyes de conservacion de forma separada al centro de masas y al resto de particulas.
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1.6. Problemas

Ejercicio 1 (Problema 1.1). Calcular la posiciéon del centro de masas de una hemiesfera solida de densidad
constante p y radio a. Suponer el centro de la esfera original en el origen de coordenadas y la base de la
hemiesfera en el plano XY

Solucion. Tal como dicta el enunciado, calcularemos el centro de masas de una distribucién continua de masa
con forma de hemiesfera. Sabemos por la proposicién |l en la pagina 16| que la expresion para el calculo de un
centro de masas para distribuciones continuas de masa es la siguiente:

N / / /V Fo(7)dV
[]

Podemos obviar el célculo de la integral presente en el denominador, pues sabemos que su resultado seré igual
a la masa total de la hemiesfera; al ser una distribuciéon de masas con densidad constante, tendremos que la
masa total de la hemiesfera es igual a:

1 2
M = pVhemi = §p‘/;:sfera = §P7Ta3 (161)

Debido a la simetria respecto a un eje de revolucion (y a que la densidad de masa en constante en todo el
volumen de la hemisfera), podemos asegurar que la posicion del centro de masas estara localizado en algin

punto del eje Z; as{ pues:
L1
R= M///Vzp(f')dv,%

Empleando coordenadas esféricas, el diferencial de volumen sera expresado como dV = r? sen fdrdfde, por lo

tanto: 1
R= i (///V zpr? sen 9drd9dcp> z

En coordenadas esféricas, z = r cos . Ademas los limites de integraciéon cumplirdn que r varia en el intervalo
[0,7], ¢ en el intervalo [0,27] y la variable 6 en [0, Z]; por lo que la integral resultante queda como:

o 1 a r2n pw/2
R=— p/ / / r3sen @ cos Odrdfdy | 2 =
M o Jo Jo

1 2 1 w/2 a
:M<g00)<2$en200 )(p/o 7"3d7“>2:
1 2m\ (1, /2N (1 4@\, pmat,
_M<(p0><286n00 ><4T 0>Z_4MZ

Sustituyendo el valor antes calculado de M en la ecuacion obtenemos que la posicién del centro de
masas de una hemiesfera centrada en el origen y con base en el plano XY se encuentra en:

- 3
R:§a2

Q.E.F.
Ejercicio 2 (Problema 1.2). Una cuerda (densidad lineal de masa A, longitud /) se encuentra inicialmente en
reposo en posicién vertical, con su extremo inferior justo encima de una superficie horizontal. En un instante

dado se deja caer en caida libre sobre la superficie. ;Qué fuerza se ejerce sobre la superficie horizontal, cuando
una porcion de la cuerda de longitud z ha alcanzado la superficie?
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Solucién. En este problema se dividira la cuerda en dos partes: la que sigue cayendo (M¢ = A(I—x)) y la que
se encuentra apoyada sobre el suelo (Mg = Az). Gracias a la proposicion [l en la pagina 16, puede calcularse
la posicion del centro de masas de la cuerda en funcion de la distancia de caida z (visto desde un punto a
distancia [ del suelo). Primero, resulta conveniente concretar el centro de masas de la parte de la cuerda que
esta cayendo, asi como de la parte que ya se encuentra en el suelo. Respectivamente:

' 2 2

l 2 a 21

M + M, 1 l+ 1221+ (I+z)(1 — 1?2 — 2% + 2zl
o SHCCM,SM OxCM,C:)J(x/\l+ 2$)\(l_x)>:x+( z)(l — x) 2%+ 2z

La variacién de esta posicion serd entonces:

> _i E_ﬁ_k __@_}_‘_'(1_{)_%([_)
oM ="\ Ty )T T TP A

La energia potencial vendra dada como:

12 — 22 4+ 221 1?2 — 22+ 221
- T g
21 2

Y la energfa cinética (dado que el fragmento que cae tiene masa M¢ y velocidad Zcyv,c = %)

V =Mgxoy = —Ag

1 1 i\

Como la energia se conserva en todo momento, necesariamente:

Agl2 A i\ S
Eon(x:O):—T:E(x):§ (I —x) B —g(l* =z +22l)| &
Agl2 A i\ S
2 20— (2) - - 2
5 5 [(l x) <2> g(l* —a” + 2x1)
Despejando, se llega a la ecuacién diferencial:

Inicialmente, podria parecer que esta solucion no tiene sentido fisico, pues se cumple:

limz = oo

z—l
Esto significa que el extremo superior de la cuerda llega al suelo con velocidad infinita, hecho que se ve
amortiguado por fuerzas internas y por el hecho de que la cuerda no es perfectamente inextensible. Sin
embargo, parece logico afirmar que un sistema que pierde masa hasta quedarse sin nada (el tramo de la
cuerda que cae) incrementa su velocidad de manera indefinida, haciendo que la funcién diverja hacia infinito
en el punto x = [. Una vez que se ha obtenido la velocidad en funcién de la longitud de cuerda posada sobre
el suelo, puede calcularse la fuerza ejercida sobre esa superficie en funcién del mismo pardmetro, pues:

.9 2
@ vdm &2 dt <x+42l$ T >

F:F9+Fdinémica:Fg+dt:Fg—f—i—mg_k :)\g T

dt
De nuevo aparece una magnitud que diverge cuando la longitud de cuerda apoyada en el suelo tiende a [, lo
que resulta comprensible tras haber observado este particular efecto en la velocidad.
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QETF.

Ejercicio 3 (Problema 1.3). (Ejercicio de examen, Septiembre de 2018) Una rana de masa m esta sentada
en el extremo de un bloque de madera (de longitud L y masa M) que descansa sobre la superficie de un lago
helado (sin rozamiento). En un momento dado, la rana salta hacia el otro extremo de la tabla con un angulo
a. (Cual debe ser la velocidad de la rana (en modulo) para que llegue justo al otro extremo de la tabla?

Solucién. El principal punto a considerar antes de enfrentarse a la resoluciéon de este problema, consiste en
ver que al saltar la rana de un extremo a otro de la tabla, ésta se movera en sentido contrario al que la rana ha
saltado (debido a la conservacion del momento lineal, presente en el corolario |3 en la pagina 19)); esto causara
que cuando la rana "aterrice” sobre el extremo opuesto de la tabla, este extremo se encontrara en una posiciéon
distinta a la que se encontraba originalmente.

El movimiento de la rana en el aire es tiro parabdlico. En consecuencia, su posiciéon de la rana tras el salto
puede expresarse como:

o N 1 N
Xrana = (Vrana cosa't) i+ <vmna senat — 2gt2> j

Para conocer el tiempo que ha transcurrido desde el salto hasta el aterrizaje, solo debemos igualar la compo-
nente en j a 0:
t=0

t= 2—”*2"“ sen o (16.2)

L o
Vpana SEN QT — §gt =0—

Teniendo en cuenta que a t = 0 la rana acaba de saltar, obviamos este resultado, siendo el segundo tiempo
(t = 2””;”“ sen ) el que trataremos. En este tiempo, la rana habra recorrido un espacio:

AT = Vpgna cosat (1.6.3)

De modo que en el mismo tiempo, para que la rana lograse alcanzar el extremo opuesto de la tabla (esta en
movimiento), la tabla habra recorrido un espacio L — Az en direccion contraria al salto de la rana.

Por lo comentado anteriormente, tendremos que en el tiempo ¢ dado por la ecuacion [I.6.2] que la rana
tarda en realizar el salto, la tabla ha recorrido un cierto espacio, esto puede ser formulado como:

L—-Ax= Vtablal
Conociendo el espacio Az (ecuacion |1.6.3]) recorrido por la rana, podemos sustituir en la anterior ecuacion:

L — vpgnacosat
t

Vtabla =

Conocido también el tiempo t (ecuacion [1.6.2)) que necesita la rana para alcanzar el extremo opuesto de la
tabla:
L — Upgna COS Q0 (2”"‘;% sen a)

Vtabla = 2%rana gep o
g

Empleando la conocida relacion trigonométrica del dngulo doble, 2 cos asen v = sen(2a), la expresion de la
velocidad de la tabla en funcién de pardmetros conocidos y la velocidad de la rana en su primer momento es:

L— Uzana sen(2a)/g

Vtabla = (1.6.4)

2"""“% sen «

Tenemos asi una relacién entre el moédulo de la velocidad de la tabla y el médulo de la velocidad de la rana;

para poder conocer el valor de estas dos cantidades, deberemos derivar otra expresiéon que las relacione.
Como dijimos al comienzo de este ejercicio, la tabla se mueve debido al salto de la rana a causa de la

conservacion del momento lineal. Segun queda probado en el corolario [3 en Ta pagina 19| la variacion del
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momento lineal de un sistema sin influencia de fuerzas externas (como es el nuestro en el plano horizontal
debido a la nula existencia de rozamiento) es nula, por lo que el momento lineal (inicamente en este plano,
pues en el eje vertical no se conserva, de conservarse, al saltar la rana, la tabla se hundiria en el hielo) antes
y después del salto es el mismo; esto nos aporta la siguiente ecuacion:

m
MUrana COS @ — VigblaM = 0 < Vigbla = = Vrana COS &

M

Sustituyendo este valor en la relaciéon que calculamos anteriormente (ecuacion [1.6.4 en la pagina anterior),
esto nos resulta en:

2
L— Yrana sen(2a)/g _ m

- = Urana— COS (¢
2% sen M

Podemos operar esta expresion (empleando de nuevo la relacion trigonométrica del angulo doble) para obtener
la que sigue:

9 sen(2a) 9 m
L— UranaT = 'UranagiM Sen(2a) <

v2 m
o [ — Yrana (0o <7 1)
P sen(2a) ” +

Asi, despejando el valor de la rapidez de la rana, obtendremos:

v = —gL
rana (% + 1) sen 2o

QEF.

Ejercicio 4 (Problema 1.4). Un cohete en el espacio exterior (sin gravedad) se acelera desde el reposo (con
velocidad inicial nula) con aceleraciéon constante a hasta que alcanza una velocidad v. La masa inicial del
cohete es M. Calcule el trabajo hecho por el motor del cohete. (Tenga en cuenta tanto el trabajo sobre el
cohete como el trabajo sobre el combustible eyectado).

Solucién. Al tratarse de un ejercicio unidimensional, se eliminara el caracter vectorial de las magnitudes.

[L — Fdl]: — 7d.’]7 — dp
dt Y

El cohete propuesto puede describirse con la ecuacion del cohete de Tsiolkovski (vista en el ejemplo
, que se obtiene tras aplicar la conservacion del momento lineal (corolario |3 en la pagina 19|) para
un objeto de masa M viajando a velocidad v que sufre variaciones de masa dM. Al ser estos diferenciales
de masa negativos, puede interpretarse que se eyectan diferenciales de masa —dM con una velocidad v — wu,
siendo u la velocidad relativa con la que salen despedidas estas pequenas cantidades de masa vista desde el
cohete. Entonces, puede escribirse el momento lineal del sistema a tiempo ¢ y tras un d¢:

{p(t) = Mv

p(t+dt) = (M +dM)(v+ dv) + dM(u — v)
De esta forma, despreciando la contribucién del producto de diferenciales:
Mv=(M+dM)(v+dv) +dM(u—v) & —Mdv = udM
Resolviendo esta ecuacion diferencial:

—v/u

m = moe & mo = me/t (1.6.5)
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Con myg la masa inicial del cohete. Ahora, conociendo también que la velocidad es constante (luego v=at),
puede expresarse dp como:

t
dpcohete = d(mU) = madt + atdm = moaefat/u (1 — CL) dt
u

Asi, para calcular el trabajo total sobre el sistema:

t t
Wiotat = Weonete + Weyectado = / dpcoheteVeohete + / dpeyectadoveyectado
0 0

Sabiendo ahora que para la masa expulsada v = Veopete — U y dp = dmeyecmda(vcohete —u):

t
Weohete = / moae_‘”/“ (1 - ﬂ) ardr

u

0
tmoa
2_ —at/u
Weyectado:/ T(GT—U) e 0T/udr
0

—at/u (L,8.5)

Wtotal = myatue restanteVUcoheteW

Q.EF.

Ejercicio 5 (Problema 1.5). Supongamos un cohete ascendiendo verticalmente en contra de la gravedad. El
cohete quema combustible a un ritmo constante, y eyecta los gases con velocidad u. Despreciando el rozamiento
con el aire, encuentre la velocidad del cohete tras quemar una cierta cantidad de combustible.

Soluciéon. Ademaés de considerar que el rozamiento con el aire es despreciable, consideraremos que el campo
gravitatorio que actiia sobre el cohete es constante e igual a g. Debido a que existe una fuerza externa (la
gravitatoria) el momento lineal no podra conservarse (tal como se demuestra en el teorema |2 en la pagina 18))
debido a que P=F £ 0.

Podremos decir que en un diferencial de tiempo dt el cohete eyecta un diferencial de masa dm, siendo el
dm

dt
Podemos comenzar describiendo el momento lineal del sistema (a partir de la definicion formal
pagina 17| del momento lineal) antes y después de que un cierto tiempo dt haya transcurrido:

ritmo de eyecciéon h :=

{ Pt = Mv
Piigt = (M —dm)(v+ dv) —dm(u — v)

Sabemos que para un sistema de particulas, el cambio del momento lineal con el tiempo es igual a P =
>, Fi (de nuevo por el teorema |2 en la pagina 18|) y puesto que nos encontramos bajo un campo de fuerzas
gravitatorias de valor g, tendremos que:

Piqg—PF Mdv—dmdv—udm
= = — M
at dt g

p

Podemos despreciar el factor dmdv (diferencial de segundo orden) en comparacion con Mdv y udm (de primer
orden), asi, tendremos que:

—-Mg=M— —u—=M— —uh

A partir de esta expresion, podriamos determinar la velocidad (y, por lo tanto, la posicion) del cohete en funcion
del tiempo, sin embargo, puesto que nos piden que lo calculemos en funcion de la cantidad de combustible

Licencia: Creative Commons 42


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 1. SISTEMAS DE PARTICULAS
Lain-Calvo-Cano-Guerrero 1.6. PROBLEMAS

dv dv dm dv
quemado, tendremos que emplear la regla de la cadena y hacer — = — —— = ——Hh. Asi la expresion anterior
o dt dm dt dm
quedara de la siguiente manera:

Mg = mn
dm

Puesto que dm es un diferencial de masa que el cohete pierde, tendremos la relacion dm = —dM y asi:

Mg =MbY 4 uh o

aM
d
@Mg—uh:Mhd—]\UJ & (Mg —uh)dM = Mhdv <
M _
QTUhdM — hdv < <g—u]\h4> AM = hdv &

M( h v

& g—u>d/\/l:/ hdv &
Mo M Vo
@(M—Mo)g—uh[ln/\/ﬂ%o:h(v—vo)<:>

M,
<:>(M—Mo)g+uhln<]\;) = hv — hyy &

s o(M) =

S

M,
(M — Mp) +uln (MO) + v

QEF.

Ejercicio 6 (Problema 1.6). Un vagon de masa M puede desplazarse por un rail sin rozamiento. Parte con
una velocidad vy, mientras cae lluvia que va llenando el vagén. El ritmo de masa que cae por unidad de tiempo
es a. Calcule la velocidad y la distancia recorrida en funcién del tiempo.

Solucién. El problema es bastante similar al que retrata un cohete con la salvedad de que los diferenciales de
masa son positivos, luego la masa del moévil aumenta. Es preciso tener también en cuenta que el momento lineal
de las gotas de lluvia no es transferido al vagon (se considera que cae perpendicular a él de forma perfectamente
inelastica). Esto se traduce tinicamente como un incremento de masa. El sistema puede describirse como un
objeto de masa M que viaja a velocidad v mientras sufre variaciones de masa dM con un ritmo de caida de
«. Se considera que sufre variaciones diferenciales negativas en su velocidad.

De esta forma, el momento lineal del sistema a tiempo ¢ y tras un dt es:

{p(t) = Mv

p(t+dt) = (M + dM)(v + dv)

Segun el corolario [3 en la pagina 19| p(t) = p(t + dt). Y si se desprecia también la contribucion de los
diferenciales de segundo orden:

Mv=(M+dM)(v+dv) & —Mdv = vdM

Resolviendo esta ecuacion diferencial:

v ./ M
/ dv dm@lngzln%

!/
0 U M, ™ () M

Y como la funcién logaritmo es biyectiva, la velocidad en funcién del tiempo queda:

_ voMy _ voMy
M My + at
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Ahora, haciendo uso de v = %, la posicion x en funcién del tiempo sera:
t t vo My vo My My + at
T = vdT = dr = In
0 o Mo+ ar « My

QETF.

Ejercicio 7 (Problema 1.7). Un cohete en el expacio exterior (sin influencias gravitatorias) empieza a moverse
desde un estado de reposo eyectando masa. Deducir la ecuacién para la velocidad del cohete en funcién del
ratio de masa. Calcilese para qué fracciéon de masa inicial se tiene el momento lineal méximo.

Solucién. Puesto que el cohete se encuentra en el espacio exterior sin ninguna influencia gravitatoria, podemos
asumir que no existiran fuerzas externas al cohete y que, por lo demostrado en el corolario |3 en la pagina 19|
la cantidad del momento lineal se conservara.

Si en un momento dado la masa del cohete es M y su velocidad v, su momento lineal serd P, = Mwv; en
un diferencial de tiempo, el cohete habra perdido un diferencial de masa dm, suponiendo que la velocidad de
eyeccion sea u, el cohete adquirird un diferencial de velocidad; podemos expresar esta informacioén como parte
de la cantidad de momento lineal Py q; = (M — dm)(v + dv) — dm(u — v).

Puesto que bajo ausencia de fuerzas externas la cantidad de momento lineal se conserva (de nuevo por el
corolario |3 en la pagina 19)), podemos decir que P, = P, 4, es decir:

Mv = (M —dm)(v+ dv) — dm(u — v)
Operando esta expresion, podemos llegar a la que sigue:
0= Mdv — dmdv — udm

Al ser el sumando dmdv un diferencial de segundo orden, este puede ser despreciado frente al resto de sumandos
(diferenciales de primer orden), de modo que:

0= Mdv —dmdv — udm — Mv = udm

Puesto que dm es la cantidad de masa que el cohete pierde, es equivalente decir dm = —dM y por lo tanto:
1 1
Mdv =udm < —dv = ——dM
U M

Integrando a ambos lados de la igualdad, obtenemos:

/“du Md/\/l@ 1( - <M0>
— = —_— —(v—v9)=In| —
Vo U My M U 0 M

Ya que en el enunciado se nos dice que el cohete parte del reposo, la expresion de la velocidad en funcion de

la masa del cohete sera:
v=uln| —

Ahora, para calcular la fraccion de masa y masa inicial que determinan la méxima cantidad de momento
lineal, expresaremos esta cantidad como:

My
P=Mv=uMIn|—
R

Para calcular el momento donde la cantidad de momento es méxima en relaciéon de la masa, tendremos que
estudiar los maximos relativos de la funcion P(M) y estudiar el valor de P en los extremos de los valores
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permitidos de M. Hagamos esta segunda parte primero. La masa final del cohete estaré entre My y M, luego
debemos hallar P(My) y P.
P(M:Mo) ZUMQID]_ =0

Por otra parte, notese que P(0) no esta definido. No obstante, como los polinomios dominan sobre los loga-
ritmos, el limite cuando M — 0T de la funcién P estd bien definido. En otras palabras, P tiene extension
continua en M = 0 y el valor de dicha extension es:

lim P (M) =0
M—0

Hecho lo anterior, procedamos a derivar y a igualar la derivada a cero:

Mo M 1 M M My

Mo
e

lineal del cohete es méxima es % =e.

Por lo tanto, como es P ( ) > 0, la fracciéon de masa inicial y masa para la que la cantidad de momento

QETF.

Ejercicio 8 (Problema 1.8). Se lanza un cohete desde la superficie de la Tierra para que llegue hasta una
altura de 50 km. Calcula la velocidad que hay que comunicarle, despreciando la variacién de g con la altura
(v la rotacion de la Tierra). Si la masa final del cohete (sin el combustible) es de 100 kg y la velocidad a la
que se expulsan los gases es de 2 kTm , calcula la masa inicial del cohete.

Solucién. El cohete propuesto puede describirse con la ecuacion del cohete de Tsiolkovski (al igual que en el
ejemplo [I en la pagina 20)), considerando que la variacién de momento lineal es igual a la fuerza resultante
sobre el sistema (corolario [3 en la pagina 19)), y tratando el cohete como un objeto de masa M viajando a
velocidad v que sufre variaciones de masa dM. Estos diferenciales de masa son negativos, por lo que puede
interpretarse que se eyectan diferenciales de masa —dM con una velocidad v —u, siendo u la velocidad relativa
con la que salen despedidas estas pequenas cantidades de masa vista desde el cohete. Entonces, puede escribirse
el momento lineal del sistema a tiempo t y tras un dt:

p(t) = Mwv
p(t+dt) = (M +dM)(v+ dv) + dM (u — v)

dp.

De esta forma, despreciando la contribucion del producto de diferenciales y siendo la fuerza Mg = ;:

dtF = (M +dM)(v +dv) + dM(u —v) — Mv < Mgdt = Mdv + udM

Resolviendo esta ecuacion diferencial:

v t m
dM
/dv’:—g/ dt’—u/ —@v:vo—gt—l—uln—mo:—gt—l—ulnimo
v 0 mo M m mg — ht

Con mg la masa inicial del cohete y suponiendo que la masa varie de forma lineal. Ahora, puede obtenerse la
ecuacién para la posicion del cohete:

Ty t t
:L':/ dx:/ UdT:/ (—gT—I—ulan >d7’
0 0 0 mo — ht

1 5 mo mou mo
= —=gt tu [In | ————— 1] — 1
T +u[n(mg—ht>+} h n(mg—ht>
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Si se pretende que el cohete llegue con velocidad nula al punto superior:

—gt—{—uln@:O@t:Eln@
my g my

1 22
=L (ulnmo> LW, [m <mo> +1] _ mou <mo>

2°\g my g my my h my
Ahora, la ecuacion que relaciona la masa inicial necesaria con la tasa h de eyeccion de masa por unidad de
tiempo es:

9,81 (2000, mo\> 4 | mg mo 2mo . (Mo
50000 = — = (=2 0 ) 4 S —[1 (—) 1}——1 (—)
2 <9,81 n100) 9.8 100 L™ \T00) T ho\100

Es decir, la masa inicial dependeréa de un parametro libre sin especificar (La tasa de expulsion de materia por
unidad de tiempo).

QEF.

Ejercicio 9 (Problema 1.9). Sean N particulas de masa M colocadas a lo largo de una recta, de modo que
cada una toca a la siguiente.

a) Desde la izquierda vienen dos masas M con la misma velocidad v y chocan con la fila de N masas.
Demostrar la imposibilidad que, como consecuencia de la colision, sea expulsada una sola masa por la derecha
o que lo sean dos masas con velocidades diferentes vy y vs.

b) A la fila de N masas se le afiade otra de masa m por la derecha y se tiene una masa M con velocidad v
que choca con la fila por la izquierda. Demostrar la imposibilidad que si m < M, salga expulsada una tnica
masa. Si salen expulsadas dos masas, jcuales serian sus velocidades? Si m > M y, como consecuencia de la
colisién, sale una masa por la derecha y la masa que ha chocado rebota, jcudles serdn sus velocidades? ;Qué
ocurre si m es muy grande?

Solucién. Este ejercicio es un ejemplo de choque de particulas muy similar al observado en el conocido
"péndulo de Newton” donde una particula con una cierta masa colisiona con una fila de masas iguales a ella
causando que la particula del extremo salga expulsada (y al estar conectadas a cuerdas tensoras) para después
volver a repetirse el proceso.

Considerando que no exista friccion entre las particulas y el suelo o entre ellas mismas, y que las colisiones
sean perfectamente elasticas, podemos suponer que la cantidad de momento lineal se conservara (puesto que
segun el corolario [3 en Ia pagina 19| en ausencia de fuerzas externas la variaciéon del momento lineal respecto
al tiempo es nula).

a) Antes de adentrarnos en la solucion del ejercicio, centrémonos primero en estudiar que ocurre en una
colisiéon perfectamente eléstica entre dos particulas de masa M estando una en reposo y otra con una velocidad
v. En el instante antes de la colisiéon, la primera particula tendra una velocidad v y la segunda particula estara
en reposo, por ello la cantidad de momento lineal del sistema (empleando la definicion formal presente en la
definicion 3 en la pagina 17)) sera igual a pg = Mwv, y justo después de la colision, la cantidad de momento
lineal serd igual a py = Muy+Mug = M (u1+usg) siendo u; la velocidad de la primera particula tras la colision
y ug la velocidad de la segunda. Al conservarse la cantidad de momento lineal (de nuevo por el corolario
la pagina 19| ), tendremos que:

Po=pf = v =1+ up

Puesto que bajo nuestra suposiciéon el choque es elastico, el coeficiente de restituciéon del choque cumplira que

e =1, es decir:
Ul — U2
e=1=———=
v
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Asi, obtenemos un sistema de dos ecuaciones para las dos incognitas u; y ug, donde obtenemos la solucion:
up =0 wuy=w

Es decir, tras la colisiéon de dos particulas de igual masa donde una de ellas se encontraba originalmente en
reposo, las velocidades de las dos particulas se cambian haciendo que la primera particula se quede en reposo
v que la segunda sea expulsada con una velocidad igual a la que tenia originalmente la primera particula.

Esto nos permite solucionar el ejercicio; supongamos que las dos particulas en que van a colisionar con la
fila de N particulas se lanzan en un intervalo cualquiera de tiempo (primero una y luego otra), en ese caso, lo
que ocurrira sera:

i) La particula chocaréa con la primera particula de la fila, transfiriendo toda su velocidad a ésta.

ii) La primera particula chocara con la segunda, transfiriendo su velocidad a ésta.

N) La particula (IV — 1)-ésima choca con la particula N-ésima transfiriendo su velocidad a ésta.

N-+1) La particula N-ésima saldra expulsada con una velocidad v.

Asi, una particula colisionando con la fila de N particulas de misma masa causarid que una particula
sea expulsada de la fila con la misma velocidad que tenia la particula incidente y haciendo que el resto
de particulas pertenezcan en reposo (tal como el mencionado péndulo Newtoniano). Por lo que, al lanzar la
segunda particula, saldra expulsada una segunda particula de la fila con velocidad igual a la primera incidente,
por lo que serén 2 particulas las que sean expulsadas, las dos con misma velocidad igual a v.

b) Empleando lo estudiado en el anterior apartado (dos particulas de misma masa con una en reposo tras
colisionar intercambian sus estados de movimiento), podemos ver que el problema de hacer chocar una particula
con otra en reposo, es equivalente a hacer que choque con una fila de particulas en reposo; por lo tanto, para
solucionar este ejercicio solo deberemos estudiar una colisién entre una particula de masa M y velocidad v y
una particula de masa m en reposo.

Tomando una particula de masa M con velocidad v que colisiona elasticamente con una particula en
reposo de masa m, vemos (por la deficion [3 en la pagina 17)) que la cantidad de momento lineal inicial sera
po = Mwv y tras la colision py = Muj +musg, si como anteriormente se cumple que no existen fuerzas externas,
se conservard la cantidad de momento (de nuevo por el corolario 3 en la pagina 19)), por lo que:

po =pf = M(v—u1) = mus
Si el choque es perfectamente eléstico, el coeficiente de restitucion cumplird que e =1 y:

Uy — u2
e=1=———
v

Solucionando el sistema de ecuaciones entre relaciones de u; y uo, obtendremos que:

M—-—m 5 M
U =v | ——— g =20 [ ——
! M+m 2 M+m
Como vemos, la velocidad a la que sale expulsada la particula de masa m seré siempre positiva (por eso
decimos que sale expulsada) mientras que la particula de masa M puede revotar contra la otra particula (si

M < m) o ser expulsada con una cierta velocidad (si M > m).

Asi pues, como respuesta al ejercicio, si M > m la particula de masa m saldra expulsada con velocidad

M
M+m

ug = 20 y la dltima particula de masa M de la fila saldra expulsada también con una velocidad

Uy = v (%), si m < M la particula de masa m saldra expulsada con velocidad us = 2v <ML+m> y la

Licencia: Creative Commons 47


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 1. SISTEMAS DE PARTICULAS
Lain-Calvo-Cano-Guerrero 1.6. PROBLEMAS

M-—m
M+m

con la anterior particula de masa M transfiriendo toda su velocidad a esta (tal como vimos en el anterior

apartado), causando que la particula de masa M original salga expulsada (por la izquierda) a una velocidad

M—
ut = argm )-

En el caso de que m sea muy grande (comparada con M), podremos decir que ésta tiende a oo, para ver
los efectos tras el choque podemos calcular el limite cuando m — oo en las velocidades uy y us:

dltima particula de masa M rebotara contra ella con una velocidad u; = v ( ), ésta particula chocara

lim w = —v lim uo =0
m—0o0 m—0o0

Estos resultados nos dicen que si m >>> M, la particula de masa m no se movera tras el choque, mientras que
la particula de masa M rebotara contra ella con la misma velocidad y de sentido contrario (y tras multiples
choques, la particula original serd expulsada por la izquierda con la misma velocidad con la que incidié pero
con sentido contrario).

Q.EF.
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Capitulo 2
Solido rigido

2.1. Introduccién

Consideremos una peonza.

N

Supondremos que la peonza tiene un punto fijo de apoyo en la Tierra en torno al cual la peonza puede rotar
pero no desplazarse. Veamos qué fuerzas acttian sobre la peonza. En el punto de apoyo tenemos la normal
del suelo y, ademas, en el centro de masas tenemos el peso. Estudiemos los momentos de fuerzas tomando el
punto de apoyo como punto de referencia. De esta forma, la normal no ejerce momento, pero el peso si. Por
lo tanto, todo parece indicar que la peonza deberia caerse; no obstante, sabemos experimentalmente que esto
no ocurre, en este capitulo veremos por qué.

En este capitulo vamos a ver qué acontece cuando tenemos cuerpos girando. Todo lo que el lector ha visto
hasta ahora sobre sélidos rigidos no son més que burdas simplificaciones: hasta ahora, siempre hemos supuesto
que:

J =15

donde I es el momento de inercia del sélido. En este caso, serfa siempre J || &; pero esto no se da siempre. En
general, de hecho, I sera un tensor (0,2).

Algo similar a la peonza ocurre con las carreras de motos, en las que el motorista es capaz de inclinarse (e
incluso tocar el suelo con el codo) sin que la moto se caiga.
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F,

mg

N

También, en un coche, al dar una curva a alta velocidad, al conductor le interesa hacer traccién en la rueda
interior, para que el rozamiento del suelo le ayude a dar la curva.

2.2. Leyes basicas
Vamos a hacer un resumen de las leyes fisicas vistas hasta ahora, pero aplicadas a un sélido rigido.

Definicion 13. Sea N € N U {oo}. Llamamos s6lido rigido a un conjunto de N particulas tal que las
distancias relativas entre las particulas que lo forman son constantes. Es decir:

|7 — 7| =cte Vi,j=1,...,N

Observacion 10. Los solidos rigidos no existen en la realidad, ya sea porque presentan elasticidad, por efectos
de temperatura, etc.

Observacion 11. Un solido rigido puede estar formado por un ntmero finito o infinito de particulas. Una
peonza es tan sélido rigido como una varilla que une dos bolas.

Licencia: Creative Commons 50


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 2. SOLIDO RIiGIDO
Lain-Calvo-Cano-Guerrero 2.2. LEYES BASICAS

Para describir un sistema de particulas, en general, necesitamos 3N particulas. Sin embargo, en el caso
de un sélido rigido nos van a bastar 3 coordenadas para el centro de masas y otras 3 coordenadas para dar
la orientacién relativa del sélido rigido con respecto al centro de masas. En este capitulo, vamos a centrarnos
sobre todo en la segunda parte. Notese que la posiciéon del centro de masas esta relacionada con la traslacién
del cuerpo, mientras que las coordenadas de la orientacién estén relacionadas con la rotacién del cuerpo.

Proposicion 12. Sea N € N y sea un solido rigido de N particulas. Se cumple:

1. La posicion del centro de masas del solido rigido viene dado por:
| N
1=

N
donde M = Zmz

i=1

2. El momento lineal total del sdlido rigido coincide con el que tendria una unica particula de masa M =
N

Zmi y que se desplazara con la velocidad del centro de masas R.

i=1

. N
i=1

3. El momento angular total del sdlido rigido con respecto de un punto O € R? puede expresarse como:
N
T =" mf x 7
i=1

4. El momento angular total del sélido rigido visto desde un sistema de referencia R estd relacionado con
aquél visto desde el centro de masas por la ecuacion:

J = Jepm +J*
5. La energia cinética total del solido rigido puede calcularse como:

N
-y
=1

’I’)’LZ"I:;-Q

N | =

6. La energia cinética total del sdlido rigido vista desde un sistema de referencia R estd relacionada con
aquélla vista por el centro de masas mediante:

T=Tcpm +T"

7. El movimiento del centro de masas del solido rigido estd regido por la ecuacion:

. . N
P=MR=)_F,

i=1

!

~
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8. La variacion del momento angular total del sdlido rigido con respecto de un punto O € R3? es debida

unicamente a agentes externos y coincide con el momento de fuerzas resultante de las fuerzas externas:

A N
JZE 'FiXFi:Next
=1

9. La variacion de la energia cinética total del solido rigido se debe exclusivamente a agentes externos y

coincide con la potencia generada por las fuerzas externas:
N
T= g 7 - F;

i=1

10. 57 todas las fuerzas externas que actian sobre el sdlido rigido son conservativas, entonces la energia

mecdnica del solido rigido se conserva:
E=T+YV =cte

donde V' depende unicamente de las fuerzas externas.

Demostracion.

1.

Se llega al resultado aplicando la definicién [1 en la pagina 16]

. Esto se debe a la proposiciéon |1 en la pagina 17|y al corolario |2 en la pagina 17|

. Se obtiene el enunciado al hacer uso del corolario [4 en la pagina 21|

. Se llega al resultado al aplicar la proposicion [4 en la pagina 22|

. Esto se debe al corolario [8 en la pagina 30}
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6. Se obtiene el enunciado al hacer uso de la proposicion [7 en la pagina 30}

7. Se llega al resultando aplicando el teorema [2 en la pagina 18|

8. Por la definicion de solido rigido (ver definicion |13 en la pagina 50)), la distancia entre cada una de las
particulas que lo forman permanece constante en el tiempo:

|7 — 7| =cte Vi,j=1,...,N

En consecuencia, para cada par de particulas i-ésima y j-ésima la fuerza F’ij debe ser perpendicular al
vector 7; — 7, pues si no lo fuera, apareceria una aceleracién que aumentaria el moédulo del vector 7; —77; y
esto seria absurdo pues contradiria la hip6tesis. En consecuencia, debe ser Fw 17— f; Vi j =1,...,N.
Por otra parte, por la 3% ley de Newton, debe ser Fm = Fﬂ En consecuencia, si Fw % 0 la partlcula

F
J-ésima deberfa estar rotando en torno a la particula i-ésima con aceleracion angular “ en ausencia de
fuerzas externas pues:

Nij =7; X Fz‘j —i—Tj X Fji =17; X Fij +Tj X <_Fij) = (TZ‘ — Tj) X Fij
Es decir, el vector L;; = m; (75 — 7j) X ('F; - @) deberia estar cambiando como indica la expresién
anterior. Como Fy; L 7; —7; Vi,j=1,..., N, lo anterior seré igual a:
Nij = |’r‘i — Tj| F”k‘

siendo k el vector unitario perpendicular a F;; y a 7; — ;. Como no tiene sentido que un solido rigido
gire cada vez mas rapido o cada vez més despacio por si mismo, concluimos que necesariamente sera:

Fy=0%=1,...,N

En consecuencia:
75 XFij =0 Vi,j=1,...,N

N
y, asi, la fuerzas {Fij} son centrales, pues son nulas. Por el teorema [3 en la pagina 26, obtenemos
ij=1

que:
= ewt Zrz X F

9. Por lo expuesto en la demostracion del punto (8) es:

—

F;j=0Y¥=1,....,N

Es decir, no hay fuerzas internas. Por el corolario [0 en Ta pagina 32| obtenemos:

N
A

=1

10. Por lo expuesto en el punto (8), las fuerzas internas son nulas, luego son conservativas. Es més, podemos
suponer sin pérdida de generalidad que V;; = 0 Vi, 5 = 1,..., N. De esta forma, como las fuerzas externas
son conservativas por hipétesis, podemos aplicar el teorema {4 en la pagina 34] obteniendo:

E=T+YV =cte
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donde V = Vj,t + Veut. No obstante, por lo dicho anteriormente:
N N
Vine =), Vij=0
i=1 j=1
luego V = Vut.
Q.E.D.

Corolario 10. Sea un sdlido rigido macizo con funcion densidad p: V C R? — R con V medible Lebesgue.
Se cumple:

1. La posicion del centro de masas del solido rigido viene dado por:

ﬁ:]\Z///Vp(F)FdV

2. El momento lineal total del solido rigido coincide con el que tendria una unica particula de masa M =

donde M = [[[,, p(7)dV.

[Jf, p(7)dV y que se desplazara con la velocidad del centro de masas R.

ﬁ:Mﬁ:///vp(F)?dv

3. El momento angular total del sdlido rigido con respecto de un punto O € R? puede expresarse como:

f:///vp(f)(y?x?)dv

4. El momento angular total del solido rigido visto de un sistema de referencia R estd relacionado con
aquél visto por el centro de masas por la ecuacion:

J=Jopm +J*

5. La energia cinética total del solido rigido puede calcularse como:

T:///V;p(f‘)%ﬂdv

6. La energia cinética total del sdlido rigido vista desde un sistema de referencia R estd relacionada con
aquélla vista por el centro de masas mediante:

T=Tcpm +T"

7. El movimiento del centro de masas del solido rigido estd regido por la ecuacion:

ﬁ:Mﬁ:// Fav
1%

8. La variacion del momento angular total del sélido rigido con respecto de un punto O € R® es debida
unicamente a agentes externos y coincide con el momento de fuerzas resultante de las fuerzas externas:

f:///v@xﬁ)dvzﬁm
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9. La variacion de la energia cinética total del solido rigido se debe exclusivamente a agentes externos y
coincide con la potencia generada por las fuerzas externas:

:///‘/<?-ﬁ>dv

10. 57 todas las fuerzas externas que actian sobre el sdlido rigido son conservativas, entonces la energia
mecdnica del solido rigido se conserva:

E=T+V =cte

donde V' depende unicamente de las fuerzas externas.

Demostracion. En general, vamos a hacer uso de la proposiciéon |12 en la pagina 51|y vamos a cambiar la serie
infinita por una integral.

1. Se cumple por el corolario[I en Ta pagina 16}

[ o@riav

En un instante t fijo, claramente 7 es funciéon de 7. Como 7 esté acotada, podemos aplicar el teorema

2. Partimos de lo que queremos demostrar:

. 3 3
en la pagina 3| para f () = ¥y n = 3, obteniendo que existen sucesiones {m N;i}gf) y {FN;i}EiJY) tales

que:
(2N)3 (2N)3
FAV = 1 f (Pya) = 1 =
///Vp(’F)T Ngnoo ; mN,zf (TNZ Ngnoo Z mNz"“Nz
M
——
(2N)3 (2N)3
ZmNz 2N ZmNerz
= I = lfm M- 5 = lfm MR= lim P
Noso 2N 2N)3 Z O N oo (2N)3 N5oo N oo

Z MmN Z mp;;

i=1

-7

donde el ultimo paso se debe a la proposicién [12 en la pagina 51|

3. Partimos de lo que queremos demostrar:

I::///Vp(f‘)(m?)dv

—

Aplicando el teorema |1 en la pagina 3|, tomandon =3y f(F) =7x 7, obtenemos que existen sucesiones

2N)? S 1(2N)?
{mN§i}§:1) y {TN;i}l(:l) tales que:

(2N)?

= lim g myif (Fn;) = lim g MmN <FN;Z-><FN;Z-)
N—oo 4 N%oo —1
1=

que es justo el limite cuando el nimero de particulas tiende a infinito de la expresiéon dada por la
proposicién [12 en la pagina 51| para el momento angular.
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4. El resultando se sigue de la proposicion [12 en la pagina 51|

5. Partimos de lo que queremos demostrar:

1—/// (M2 dV = = /// (7) 72 dV

Aplicando el teorema |1 en la pagina 3|, tomandon =3y f(7) = 2, obtenemos que existen sucesiones

2N)3 o 2N)®
{mN;i}z(‘:l) y {TN;i}Z(Zl) tales que:

(2N)? (2N)?

que es justo el resultado dado por la proposicion |12 en la pagina H1|para la energfa cinética de un sistema
de (2N)? particulas.

6. El resultando se sigue de la proposicién [12 en la pagina 51|

7. Partimos de lo que queremos demostrar:

I:///Vﬁ(f)dvz///vp(f)a(f)dv

Aplicando el teoremal|l en la pagina 3|, tomando n = 3y f () = @ (7), obtenemos que existen sucesiones

2N)? S, oIN)3
{mN§i}§:1) y {TN;i}l(zl) tales que:

Y aplicando la segunda ley de Newton para un sistema de particulas (ver teorema [2 en la pagina 18]),

obtenemos:
(2N)? .
I= Y Fni= lim MR
Ngnoo Z N Ngnoo R
i

donde el ultimo paso se debe a la proposiciéon [12 en la pagina 51|

8. Partimos de lo que queremos demostrar:

:///V(fxﬁ )av = /// (7) (7 x @ (7)) dV

—

Aplicando el teorema [l en la pagina 3, tomando n = 3y f () = 7 x @ (7), obtenemos que existen

3 3
sucesiones {mN;i}gijy) y {FN;i}EiJP tales que:
(2N)3

I'=1im > myuf(Fy) = lim Z myi | T % a(Fva) | =
——

N—oo 4 N—o0
=1
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(2N)? (2N)?
- 1i (P X dna) = 1 (—' X F )
Ngnoo Z; mp;; (TN,z X aN,z) Ngnoo Z; TN;i X LN
1= 1=

donde hemos aplicado la segunda ley de Newton para un sistema de particulas (ver teorema
pagina 18)). Por la proposicion 12 en la pagina 51} tenemos:

(2N)? .
= 1 (* i x F ) — lfm J
Ngnoo zz; TNy X N Ngnoo

9. Partimos de lo que queremos demostrar:

=l ey [ )

Aplicando el teorema [1 en la pagina 3, tomando n = 3 y f () = - @(F), obtenemos que existen

. 2N)? i 2N)®
sucesiones {mN;i}z(‘:l) y {TNﬂ}z(:l) tales que:

(2N)? (2N)?
00
i=1 < imt —
=AN;q
(2N)?

N—oo 4 1

1=

Y aplicando la segunda ley de Newton para un sistema de particulas (ver teorema |2 en la pagina 18)),
obtenemos:

Por la proposicion [12 en la pagina 51} llegamos a:

I= lim T

N—oo

10. El resultando se sigue de la proposicién [12 en la pagina 51|

Q.E.D.

2.3. Rotacion en torno a un eje

Proposicion 13. Una particula describe un movimiento circular en torno a un eje Z si y solo st r = cte y
existe una funcion vectorial & (t) : R — R3 tal que & || k Vt, siendo k el vector unitario del eje Z, y:

U= X7

(donde U es el vector velocidad de la particula y 7 es su vector posicion) para todo sistema de referencia inercial
cuyo origen esté situado en el eje de giro Z.
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S|

Demostracion.

= <: Partimos de que r = cte y de que existe & (t) : R — R® tal que @ || k Vi y ¥ = & X 7 para
todo sistema de referencia inercial situado cuyo origen se encuentra en el eje Z. Debemos probar que la
particula sigue una trayectoria circular y que dicha trayectoria esta contenida en el plano z = zy para
algtin zp € R.
Esto tltimo es sencillo:
T=WXTE (g,0y,0;) = (0,0,w) x (z,y,2) =

= wk x (mi +yj + zl%) = rwj — ywi = (—yw, 2w, 0) (2.3.1)

Luego el vector ¢ esta contenido en el plano z = 0. De esta forma, vemos que la componente z de la
posicion de la particula ¥ no puede cambiar, luego la trayectoria de la particula estaré contenida en un
plano paralelo al z = 0.

Ahora, veamos que la trayectoria es circular. Sabemos que r = cte; es decir:

r=va2+y2+22=cteasr? =22 +y?+ 2% =cte

2

Por el razonamiento hecho anteriormente, debe ser z° = cte. En consecuencia:

x2+y2 =72 - 2% =cte
Notese que lo anterior siempre esta bien definido pues r > z < 72 > 22. En resumen, llegamos a:
z? + y2 = cte

que es la ecuacion de un circulo centrado en el origen en coordenadas cartesianas.

= = Partimos de que la trayectoria de la particula es una circunferencia contenida en el plano z = zg
para algtn 2y € R. Entonces es:

(2 +y* =cte) A (z=cte) = 2” +y* + 2> =cte & 7 = /a2 +y2 + 22 = cte
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Por otro lado:
x2+y2:cte<:>2a:a':+2yy':0(:>xdc:—yy@:ic:—gy (2.3.2)
T

z=cteez2=0

Si tomamos & (t) = (0,0,w (t)), entonces, por la ecuacion [2.3.1 en la pagina anterior, obtenemos:

U= (—yw, 2w, 0)
que satisface la ecuacion [2.3.2], pues:

—SY = ——IWw = —Yw =T
x

Q.ED.

Observacion 12. El enunciado de la proposicién [13 en la pagina 57 nos indica que en un movimiento circular
el vector posicion 7; precede con velocidad angular w.

2.3.1. Momento angular

Proposicion 14. Sea un solido rigido de N particulas que rota en torno a un eje Z con velocidad angular w.
Su momento angular respecto de un punto O viene dado por la expresion:

N

7 2, .2

J = E m; (—fl?izz', —YiZi, T; +yi) w
i=1

Demostracion. Por la proposicion [12 en la pagina 51| tenemos:

N
T =" mifi x 7 (2.3.3)
=1

Por otra parte, como el sélido rigido rota en torno al eje Z, cada una de sus particulas describira una trayectoria
circular en torno a dicho eje. Por la proposiciéon [13 en la pagina 57 tenemos que:

=0 X 7= wk X T;

Sustituyendo en la ecuacion [2.3.3] tenemos:

N N
J = Zmﬂ_’; X (wl;: X 7_';) = Zwmif; X (l% X (xﬁ—i—yij —|—zzlzz>) =
i=1 i=1

N N
= Zwmi (xﬂ + yij + zzl%) X (CCZj — yﬂ) = Zwmi (xfl;: + yfl% — xlzli — yﬂﬁ) =
i=1

i=1
N
2, .2
= § mi (—xizi, —yizi, ) + Y ) w
i=1

Q.ED.

Como vemos en la proposicién aunque & solo tiene direccion k, J; tiene componentes en todos los ejes.
Por ahora, vamos a olvidarnos de las coordenadas z e y del momento angular y vamos a centrarnos en la
componente z.
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Definicion 14. Sea un solido rigido de N particulas que estd girando en torno a un eje Z. Llamamos
momento de inercia respecto al eje de giro I, al factor por el que hay que multiplicar la velocidad
angular w para obtener la componente z del momento angular respecto de un punto O.

Corolario 11. Sea un sdlido rigido de N particulas que estd rotando en torno a un eje Z. Su momento de
inercia con respecto al eje de giro Z viene dado por la expresion:

N
I, = Zmi (m? + yf)
=1

Demostracion. Por la proposicién [14 en la pagina anterior] tenemos que:

N
JZ:mei (3312+y12)
i=1

Por analogia con la definicién llegamos al enunciado. Q.E.D.

Proposicion 15 (Ecuacion del movimiento de un solido rigido en rotacién). Sea un sdlido rigido de N
particulas que estd rotando en torno a un eje Z. La variacion de la componente z de su momento angular con
respecto de un punto O puede expresarse como:

N
Jz :Izw:Zmi (xf—l—yf)w

=1

Ademds, siempre existen {Pi}i]\il Y {F%i}i]\il tales que:

N
jz = Z ptip,i
=1

donde p; es una distancia y F,; es una fuerza contenida en el plano XY .

Demostracion. Por la proposicion |14 en la pagina anterior] tenemos:

N

J, :mei (:L‘12+y12)
=1

Derivando con respecto al tiempo a ambos lados, obtenemos:

N N
. d
Jzzwg ml(asf—kyzz)—kwg mz&(ﬂf?‘Fy?)
i=1 =1

pues la derivada es lineal. No obstante, por definicién de solido rigido (ver definicion [13 en la pagina 50)), el
término (27 + y7) debe ser constante en el tiempo. Asf, obtenemos:

N
J, = Z m; (27 +y7) (2.3.4)
i=1
y, por el corolario [T1], es: .
J,=Lw
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Ahora, llamando ,022 = 3312 + yz2 Vi =1,..., N, podemos expresar la ecuacion [2.3.4 en la pagina anterior|
como:

N
J, = P2
L= ) Mipiw
=1

t .
Tomando, ¢ := fo wdT, podemos expresar lo anterior como:

N
=S mi
=1

donde ¢ es ahora un angulo. De hecho, el angulo ¢ correspondiente a las coordenadas cilindricas en torno al
eje Z. Ahora, notese:

N
J. = pmipip
=1
Démonos cuenta de que el término m;p; := F,; tiene efectivamente unidades de fuerza:

[F,,i] = masa - longitud - = masa - aceleracion = fuerza

tiempo?
Ademas, claramente p; es una aceleracion lineal contenida en el plano XY, pues indica una variacién de ¢, que

esta, a su vez, contenido en dicho plano. Asi, F,; estard, necesariamente, contenido en el plano XY. Q.E.D.

Observacion 13. La proposicion [I5 en la pagina anterior] nos indica que tnicamente las fuerzas contenidas en
el plano XY y que actien a una distancia no nula del eje de giro serédn capaces de variar el momento angular
del solido rigido en torno al eje de giro.

2.3.2. Energia cinética

Proposicion 16. Sea un sdlido rigido de N particulas que estd rotando en torno a un eje Z. Su energia
cinética de rotacion puede expresarse en funcion de la velocidad angular w y del momento de inercia con
respecto al eje de giro como sigue:
1
2
T = 5 W

Ademds, siempre existen {pi}i]\il Yy {F%i}i]\il tales que:

N
T = Izww = w Zptip,i
=1

donde p; es una distancia y Fy,; es una fuerza contenida en el plano XY .

Demostracion. Por el corolario |8 en la pagina 30| tenemos:

N N
T=>" 5T (2.3.5)
=1

Como cada particula describe una trayectoria circular en torno al eje de giro, por la proposicién en la

M sera:
[ 12 2
= W xi —{—yz P

7= | X 7| = ‘w];: X <$,£ + yiJ + zzl%)‘ = ‘w:c,} — Wy

o = w? (2 4+ 4?)
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Sustituyendo en la ecuacion [2.3.5 en la pagina anterior] llegamos a:

N N
1 1
T=> smw? (@] +yf) = 507D _mi (o] +57) (2.3.6)
i=1 i=1

Por el corolario [I1 en la pagina 60, podemos expresar lo anterior como:

1
Tzi sz

Por otra parte, partamos de la ecuacion y definamos p? = :c? + y? Vi=1,...,N. Asi, la mencionada
ecuacion queda:

N
i=1

Derivando a ambos lados, obtenemos:

N N

: 1 . :

T= E §mip?2ww: g M PHWG) (2.3.7)
i=1 i=1

Por el corolario |11 en la pagina 60, tenemos que:

T = Lww

Volviendo a la ecuaciéon y tomando ¢ := fg wdT, obtenemos:

N N N
T =Y mippp=> mipjwp=wy_ pimipi$
i=1 i=1 i=1

donde ¢ es ahora un angulo. De hecho, el angulo ¢ correspondiente a las coordenadas cilindricas en torno al
eje Z. Démonos cuenta de que el término m;p;p := F,; tiene efectivamente unidades de fuerza:

[F,,i] = masa - longitud - = masa - aceleracion = fuerza

tiempo?
Ademés, claramente p; es una aceleracion lineal contenida en el plano XY, pues indica una variacion de ¢, que

estd, a su vez, contenido en dicho plano. Asi, F,; estara, necesariamente, contenido en el plano XY. Q.E.D.

Observacion 14. Con la proposicién [16 en la pagina anterior] obtenemos una conclusiéon analoga a la de la
proposicién [I5 en Ta pagina 60} tnicamente las fuerzas que se encuentran en el plano XY y que no actian
sobre algin punto del eje seran capaces de cambiar la energia cinética de un sélido rigido en rotacién con
respecto a un eje.

Observacion 15. Con las proposiciones [I5 en Ia pagina 60] y [I6 en Ta pagina anterior] no podemos estudiar
las reacciones que ocurren en el eje, pues p; = 0 en el eje. Para estudiarlas, tendremos que trabajar con el
momento lineal.

Ejemplo 6. Tenemos una varilla rectangular de lados a y b que puede rotar sobre uno de sus vértices. De
otro de sus vértices cuelga una masa M. Otro extremo esta anclado mediante una tensiéon F' de manera que
el sistema esta en equilibrio.
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) F
b
Y 8 4
X 0
// Mg

Por la proposicion [12 en la pagina 51} sera:

J=bF —aMg
Como el sistema esta en equilibrio, necesariamente es J = 0. Asf:
. a

Como hemos mencionado en la observacion [13 en la pagina 61| la ecuaciéon anterior no nos da ninguna
informacién sobre las reacciones en el eje. Para ello, tendremos que usar la variaciéon del momento lineal
(segun dada por la proposicion [12 en la pagina 51)):

ﬁ:Mﬁz@—i—ﬁ—l—Mﬁz@—F%—mgi
donde Cj es la reaccion en el eje. Para que haya equilibrio, debe ser P = 0. En consecuencia:
P=0« Q= (F,Mg,0)

Estudiemos el movimiento del centro de masas de la varilla. Como la varilla rota en torno a un eje fijo
Z, su centro de masas describird una trayectoria circular en torno al eje de giro. En consecuencia, por la
proposicién [14 en la pagina 59| tendremos:

R=W xR
donde la ecuacién anterior indica que el centro de masas realiza una trayectoria de radio R en torno al eje de
giro. Hallemos la aceleraciéon del centro de masas. Para ello, simplemente derivamos en la ecuacién anterior,
obteniendo: . )
R=W0XxR+IJXR=&x R+ X (&xR)

donde el primer término es la aceleracién tangencial a; = Rw y el segundo término es la aceleracién radial
ar = —w’R.

QEF.

Ejemplo 7. Tenemos una cuerda que cuelga del techo y que hemos enrollado alrededor de un cilindro de
radio p. Tomamos el origen de coordenadas en el centro del cilindro. Nos piden hallar la tensién en la cuerda
y hallar la velocidad angular en torno al origen, la aceleracion lineal del cilindro y la aceleraciéon angular en
torno al origen.
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T M, p

Iy

Como el solido rigido esta rotando en torno a un eje fijo, por la proposicion [12 en la pagina 51| y la
proposicion [15 en la pagina 60} tenemos:

. . . T
N:J:szlé?(:)G:Tp (2.3.8)
Ademas, por la segunda ley de Newton:
Mg—-T
T Mg=Mjeij= 2"~ (2.3.9)
M
Como estamos en un movimiento de rodadura es y = pf y, en consecuencia:
ij = pb
Sustituyendo esto ultimo en la ecuacion [2.3.9] obtenemos:
b Mg—-T
SV
Haciendo uso de la ecuaciéon llegamos a:
Tp> Mg—T  Mp? M p? Mg Mgl
= & T=Mg—T <& 1) T=Mg&sT= = 2.3.10
I M 1 9 T g 14+ M2 T T+ Mg (2:3.10)

Por otra parte, por este enlaceﬂ sabemos que el momento de inercia de un cilindro en torno a su eje de simetria
central es:

1
I= 5Mp2 (2.3.11)
Sustituyendo en la ecuacion [2.3:10] tenemos:
M M 1
=1 Jaﬁ - 1+92 = 3Myg
+ it

"https://en.wikipedia.org/w/index.php?title=List_of _moments_of_inertia&oldid=887735536
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Haciendo uso de la ecuacién [2.3.8 en la pagina anterior}

. Tp L Mgp 2g dé 29 o . t2g . 2g
§—-F_3 =l e T - de = —dr < 6= =t
I Impr 3p At 3p /wo /0 30" Y

Anéalogamente con la ecuacion [2.3.9 en la pagina anterior], obtenemos:

. 9 dy 2 /A t9 2
y=p 39<:>dt 39@/1)0 /039 TSy Uo+39

QEF.

Alternativamente, podriamos haber hecho este ejercicio por lagrangianos. Haciendo uso de la proposicion
len la pagina 61 podemos escribir la energia cinética del cuerpo:

1. 1
T =_-16?+ -My?
2 9 Y
Como estamos ante un movimiento de rodadura, podemos expresar lo anterior tinicamente en funcién de 8:

1. 1 )
T = ~10%+ - Mp>6?
510 T Mp

Por otra parte, la energia potencial es inicamente:
V =-Mgy=—Mgpb

En consecuencia: 1 1
L=T-V= 51.9'2 + §Mp292 + Mgph

Hallemos las parciales:

oL
— =M
90 gp
oL . . d /oL, . .
= =10+ Mp*0 = — <> =10+ Mp*0
06 SATANY ’
Y, haciendo uso de la ecuacién [2.3.11 en la pagina anterior], podemos expresar lo anterior como:
d /or 1 . . 3 .
— (=) = S Mp®0 + Mpb = =M p*0
dt (39> g PO T =5 M

Por el teorema |5 en la pagina 35| debe ser:

3 .. . Mgp 2¢g
“Mp*0 = Mgp = 0 = .
5 Mp ap MR 3p

De forma que hemos llegado a la misma ecuacién del movimiento que aplicando las leyes de Newton y la
ecuacion del sélido rigido en rotaciéon. Integrando como hemos hecho en la versiéon anterior, se obtienen las
velocidades que se nos solicitan.

QETF.

Ejemplo 8 (péndulo fisico). Tenemos un sdlido rigido con momento de inercia I con una forma arbitraria
clavado en un punto O y lo separamos del equilibrio. Nos piden hallar su periodo (suponiendo pequenas
oscilaciones) y la reaccion Q.
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Vamos a hacer el ejercicio mediante lagrangianos. Por la proposicién [16 en la pagina 61} tenemos que:

1
T=-1¢°
51¥
Por otra parte, la energia potencial queda:
V =—-—MgRcosy
Asi:

1
L=T-V = §I¢2+Mchoscp

Hallamos las derivadas parciales:

oL =—MgRsenp
O

0L ;o 4 (9L _ 1
9y P w\ap) ¥

Por el teorema |5 en la pagina 35| debe ser:

MR R
I¢:—MgRsen¢<:>¢:—Tgsen@<:>gb+ seng =0 (2.3.12)
En la aproximacion de pequenias oscilaciones es sen ¢ = ¢ y, por consiguiente:
. MgR
¢+ Tgso ~0

Por analogia con la ecuacion diferencial de un movimiento arménico, obtenemos:

. MgR , MgR 4x* MgR _, 42T I
Mo 2= Mot A MO o T — o L
LA B e T SR T T R

2

=W

1
Vamos a llamar [ =: VR longitud del péndulo equivalente. En funcion de dicho pardmetro, obtenemos que
el periodo es:
l

T =2my[—
g
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Ahora, queremos hallar el valor de la reaccién (. Para ello, vamos a aplicar la proposicion

por lo que

N
Z F=MR=3+ Mg (2.3.13)
De la ecuaciéon anterior desconocemos ﬁ, hallémosla:
R = (Rsen ¢, Rcos p,0)
R = (Rcos ¢, —Rsen p ¢, 0)
R= (—Rsencpgb2 + Rcos ¢, —Rcos @ p* — Rsengpgb,O)
Asi, a partir de la ecuacion [2.3.13] obtenemos:
= (Qa,Qy — Myg,0) &
Q= (—MRsencpgb2 + MRcosp @, —MRcospp? — MRsen ¢ ¢ — Mg,O) (2.3.14)

Por otra parte, como todas las fuerzas que actiian sobre el sistema son conservativas, la energia debe conser-
varse. Asf:

1 2
Podemos expresar lo anterior como:

2MgR
@? = Ig (cosp + K) (2.3.15)

donde K es una constante.

De esta forma, mediante las ecuaciones [2.3.15| y [2.3.12 en la pagina anterior] podemos expresar
como:

- 2M M
Q= (—MRsenap gkt [cosgo—i—K]—MRcosgoTRgsencp,

2M
—MRcos g I

MR
[cosp + K] —|—MRsen<pIgsen<p,0> =
(29,22 95 2p2 29 950 93r2p2 .2
= IM R*senp[cos ¢ + K] IM R? sen ¢ cos p, IM R cosgo[coscp—l—K]—l—[M R*sen” p,0

QETF.

Ejemplo 9. Tenemos un soélido rigido con una forma arbitraria anclado en un punto O.

3
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En un momento, el solido rigido que se encontraba en equilibrio, recibe un impulso. ; Existe alguna distancia
d que anule la reaccion ()7 Para ello, vamos a llamar:

K::/th, s::/th

Vamos a trabajar, como hemos hecho en los ejemplos [7 en la pagina 63|y [ en la pagina 65| con la segunda
ley de Newton para un sistema de particulas.

N

apr

dt—ZFemt@dP—th—th@Pf—Pi—/th—/th—K—S (2.3.16)
=1

Hallemos las velocidades inicial y final del centro de masas:
v, =0 vy = Rw

pues el centro de masas estaré describiendo una trayectoria circular en torno al origen. En consecuencia, de

la ecuacién [2.3.16| obtenemos:

Pt —P=MRw—-M-0=MRw=K -5 (2.3.17)
Por otra parte, por la proposiciéon [12 en la pagina 51} tenemos:
L d Fd d Kd
J:Nezt@Idj:Fd@dw:Idt@w:I/th:I (2.3.18)

Usando las ecuaciones [2.3.17] y 2.3.18] obtenemos:

MRS ks s i (12 200,)

donde recordemos [ = es lo que llamabamos longitud equivalente del péndulo fisico (al igual que en el

(-

Observando la formula anterior vemos que si d = [, entonces S = 0. Es decir, la fuerza F se realiza a una
distancia vertical [ del punto de apoyo, entonces la reaccién del punto de apoyo sobre el s6lido rigido es nula.

ejemplo [8 en la pagina 65]). Asi, tenemos:

Q.ETF.

La situacién descrita en el ejemplo [9 en la pagina anterior| aparece sobre todo en deportes en los que se
golpean pelotas con un palo. Por ejemplo, en béisbol, hay una distancia privilegiada en la que el jugador no
debe hacer esfuerzo en sujetar el bate, lo que recibe el nombre de «sweet spot» en inglés.

Sweet spot
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Algo similar ocurre en la historia de las raquetas de tenis. Antes, éstas eran mucho mas alargadas y su

disenio se cambié precisamente porque en el disefio antiguo el punto 6ptimo se encontraba fuera de la zona de
golpeo.

N
y 4
\
A
]
l y 4 \
J y 4 \
N\ 4
N
— ‘ —
\ /
/
[ cdm ~ [ cdm
Antes Ahora

2.3.3. Componentes perpendiculares de J

Definicion 15. Sea un solido rigido de N particulas que esta rotando en torno a un eje Z. Llamamos vector
de inercia con respecto al eje de giro I = (1., I,.,1..) al vector tal que:

J=wl & (Ju, Jy, J.) = (Inaw, Iyow, I.w)

Corolario 12. Sea un sdlido rigido de N particulas que estd rotando en torno a un eje Z. El vector de inercia
dado en la definicion [15 responde a la expresion:

N
I, = — E m;Tiz;
i—1

N
Iyz = - § miyiz;
=1

N
=1

Demostracion. La componente I, es la mencionada en el enunciado por el corolario |11 en la pagina 60| Para
el resto, partimos de la proposicién [14 en la pagina 59t

N
J = Zmz (—xizz‘, —yizi, T2 + yf) w =
i=1

N N
= (Jz, Jy) = <— > mimizi, — ZW?J%) w
i=1 i=1
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Por analogia con la definicién [15 en la pagina anterior], deducimos que:

N N
I, = — E miT;zi, Iy, = — E m;iYiz;
i=1 =1

Q.ED.

Observacion 16. Recordemos que el enunciado de la proposicién [14 en la pagina 59| nos indica que, en general,
es J }f &.

Ejemplo 10. Consideremos el solido rigido mas sencillo que podemos imaginar: una tnica particula de masa
m a distancia r del origen. Supongamos que el vector 7 precede con respecto al eje Z con velocidad angular
w.

- ~
-

4 \
\ /
~N - e
~ - _ /\w )

_)
/’fh
_)

,.<

X

En este caso, por la proposicion [12 en la pagina 51| tenemos:

J=rxmi=J L7

Es decir, en este caso, claramente J }f . Es més, J precede, por lo que 3J = I Ny, es decir, aparecera una
fuerza resultante de momentos de reacciéon. Es decir, aparece una fuerza que intenta cambiar el eje de giro del
sistema. En consecuencia, esto nos indica que un sistema real de este estilo podria sufrir desgaste en el eje de
giro debido a la accién de la mencionada fuerza.

Ejemplo 11. En el interior de nuestros teléfonos moviles hay un motor muy pequefio unido a un disco
descentrado.
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o
CDM

Esto constituye el vibrador. Como podemos ver, en este dispositivo ocurre lo mismo que en el ejemplo [I0]
|en la pagina anteriorl pues es J }f .

2.4. Tensor de inercia

2.4.1. Endomorfismo de inercia

A partir de este momento, la velocidad angular & podra ir a lo largo de un eje arbitrario cualquiera. Asi,
en principio, & tendra componentes en las tres direcciones:

b= (wxawya Wz)

Proposicion 17. Sea un solido rigido de N particulas. Si estamos trabajando en una base ortonormal, existe
una matriz simétrica T € RB33) tal que el momento angular del solido rigido puede obtenerse como la accion
de la matriz I sobre la velocidad angular &.

-

J =1
Ademds, las componentes de dicha matriz vienen dadas por:

N

2 .o
I; = ka (677 — rhathy) Vi, i =,y 2
k=1

2 __ .2 2 2
donde ri; = Tea T Tl + Tk

Demostracion. Podemos suponer sin pérdida de generalidad que nuestra base ortonormal es la canénica. Por
la proposicién [12 en la pagina 51| tenemos que:

N
j= kafk X Fk (2.4.1)
k=1

Por otra parte, las particulas del sélido rigido describiran trayectorias circulares en torno al vector <. En
consecuencia, por la proposicion |13 en la pagina 57| seréa:

— —

rk:d)'x k
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Sustituyendo lo anterior en la ecuacién [2.4.1 en la pagina anterior] llegamos a:

N N I R 5
kark X w X TE kark X Wy Wy Wy
k=1 k=1 Tk Yk 2k

N i 7 k
= E Mg T Yk 2k =
k=1 WyZk — WYk WzTk — WgZk WYk — Wylk

2 2
k (nyk — WyTEYk — WzTE2E + Wr,

I
E
3

k=1

2 2 2 2
WyZj — WYkRk — WaTkYk + WyTl, Wz T — Wrlplg — WyYk2k + Wzyk) =

([yi + Zl%] Wy — TpYrWy — TEZEWz, [33% + 2;%] Wy — LYWy — Yp2kWz, =

I
=
3

[Cﬂi + yi] Wy — TpRpWg — ykzkwy) =

k [(y;% + 2p —TkYk, —m;Zk) Wy + (—ﬂfkyk, i + 24, _ykzzk) Wy + (_$kzka — Y2k, T), + y;%) wz] =

[l
M=
3

2, .2
N Y v 2 —TRYk T2k Wy
24,2
= ka —TpYr Tpt 2, Y2k wy | =
2 4 2
k=1 —XEZk  —YkZk Tyt YL Wy
Z mi (Y + 22) Z my, (—2kYk) Z mi (—Tk2k)
N Wy
— 2, ,2
= Z mg (—Tryk) mi (xk + Zk) Z my (—yk2k) Wy
k=1 Wy
N
ka —Tk2k) mi (—Yk2k) Z my (2}, + 3)
k=1

=TI

Llamando I a la matriz marcada arriba, hemos probado la existencia de la matriz pedida en el enunciado.
Ahora, usando la notacion 7y ; = Tk Tky = Yk Tk, = 2k, Podemos ver claramente que los términos de la

diagonal de la matriz I son:

N N N
§ : § : 2 § : 2 2 § : 2

Iii = mi rk,j = my (Tk — Tk’z-) = mi (6u7'k — Tk,ﬂ'k,i)
k=1 yE) k=1 k=1

Por otra parte, los términos que no son de la diagonal pueden expresarse como:

N

N
I = ka (—Th,iTh,j) = ka (85577 — ThiTh )
— =1
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En consecuencia, pueden expresarse las componentes de la matriz I tal y como viene descrito en el enunciado.
Por dltimo, nétese que:

N N
2 2 .o
Iij = E mp (51‘ka — Tk,irk,j) = E mi (5jirk — rmrk’i) = Iji VZ,] =T,Y,%z
k=1 =1

pues el producto es conmutativo y la delta de Kronecker es simétrica. Por ende, la matriz [ es simétrica.

Q.E.D.

Definicién 16. Sea un solido rigido de N particulas. Llamaremos endomorfismo de inercia a la aplicaciéon

I:R? — R? tal que su expresion coordenada en una base ortonormal {%, }', I%} es la dada en la proposiciéon

len la pagina 71}

Corolario 13. Sea un solido rigido macizo con volumen V y con funcidn densidad p : SR — R, donde con
SR denotamos el conjunto de puntos que conforman el solido rigido. Los elementos de la matriz coordenada

del endomorfismo de inercia en una base ortonormal {i,j, k} vienen dados por las expresiones:

lij = /// p(ra, Ty, 72) [5ij7"2 - Tﬁﬂ dV Vi, j =2x,y,%
\4

Demostracion. Partimos de lo que queremos demostrar:

Ij; = /// p (T, Ty, T2) [5ijr2 — 'r’irj] dVv
v

Aplicando el teorema [l en la pagina 3| tomandon =3y f () = 6ijr2 — 171, obtenemos que existen sucesiones

2N 3 = 2N 3
{mN;k}ig:R y {TN;k}](Czl) tales que:

(2N)? (2N)?
; N , 2 o N
I'= lim ; myf (Fvge) = Hm ; MNk [%’TN;k — (Pvsk); (k)

Y aplicando la proposiciéon 17 en la pagina 71}, obtenemos:

N—o00
Q.E.D.

Corolario 14. Sea un sdlido rigido formado por N particulas. Su endomorfismo de inercia cumple las si-
guientes propiedades:

1. Todos sus autovalores son reales.
2. FExiste una base tal que su matriz coordenada es diagonalizable.

3. Siempre existe una base vectorial de vectores propios que es ortonormal.

Demostracion. Por la proposicion |17 en la pagina 71, sabemos que la matriz de inercia es simétrica. Por tanto,
el endomorfismo de inercia es autoadjunto respecto al producto escalar canénico. Por Algebra Lineal, sabemos
que los valores propios de todo endomorfismo autoadjunto son siempre reales y, ademas, el endomorfismo es
diagonalizable.

Por otra parte, sabemos que, en el caso de endomorfismos autoadjuntos, vectores propios que se corres-
ponden a valores propios distintos son ortogonales entre si. De esta forma, si el endomorfismo cuenta con 3
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valores propios distintos, entonces cualquier base de vectores propios sera ortogonal y, normalizando dichos
vectores, ortonormal.

Si, por un contrario, la matriz s6lo cuenta con 2 valores propios distintos entre si, entonces habra un espacio
propio de dimensién 2 y otro de dimensiéon 1. Escogiendo una base ortogonal cualquiera del subespacio de
dimensiéon 2 y concatenando a dicha base cualquier vector propio del espacio de dimensién 1, obtenemos una
base ortogonal. Normalizando, conseguimos que sea ortonormal.

Por ultimo, si la matriz iinicamente cuenta con un autovalor distinto, entonces cualquier base ortonormal
de R? es una base de vectores propios (ortonorm). Q.E.D.

2.4.2. Forma cuadratica de inercia

Proposicién 18. Sea un sdlido rigido de N particulas. Eziste una forma cuadrdtica Q : R — R (un tensor
(0,2)) a través de la cual puede hallarse la energia cinética T de un sdlido rigido en funcion de su velocidad

angular &. La matriz coordenada asociada a dicha forma cuadrdtica en una base ortogonal {z’, 7, k} es la mitad

de matriz de inercia en dicha base. Es decir:

1 o 1 y - Imy I, Wy
T=QW) = 5&5 W= 3 (wx Wy wz) Iy Iy, Iy, Wy
I Izy I, F

Demostracion. Por el corolario |8 en la pagina 30, tenemos:

i=1

Por definicion de solido rigido (ver definicion |13 en la pagina 50)), las distancias relativas entre las particulas
que forman el so6lido rigido deben permanecer constantes. En consecuencia, las particulas del sélido rigido
deben describir una circunferencia en torno a @ (al menos, de forma instantanea). Por la proposicion

tenemos que:

~ ~

1 7k
Ty =WXT = Wy Wy Wz = (wyzi — WY, W Ty — WgZi, Wrli — wyﬂﬁi)
Ti Yi %
En consecuencia, es:
52 2 2 2
Ty = (Wyzi —w 1) F (W — wezi)” + (Wali — wyﬂﬁi) =

2,2 2,2 2,2 2.2 2,2 2,2
= wyz; T Wiy — 2WywaYizi + Wixy + Wiz — 2wawe Tz + Wiy + wy T — 2wy miy; =

= wi (yz2 + 212) + wz (.1‘22 + zf) + wg (:L‘Z2 + yf) — 2Wy WY 2 — 2WapW, T2 — 2WeWyTiY;

Sustituyendo en la ecuaciéon dada por el corolario 8 en la pagina 30| obtenemos:

N N N

1
T = 3 w%ZmZ (y22+222) +W§Zmi ($Z2+212) +W§Z($?+yi2)+
i=1 i=1 i=1

/

:Iwac :Iyy :Izz

N N N N

Fwyw, E —M;YiZi +W Wy E —M; 23 Y +WaWy E —M; T2 +W,Wy E —m;z;x; +
i=1 i=1 i=1 i=1
S——— S—— S——— S———

:Iyz :Izy :I:L‘z :Izz
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N N
FwWaly Z —MyTiYi +wWy, Z —MYTi| =
i=1 i=1
=Iuy =lye

= — (walpaws + wylyywy + wolw, + wyly.w, + wlywy + wWelpws + welawe + welpywy + wylyzws| =

2
1 Iy I:):y I, Wy 1 -
:§(w$ Wy wz) Iy, Iy, I, Wy :5@'11@'
Iy Izy I, Wz

Tomando @ como la forma cuadratica cuya matriz asociada en la base {i, 7, k} sea %]L probamos su existencia

y su relacién con L. Q.E.D.

Definicién 17. Sea un soélido rigido de N particulas. Llamaremos forma cuadratica de inercia a la forma
cuadrética @ : R? — R dada en la proposicién |18 en la pagina anteriorl

2.4.3. ;Qué demonios es el tensor de inercia?

Llegado este momento, es muy posible que el lector ande algo perdido con respecto a los conceptos de
endomorfismo y forma cuadratica de inercia. Estos términos no se usan habitualmente en fisica, sino que en
su lugar se suele decir «tensor de inercia». Ahora vamos a estudiar la razon.

Por una parte, hemos deducido en la proposicion [17 en la pagina 71| que dada una base ortonormal, existe
una matriz de inercia simétrica que permite relacionar el momento angular J de un solido rigido con su
velocidad angular . Ademas, sabemos que dicha matriz es la representacion coordenada de un endomorfismo
que hemos llamado endomorfismo de inercia.

Por otra parte, hemos hallado en la proposiciéon [18 en la pagina anterior| que existe una forma cuadratica
que relaciona la energia cinética T' de un sélido rigido con su velocidad angular & y, ademas, hemos obtenido
que la matriz coordenada de esta forma cuadratica era la misma matriz de inercia que para el caso del momento
angular.

Ahora vamos a ver cémo es que esto es posible. Primero, examinemos por qué esto «chirria» al principio.
Por conocimientos de algebra lineal, sabemos que la matriz coordenada de un endomorfismo A cambia de
base mediante: O~ AC donde C' es una matriz invertible. Por otra parte, una forma cuadratica A (un tensor
(0,2)) cambia de base mediante CT AC. En principio, la simultaneidad de estas dos formas de cambiar de
base parece imposible.

La clave para solucionar esta aparente paradoja es darnos cuenta de que siempre estamos trabajando con
bases ortonormales. Y, por conocimientos de algebra lineal, sabemos que las matrices del cambio entre
bases ortonormales son siempre matrices ortogonales; es decir, camplen C7 = C~!. En consecuencia,
a efectos practicos, es equivalente interpretar la matriz de inercia como un endomorfismo o como una forma
cuadréatica, pues siempre van a cambiar de base de la misma forma.

Todo esto motiva el hecho de que se le llame «tensor de inerciay al elemento matemaético subyacente bajo la
matriz de inercia, como es habitual en el caso de formas cuadraticas en fisica. Para entender apropiadamente
las propiedades del tensor de inercia, es menester tener en cuenta su doble naturaleza: como tensor (1,1)
(endomorfismo) y tensor (0,2) (forma cuadratica). Esta dualidad nos va a permitir aprovechar las ventajas
de ambos tipos de entes matematicos, especialmente las caracteristicas del endomorfismo (las dadas en el
corolario 14 en la pagina 73).
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2.4.4. Ejes principales de inercia y propiedades

Definicién 18. Sea un soélido rigido formado por N particulas. Diremos que un eje j es un eje principal
de inercia si I;; = 0 Vi # j.

Corolario 15. Sea un sdlido rigido formado por N particulas. Los vectores propios de su endomorfismo de
inercia son ejes principales de inercia.

Demostracion. Por el corolario [14 en la pagina 73] tenemos que el endomorfismo I es diagonalizable. En la
base de vectores propios, I es diagonal, luego I;; = 0 Vi # j y, por consiguiente, por la definicion |18 los

vectores propios de I son ejes principales de inercia. Q.E.D.

Proposicion 19. Sea un sdlido rigido macizo con volumen V y con funcion densidad p : SR — R, donde
con SR denotamos el conjunto de puntos que conforman el sélido rigido. Si se da alguna de las siguientes
propiedades:

1. El solido rigido tiene simetria de reflexion en torno al plano XY :

p(z,y,2)=p(x,y,—2) V(x,y,2) € SR

(%9, 2)

2. El solido rigido tiene simetria de rotacion en torno al eje Z:

p(l‘,y,Z) :p(—l',—y,Z) V<m7yvz) € SR

Entonces, el eje Z es eje principal de inercia del solido rigido.
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Demostracion.

1. Por el corolario [13 en la pagina 73| tenemos que:

L.~ [ /V p(@,y,2) [~az] AV

Dividamos el volumen del sélido rigido en dos mitades, el conjunto de puntos del sélido rigido que
cumplen z > 0 (llamaremos a dicho conjunto V) y el conjunto de puntos que cumplen z < 0 (llamaremos
a dicho conjunto V_). Asi, podemos escindir la integral anterior en:

I, = ///V+ p(z,y,2) [—xz] dxdydz—i—///v p(z,y,z) [—xz] dedydz (2.4.2)
=1

=1 _

Consideramos el cambio de variable:

T=1u
(U, v, ’LU) — y=v
z=—w
Trivialmente, ¢ es biyectiva y de clase C(°°) y, ademas:
1 0 0
detJp=10 1 0|=—-1=|detJp|=1
0 0 -1

De esta forma, por el teorema de cambio de variable, tenemos:

I_= ///V p(z,y,2) [—zz]dedydz = ///\/+ p (¢ (u,v,w)) uwdudvdw =
= ///V+ p (u, v, —w) vwdudvdw

Reescribiendo * = u,y = v y 2 = w, obtenemos:

-/ ey ) ey = i /V Py —)wmav

Como, por hipotesis es p (x,y,2) = p(x,y,—2) V(x,y,2) € SR, podemos escribir la expresion anterior

como:
I_ = /// p(z,y,2)xzdV
Vi

Por tltimo, sustituyendo en la ecuaciéon llegamos a:

Irz:///wp(l‘»yaz)[—$Z]dv+///v+p(x,y,z)xde:
:///‘/er(x,y,z)[—:cz—i-xz]dV:O

Analogamente, se opera con I, y se llega a I, = 0. Por la definicion [18 en la pagina anterior, Z es un
eje principal de inercia, pues I, = 0 = [..
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2. Por el corolario [13 en la pagina 73| tenemos que:

Im—///vp(x,y,z) = dV—///Vp(:c,y,z) 2] ddyd=

Vamos a trabajar en coordenadas cilindricas, tomando: x = rcosf e y = rsenf. En funciéon de estas
coordenadas la expresiéon anterior queda:

I, = /// p(r,0,z)[—rzcosf| rdrdddz
\%4

Por otra parte, notemos que la hipotesis p (z,y,2) = p(—x,—y, 2) ¥ (x,y,2) € SR adopta la siguiente
forma en coordenadas cilindricas:

p(r,0,z)=p(r,0 +m,2)¥(r,0,z) € SR (2.4.3)

Vamos a particionar nuestro volumen en dos conjuntos: V; = {(r,@, z) € SRt.q. 0 € [—%, %)} y Vo =
{(r, 0,z) € SR t.q.0 € [g, f%) } De esta forma, podemos expresar I, como sigue:

I, = /// p(r,0,z)[—rzcosb] rdrd&dz—i—/// p(r,0,z)[—rzcosf] rdrdfdz (2.4.4)
V1 V2

=1 =:15

Consideramos el cambio de variable:

¢ Vi — Va
r=u
(u,v,w) —> 0=v+m
z=w

Trivialmente, ¢ es biyectiva y de clase C(°°) y, ademas:

1 0 0
detJp=|0 —1 0|=—-1=|detJp|=1
0 0 1

De esta forma, por el teorema de cambio de variable, tenemos:

I, = ///‘/2 p(r,0,z)[—rzcosf] rdrdfdz = ///\/1 p (¢ (u,v,w)) [—uw cos (v — )] ududvdw =

= ///Vl p (u,v+ 7, w) [—uw cos (v — )] rdudvdw

Reescribiendo r = u,0 = v y z = w, obtenemos:

I, = ///\/1 p(r,0+ m, z)[—rzcos (0 —m)] rdrdfdz

Como cos (0 — m) = cos (m — 0) = —cos @ y por la ecuacion tenemos:

I, = /// p(r,0,z)rzcosfOrdrdfdz
141

Por consiguiente, sustituyendo en la ecuaciéon llegamos a:

I.. = /// p(r,0,z)[—rzcosf| rdrdfdz + /// p(r,0,2)rzcosfrdrdfdz =
V1 Vl
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- —/// p(r,0,z)rzcos 9rdrd0dz+/// p(r,0,z)rzcosfrdrdddz = —Ir + Io =0
1% Vi

-~

=1Is =1Is

Se opera analogamente con el momento I, particionando el volumen en Vi = {(r,0,2) € SR t.q. 6 €
0,7)} y Vo ={(r,0,z) € SR t.q. 0 € [m,27)}, pues ahora estamos trabajando con senf en vez de con
cos . Utilizando sen (6 — m) = —sen (7 — ) = —sen 6 y siguiendo el mismo procedimiento que con I,
obtenemos que I, = 0 = I.. Por la definiciéon (18 en la pagina 76| Z es un eje principal de inercia.

Q.E.D.

Observacion 17. Notese que el reciproco de la proposiciéon [19 en la pagina 76| no es cierto.

Observacion 18. Si tenemos un solido rigido con 3 ejes de simetria (de rotacion), por la proposicion [19 en laj
podremos tomar dichos ejes como ejes principales de inercia. Asi, obtendremos directamente una
forma diagonal del tensor de inercia I.

Notacion 3. Sea un solido rigido de N particulas. Llamaremos {€é1, é2,é3} a la base ortonormal de vectores
propios del tensor de inercia del sélido rigido. Recordemos por el corolario [14 en la pagina 73| que una
base de dichas caracteristicas siempre existe. En consecuencia, como la matriz de inercia es diagonal en la
base {é1, é2, €3}, los elementos fuerza de la diagonal seran nulos. Por consiguiente, por la definicion
los vectores €1, éa, é3 llevan las direcciones de los ejes principales de inercia del sélido rigido.
Ademas, denotaremos con wi,ws,ws a las coordenadas del vector & en la base {é1, éz, é3}. Es decir, sera:

W= wié1 + weéy + w3és

Definicion 19. Por iltimo, llamaremos momentos principales de inercia [y, I, I3 a los valores propios
del tensor de inercia.

Observacion 19. Utilizando la definiciéon en la base {é1,é2, €3} el tensor de inercia adoptaré la siguiente
representacion:

Iy 0 O
I=|(0 I O
0 0 I

Proposicion 20. Sea un sélido rigido formado por N particulas. En la base de vectores propios de su tensor
de inercia, la base {é1,éa,é3}, el momento angular del sdlido rigido y su energia cinética pueden hallarse
simplemente como:

j: Tiwié1 + Taweéy + I3wsés

1 1 1
T = 51100%4-5 2&1%4-5 300%

donde Iy, 15, I3 son los momentos principales de inercia y wy,ws,ws son las coordenadas del vector & en la
base {él, éQ, ég}.

Demostracion. Por la proposicion [17 en la pagina 71| tenemos que:

J =13

Ademaés, por el corolario|14 en la pagina 7 3|, sabemos que la matriz I es diagonal en su base de vectores pro-
pios {é1, é2, é3}. Por si fuera poco, los elementos de su diagonal seran sus autovalores que, por la definicion
son los momentos principales de inercia. Asi, obtenemos:

J1 I 0 O w1 L
J2 = 0 12 0 w2 = IQOJQ
Js 0 0 I3/ \ws T3ws
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Por otra parte, por la proposiciéon [18 en la pagina 74] tenemos que:

1.~
T = &l
2

Aqui es donde vamos a aplicar la dualidad el tensor de inercia explicada en la seccion [2.4.3 en la pagina 75|
A pesar de que la matriz ]Tes, en realidad, una forma cuadratica en la formula anterior, podemos interpretar
que cambia de base como un endomorfismo. En consecuencia, la matriz ]Tcumpliré las mismas propiedades
que la usada para el momento angular. Por consiguiente, tenemos:

Il 0 0 w1 1 1 1
(wl w9 w;),) 0 I, O wo | = 5[10)% + 5]2(&1% + 5[3(,0%
0 0 Ig w3

Q.E.D.

2.4.5. Cuerpos simétricos

Proposicion 21. Sea un sdlido rigido macizo con volumen V y con funcion densidad p : SR — R, donde
con SR denotamos el conjunto de puntos que conforman el sdlido rigido.

1. Si el sélido rigido presenta simetria cilindrica en torno al eje Z, es decir, p(x,y,z) = §! (3:2 =+ yz,z)
Y (z,y, 2) € R3(la densidad depende tinicamente de la distancia al eje Z vy de la coordenada z), indepen-
dientemente de los ejes X e Y escogidos (siempre que estén en el plano perpendicular al eje Z), estos
son ejes principales de inercia y sus momentos principales de inercia correspondientes son iguales entre
st, o sea, I = I>.

Cilindro Cono Esfera

2. Si el sélido rigido presenta simetria de rotacion con mds de dos giros, es decir, si existen dos ejes X e Y
ortogonales entre si tales que p (x,y,z) = p (y,z,2) V(x,y,2) € SRA p(x,y,2) = p(—2,9,2)V (x,y,2) €
SR, entonces los ejes X e Y son ejes principales de inercia y los momentos principales de inercia co-
rrespondientes a los ejes X eY son iguales entre si, o sea, Iy = Is.
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3. Si el sclido rigido presenta simetria esférica en torno a su centro, es decir, p (x,y,z) = §! (:1U2 +y?+ 22)
Y (z,y,2) € R3, entonces los momentos principales de inercia del solido rigido son todos iguales entre
si: Iy = Iy = I3. Ademds, cualesquiera tres ejes ortogonales que se corten en el centro del sélido rigido
son ejes principales de inercia.

Demostracion.

2. Recordemos las expresiones de calculo del momento de inercia dadas por el corolario[13 en la pagina 73;

Low :///Vp(ﬂs,y,z) (v* +2%) dV

Estudiemos el cambio de variable:

10} Vv — 1%
T =
(u,v,w) —> y=u
z=w

Claramente ¢ es biyectiva y de clase C(*°). Ademaés:

det Jo = =—-1=|detJg| =1

o = O

1
0
0

= o O

De esta forma, por el teorema de cambio de variable, tenemos:

Im:///vp(ymz“) (2 +2%) av

Como, por hipotesis, es p(z,y,2) = p(y,x,2) V(z,y,2) € SR, podemos escribir la expresion anterior

COoIMo:
lmc - /// p(:U,y, Z) (.’172 + 22) dV = Iyy
14

y esto ultimo es justo la definicion de Iy,. Asi I,; = Iyy.
Por otra parte, llamemos:
Vi :={(z,y,2) € SR t.q. x > 0}
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Vo ={(z,y,2) € SR t.q. z < 0}

Ahora, por el corolario [I3 en Ta pagina 73|

IxyzfijZ///VP(%y,Z) [—xy]dV =
2///‘/+p(:n,y,z) [—l‘y]dV—l-///vp(x,y,z) [—zy]dV
=:1_

:ZI+

Y consideramos el cambio de variable:

¢ : V+ — V_

T =-u
(u,v,w) —> y=v
z=w
Trivialmente, ¢ es biyectiva y de clase C(°°) y, ademas:
-1 0 0
detJp=|0 1 0|=-1=|detJg|=1
0 0 1

De esta forma, por el teorema de cambio de variable, tenemos:

/// (x,y, z) [—zy] dedydz = /// (u, v, w)) vwdudvdw =
Vi
= /// p (—u, v, w) vwdudvdw
Vi

Reescribiendo = u,y = v y 2 = w, obtenemos:

_ ///V+ p(=,y,2) eydzdydz — ///V+ p(~x,y,2) zydV

Como, por hipétesis es p (x,y,2) = p(—=x,y,2) V(x,y,z) € SR, podemos escribir la expresion anterior

como:
:/// p(z,y,z)xydV
Vi

Por tltimo, sustituyendo en la ecuacion [2.4.2 en la pagina 77| llegamos a:

Izy = ///V+ p(x,y,2 xde+///V+ (z,y,2) zydV =
:///V+p(x,y,z)[—xy+xy]dvzo

En consecuencia es I, = I, = 0. A continuaciéon, como es p(z,y,2) = p(y,x,2) V(z,y,2) € SR A
p(x,y,Z) = p(—x,y,z)v (‘T’yz Z) € SR7 se da:

P(~T7y7z)zp(_$ay7z)v (.’L',y,Z)ESR N p(x,y,z):p(x,—y,z)v (.’E,y,Z)ESR

Por consiguiente:

p(x7y72):p(_x7_yvz>v (33;?%2) GSR
Por la proposicién (19 en la pagina 76| el eje Z es un eje principal de inercia. Por tanto es: I, = I, =
I,. = I., = 0. Por ende, los ejes X e Y son ejes principales de inercia del solido rigido.
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1. Dado que es p(x,y,2) = §! (1‘2 + 92, z) Y (z,y, 2z) € R3, tenemos garantizado que, al escoger dos ejes X
e Y perpendiculares al eje Z y perpendiculares entre si, va a darse:

p(x,y,z):p(—x,y,z) V(x,y,z)eSR

p(,y,2) =p(y,2,z) V(z,y,z2) €Sk
pues p es tnicamente funcion de z? 4+ y? y de z y, claramente:
(—2)* +¢° = 2"+
VP4 a2 = 2?4

Esta ultima afirmacion no podria darse si no se cumpliera p (z,y,2) = §! (.TU2 + y2,z) V(z,y,2) € R?
para todo punto de R3. Asi, tenemos garantizado que el dominio es simétrico a lo largo de los ejes X e
Y. Por tanto, se cumplen las hipétesis del punto 2 y, por consiguiente, se cumple el enunciado.

3. Escojamos un eje Z arbitrario. Por hipotesis, sabemos que se da:
p(z,y,2) = (2> +y* +2%) V(z,y,2) € R?
En consecuencia, para cada z = zq fijo se da:
p(x,y,20) =F! (#* +9?) V(z,y,2) € SRN{z =2}

Por consiguiente, se dan las hipotesis del punto 1. En consecuencia: Iy, = Iy y Iy, = Ly = Iy, =
I, = I,y = I, = 0. Repitiendo el argumento anterior, pero para un x = o fijo o para un y = yo
fijo, obtenemos que Iy, = I., o I, = I, respectivamente. Por tanto, es I, = Iy, = I... Como la
eleccion de ejes se ha hecho de forma arbitraria, lo anterior es valido para cualquier triedro directo de
ejes X,Y, Z.

Q.E.D.

Observacion 20. Si se da alguna de las hipétesis de la proposicion 21 en la pagina 80| podremos escribir la
matriz de inercia como:

Iy 0 O
I=10 I O
0 0 I

y, en consecuencia, por la proposiciéon [17 en la pagina 71}

jz Il (w1é1 + CL)QéQ) + I3Ld3é3

Ademas, si w3 = 0, entonces J = L& = J || . En este caso, cualquier par de ejes en el plano (é1,é2) que
sean perpendiculares entre si, son ejes principales de inercia validos.

En cualquiera de los casos anteriores, és esté fijo (esta determinado), pero é; y é pueden no estar fijos ni
en el tiempo ni el cuerpo.

Si I1 = I» = I3, entonces hay simetria esférica. En este caso es:

J=1Ld

y podemos hacer una eleccién arbitraria de é1, és, é3.
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Proposicion 22. Una esfera, un tetraedro, un cubo, un octaedro, un dodecaedro y un icosaedro de densidad
constante pg tienen todos matrices de inercia escalares para alguna base de ejes principales de inercia. Es
decir, su matriz de inercia puede expresarse como:

1 00
I=7110 1 0
0 01
para alguna base de ejes principales de inercia del solido rigido.
Demostracion.

» La esfera: una esfera satisface la ecuacion 22 + y? + 22 < a?, donde a? es una constante. Luego es:

(2.y.2) = {70 sio a? +y? + 2% <a?
PRS2 =0 s 22+ %+ 22 > a?

Luego, claramente, p (z,y,z) = §! (ZL‘2 +12 + 22) VY (z,y, z) € R3. Por la proposicion |21 en la pagina 80|,
la matriz de inercia es escalar.

= Kl tetraedro: Vamos a tener que calcular toda la matriz de inercia del tetraedro y diagonalizarla pos-
teriormente. Tomemos los ejes coordenados de la siguiente manera. Escogemos el eje X perpendicular
a una arista de la base del tetraedro y el eje Z como la recta perpendicular al eje X que pasa por un
vértice del tetraedro y el punto central de la cara del lado opuesto. Ahora, escogemos el eje Y tal que
X,Y, Z sea un sistema de referencia ortogonal dextrogiro. Para facilitarnos las cuentas vamos a hacer

uso del teorema de Stokes:
/// ﬁ-fdvz//f-dﬁ

Por la proposicion [17 en la pagina 71| tenemos:

e o [

F=([y*+ 2% 2,0,0)

Escogiendo:

obtenemos:

V-fzy%—z2

Luego, por el teorema de la divergencia, tenemos:

///v W) av = //S ([y* + 2] ,0,0) - 4§

Tenemos que hallar los vectores normales a cada cara. Uno de ellos es inmediato: (0,0,1), por como
hemos definido el eje Z. Otro es (senf, 0, cos#). (Sin finalizar)

= Kl cubo: Seleccionamos como ejes X, Y y Z los ejes de simetria del cubo que pasan por su centro y por
el punto medio de las caras. Asi, en torno a cada eje se cumple que el solido rigido presenta simetria de
rotacion con méas de dos giros. Al aplicar la proposiciéon 21 en Ta pagina 80] a todos los ejes, obtenemos
que, necesariamente, los ejes X,Y y Z son ejes principales de inercia del sélido rigido y que I} = Iy = Is.

= Kl octaedro: Analogamente al caso del cubo, seleccionamos como ejes X,Y y Z tres ejes de simetria del
octaedro que pasan por su centro y por uno de sus vértices de tal forma que sean perpendiculares entre
si. Asi, en torno a cada eje se cumple que el solido rigido presenta simetria de rotaciéon con més de dos
giros. Al aplicar la proposicién [21 en la pagina 80| a todos los ejes, obtenemos que, necesariamente, los
ejes X,Y y Z son ejes principales de inercia del sélido rigido y que I} = Iy = I3.
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= El dodecaedro: disponible en proximas ediciones.

= El icosaedro: disponible en préoximas ediciones.
Q.E.D.

Proposicion 23. Sea un sdlido rigido macizo de espesor despreciable. Si tomamos el eje és paralelo a la
direccion de su espesor, se da:
L+1=13

siendo 11, Is, I3 los momentos principales de inercia del sdlido rigido.

~

Demostracion. Para simplificarnos la notaciéon vamos a tomar & = é1,§ =
len la pagina 71| tenemos:

Im:///v,o(yQ—i-zQ)dV:///prQdV—i-///szQdV

Como el espesor de nuestro solido rigido es despreciable, podemos considerar que la coordenada z de todos
los puntos de nuestro sélido rigido no varia z = zg. Descomponiendo dV = dzdS, obtenemos:

o o (L)oo

Iy = / / /V pr?dV
o= [[[ o eityav = [[[ savs [[[ miav = 1+

Proposicion 24. Sea S un sdlido rigido susceptible de descomponerse en dos sdlidos rigidos S1 y So con
matrices coordenadas del tensor de inercia Iy y la, respectivamente. El momento de inercia de S viene dado
por la suma de los momentos de inercia de Sy y So:

Cb>

y 2 = és3. Por la proposiciéon

Anélogamente:

Por otra parte:

Q.E.D.

I=1 +1,

Demostracion. El resultado se sigue facilmente del hecho de que las expresiones dadas en la proposicion [I7]
len la pagina 71| son lineales respecto al niimero de particulas.

Supongamos que el solido rigido Sy tiene N7 particulas y que el soélido rigido Sy tiene No particulas; de
forma que N = Nj + Ns es el numero de particulas de .S. Por la proposicion [17 en la pagina 71} tenemos:

Ny

2 ..
I = § mi (875 — ThiThy) Vi, j =,y 2
k=1

2
2 . .
I;; = § my, (04577 — rary) Vi, i =w,y, 2
=1

Tomando una variable n tal que [ = n — N7, podemos expresar el sumatorio anterior como:

N1+N2

2 .o
IQ,ij = E my (%‘Tn - Tn,ﬂ“n,j) Vi,j=1x,y,2
n=N1+1
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Por otra parte:

N Ny N
2 2 2
Ly =Y mp (0ijr = rnarng) = > g (8470 — Tnitng) + > Mk (84578 — Tnitn) =
n=1 n=1 n=N1+1
=I1j =12,

=1 +12 Yi,j=2x,92
QED.

2.4.6. Teorema de Steiner

Teorema 6 (Teorema de Steiner). Sea un sdlido rigido de N particulas (con N € RU{o0}) y masa M y sea
[* la matriz coordenada del tensor de inercia respecto a su centro de masas para una base B. Tomemos nuestro
origen de coordenadas en un punto P. Desde dicho punto P, la posicion del centro de masas se expresa con
coordenadas (X,Y,Z). Ahora, sea [ la matriz coordenada del tensor de inercia respecto respecto al punto P
para la misma base B. Ambas matrices estdn relacionadas por la expresion:

Y2422 XY -XZ
I=M| -XY X?>+2°2 -YZ |+TI
-XZ -YZ X%?24Y?

Es decir, se cumple que el momento de inercia de un solido rigido en torno a un punto P es la suma del
momento de inercia del solido respecto a su centro de masas y el momento de inercia que tendria una particula
puntual de masa M situada en el centro de masas.

Demostracion. Recordemos que segun la proposicion [17 en la pagina 71| es:

N

I;; = ka (8557 — Thirry)  Vij=w,y,2 (2.4.5)
k=1

Ahora, notemos que podemos expresar un punto genérico 7 como:
— =4 —k
Ty =R+71;

donde R = (X,Y, Z); es decir, R es el vector que une el punto P con el centro de masas del sélido rigido.
Expresando lo anterior en coordenadas, obtenemos:

rri = Ri + 7“};’@- Vi=ux,y,2

Sustituyendo en la ecuacion [2.4.5] llegamos a:

N 3
zm( 53 (Rt i) — (Rut i) (Rj+7“?2,j)> _
k=1 =1

N 3
Z (5,7 (R} + i3+ 2Rir};] — RiR; — Riry ; — Ryjrp; — r;ir;j) =
k=1 i=1

I
HMZ

3 N 3 N
e (353 = )+ S (33 i = ) 49, 3 et
k=1 i=1 k=1

i=1

—T*
_Iij
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N N
* *
- E myRiry, i — E mgRjry ; =
k=1 k=1

3 N N N N
= (52] Z Rlz — RiRj> Z mg —i—[;;— + 5z’j2Rz‘ Z kaZ,i —R; Z mkr};,j —Rj Z kaZ’i =
=1 k=1 k=1 k=1 k=1

~—— ~~
=M =0 =0 =0

3
=M <5ij > R - RZ-R]) + I (2.4.6)

=1

donde los términos marcados se anulan como consecuencia de la definicién de centro de masas (ver definicion
len la pagina 16)):

N N N
— — ]_ — —
_ * . —%k % * * _ -
0=R"= i kark & kark =MR =0& karkvi =0 Vi==x,9,2
k=1 k=1 k=1
ya que es trivialmente R* =0.
Desarrollando la ecuacion se llega al enunciado. Q.E.D.

Observacion 21. A la hora de resolver problemas, si el s6lido rigido tiene un punto fijo lo usaremos como
origen. Si no tiene un punto fijo, usaremos el centro de masas como origen.

Ejemplo 12. Calcular el momento de inercia [ de un cubo de lado [ y densidad constante p en torno a uno
de sus vértices.

Z

AN

2

X

Por la proposicion [17 en la pagina 71| tenemos:

l l ! l l
I, = /// P (a:2 + y2) dV = / / / P (372 + y2) dxdydz = / / pl (:c2 + y2) dzdy =
\%4 =0 Jy=0 J2z=0 =0 Jy=0
l Y3 ! ! 3
= pl/ z? [y]é + [] dr = pl/ (la:2 + > dzr =
=0 3 0 x=0 3

31, 33 3 3 3
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Por simetria, obtenemos:

2
Iy = yy — I, = §Ml2

Por otra parte, también por la proposiciéon [17 en la pagina 71 es:

l l ! l Y2 ! 2 !
Ipy = — /// prydV = / / / prydrdydz = pl/ x [] dox = pl/ xdx =
\%4 =0 Jy=0 J2=0 =0 2 0 2 =0

13 227" o 12 2 1
= —p—|=—| =—p=—=—p— 1P =—= pV = —-MI?
i) [2 ]0 Py =Py~ 4"y
Por simetria es: 1
Izy Iy:p =1, =1, Iyz = Izy _ZMZQ
Por ende:
2M 72 M2 M2
B s-l0 =5l =7l 1 8 -3 -3
[= -2 242 _Mp2) = EMZQ -3 8 -3
M 72 M 72 2M 12
ic =7l =31 -3 -3 8

Q.ETF.

Ejemplo 13. Calcular los elementos de la matriz de inercia para ejes que pasan por el centro de masas de
un cubo de densidad p y lado I.

Por la proposicion [22 en la pagina 84| sabemos que la matriz de inercia del cubo es escalar para unos ejes

apropiados. En el caso del cubo, escogemos los ejes perpendiculares a cada una de las caras y que atraviesen
su punto medio. Calculamos un tnico momento de inercia, por ejemplo el I,:

1 1
Im:///p(yQ—i—zZ)dV:/Q /2
|4 ;pzfé y=—
I é é 9 9 2 9 L 23 3
ol [* [ A= [0 (24 |5 -
r=—5 Jy=—3

1
/2 P (y2 + 22) dxdydz =
=4

L
2

»

W 3

L
2

|~

5 1/ 3 5 1
— 27, 2 [ _ 2/ R _
p/x_é<yl+3<8+8>)d$ pl - <y ~|—12 dy
1
372 1 L 1/ 3 1
l2 yf 7l2 2 — 12 I v 7l3
P ([3]_54%2 M—é) M3 \3T3) T

Por la mencién hecha a la proposicion [22 en la pagina 84| es:

sMP2 0 0 100

- 1 9

I=| 0 iMZ 0 = gMIZ{0 10
0 0 M 001

Q.EF.
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2.5. Movimiento de un punto fijo

Proposiciéon 25. Sea un sdlido rigido con un punto fijo O y sean €1, éq,é3 sus ejes principales de inercia
) b

y I, Is, I3 sus momentos principales de inercia. Supongamos que el sélido rigido tiene una rotacion inicial

en torno al eje és con velocidad angular ws # 0. Si aplicamos una fuerza F sobre el solido rigido tal que

‘F X ﬁ‘ < I3ws y tal que é3, 7y F estén en el mismo plano, siendo 7 el vector posicion del punto de aplicacion
de la fuerza con respecto al punto fijo O; entonces el sdlido rigido girard en torno al eje é3 con velocidad

angular ws (igual que la inicial) y el eje és describird un cono en torno a la direccion de aplicacion de la
fuerza con velocidad angular:

siendo R = || la distancia del punto punto fijo O al punto de aplicacion de la fuerza.

Demostracion. Inicialmente, nuestro sélido rigido esté rotando en torno al eje é3 con velocidad angular ws.

=y

Por la proposicién [20 en la pagina 79| inicialmente tenemos:

Jo = I3wzés

Aplicando el toerema de Taylor-Young a primer orden, obtenemos que:

. . dJ
J(t)=Jo+ d—it cuando t — 0 (2.5.1)

Por otra parte, por la proposiciéon [12 en la pagina 51}

dJ - =
& = New=7xF (2.5.2)

Asi, sustituyendo en la ecuacion 2.5.1] obtenemos:

j(t) = Jswsész + 7 X ﬁt
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En consecuencia, como por hipotesis es 7 x F< I3ws, podemos aproximar:
j(t) ~ Tswsés = Jy
Asi, seré: B .
% ~ % A P (2.5.3)

pues I3 es constante en el tiempo. Notese que debe ser ¥ x F' L ¥y ¥ x F 1L F. Asi, como é3 esté en el mismo

plano que 7y F', necesariamente serd ¥ X F' | és, luego es J L %—{ por la ecuaciéon |2.5.2 en la pagina anteriorl

&l

i
w
Y S
/
/
/

/

/

/

/
/
/

En consecuencia, necesariamente, el primer sumando de la ecuacion [2.5.3] debe ser nulo, lo que implica:

d
§:0<:>W3:cte
Asi: 4 " ) )
S 3 N =
Lws— =7 x F & — = XF=——"Fxr=
343 dt " t Igu)gT I3w3 "
= — g o il 5o = Fx 7
I3ws |7 I3ws 3W3

ya que por hipotesis era R = |7]. Por la proposicion |13 en la pagina 57, como es R = |F] = cte, pues el solido
rigido esté anclado en el punto O, el extremo del vector é3 describe una trayectoria circular en torno a:

. R -
Q:=——-—F
T3ws
con velocidad angular ﬁ‘ En consecuencia, el vector éz describe un cono en torno a Q. Q.E.D.

Observacion 22. Al efecto descrito por la proposiciéon 25 en la pagina anterior] se lo conoce como efecto
giroscopico. Veamos que es un giréscopo.
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Se trata de un volante de inercia que puede rotar libremente. Esto se usaba en barcos y aviones para que
el piloto tuviera una direcciéon de referencia. El funcionamiento era el siguiente: previamente al despegue del
avion a al zarpado del barco se ponia a girar el giroscopio y, de esta manera, cuando los pilotos hacian sus
maniobras, aunque la direccién del barco o del avién variaran, la direccién del eje principal de inercia ég del
giréscopo, apenas lo hacia. Asi, podian tener una direcciéon de referencia.

La idea es que la direccién de un objeto es tanto mas estable cuanto més réapido gira en torno al eje que
marca dicha direccién (pues mas pequena es la velocidad angular 0 que aparece en la proposiciéon
. Cuando se lanza un satélite al espacio, en la fase final, tiene que soltarse el satélite del resto del
cohete. Esto tiene que hacerse de forma que el satélite salga en una direcciéon determinada. Para que esto sea
maés sencillo, normalmente se pone a girar el satélite antes de desengancharlo del resto del cohete de forma
que cualquier posible variaciéon en el desenganche altere lo menos posible la direccion del satélite.

El efecto giroscopico también se hace patente en los movimientos de la Tierra. Sabemos que la Tierra rota
sobre si misma y que ademas rota en torno al Sol. Pero, ademés, el eje de rotaciéon de la Tierra no coincide
con el plano de la ecliptica.

Como sabemos, la Tierra no es perfectamente esférica. En consecuencia, el campo gravitatorio generado
por el Sol no es uniforme a lo largo de la superficie de la Tierra. Esto hace que el Sol genere un momento de
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fuerzas sobre la Tierra que hace que su eje de giro preceda en torno a la perpendicular al plano de la ecliptica.
El periodo de dicha precesién es de 25771 anos.

Sin embargo, el efecto giroscopico no es el que proporciona la estabilidad en una bicicleta o en una moto,
pues no es la rotaciéon de las ruedas la que otorga la estabilidad a una bicicleta. La mecanica de una bicicleta
depende fuertemente del hecho de que la rueda delantera puede girar. La idea es que la rueda delantera tiende
a sobrevirar y eso hace que el centro de masas tienda a estar sobre la normal.

Ejemplo 14 (Precesion de un disco). Vamos a suponer que tenemos un disco tumbado girando con una
velocidad muy elevada.

A /
I
I
I
I

Este disco, inicialmente, esta girando como esté descrito en el dibujo. Tenemos una fuerza que actiia sobre
el cuerpo, el peso. Nétese que R x —M gk va «hacia dentro» del papel.

Por la proposicion 25 en la pagina 89| sabemos que el vector é3 || & describird un cono en torno a:

~

(~-MgR)k  MgR:
= k
]3a@ ]3&8

Q=

Esto puede verse en el siguiente video ﬂ

2https://www.youtube.com/watch?v=DOU13fHjhMI
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Ejemplo 15 (Precesion de una peonza). En algunos libros «la peonza» recibe el nombre de «trompo simé-
trico». Podemos suponer, sin pérdida de generalidad que nuestra peonza es un disco.

Z

]

X

El eje de simetria de la peonza sigue siendo és y llamamos O al punto de pivotaje. Inicialmente tenemos
el disco rotando en torno a €s. El disco se ve sometido a una fuerza, el peso:

F= —Mgl%

Si F es pequenia o, alternativamente MgR < Isws (esta condicion se da con fuerzas pequenas, cuando I3 es
muy grande o cuando w3 es muy grande), podemos aplicar la proposicion [25 en la pagina 89| obteniendo que
el vector és estd describiendo un cono en torno a l%, el centro de masas estara describiendo una trayectoria
circular en torno a k.

Esto puede verse en el siguiente videoﬁ.

2.6. Velocidad angular instantanea

Proposicion 26. Sea un solido rigido de N particulas en rotacion arbitraria. Existe una funcion & (t) : R —
R3 tal que: '
e (t) =d(t) x 7 (t) Vk=1,...,N;VteR

tomando como origen del sistema de referencia un punto cualquiera del sélido rigido.

Demostracion. Escogemos como origen para nuestro sistema de referencia un punto cualquiera del sélido
rigido. La posicién de la particula k-ésima que forma nuestro sélido rigido puede escribirse usando la base de
ejes principales de inercia como sigue:

T (t) = ri1é1 (t) + regéa () +rpsés (t) VeE=1,...,N (2.6.1)

3https://youtu.be/J6HDx4pNHQM
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donde 741, rio, T3 Seran constantes en el tiempo; pues el sistema de referencia utilizado rota con el cuerpo
k1 Tk2, Tk3 po; p 1%
y, por definicion de solido rigido (ver definicion (13 en la pagina 50)), las distancias entre las particulas que

forman el s6lido deben permanecer constantes. Derivando, obtenemos:
?k (t) = Tklél (t) + TkQéQ (t) + Tk3é3 (t) Vk = 1, PN ,N (2.6.2)

donde recordamos que 71, rr2, TE3 SOn constantes.
Bien, ahora definimos la funcion matricial A (t) = (ai5) (t):

aij (t) =& (1) - &; (1) Vi,j=1,2,3 (2.6.3)

Veamos cudl es el valor de cada uno de los elementos de esta matriz A. Como nuestra base de ejes principales
de inercia es ortogonal, tenemos que:

Et)=¢t) ét)=1 Vi=123VteR

Derivando con respecto al tiempo, al aplicar la regla del producto, obtenemos:
— ()Y t)=¢é(t) e(t)+é& M) &) Vi=1,2,3VeR

Como el producto escalar es conmutativo, obtenemos:

% (é?) (t) = 2¢; (t) . él (t) = 2a4; (t) =0 Vi=1,2,3;)VieR&
Sét)-6t)=a; ) =0 Vi=1,23VteR (2.6.4)

donde hemos aplicado la definicién de a;; dada en la ecuacion Por la ecuacién debe ser, ademas,
€ (t) Léi(t) Vi=1,2,3,Vt € R. De esta forma, &, estard contenido en el plano formado por éz y €3, é2 estard
contenido en el plano formado por €1 y €3 y €3 estara contenido en el plano formado por é; y és.

Vv
D
w

A

€9 |

Teniendo en cuenta lo anterior, como nuestra base de ejes principales de inercia es ortonormal, podemos
descomponer el vector é; como:

&1 (t) = (él (t) - é (t)) &y (t) + (él (t) - &3 (t)) &3 (1) = az (£) &2 (£) + as: (t) é5 (1) (2.6.5)
donde hemos usado la ecuacion [2.6.3] Anélogamente, podemos hallar las ecuaciones:

és (t) = a1a (t) &1 (t) + asa (t) é3 (t) (2.6.6)
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é3 (t) = a13 (t) é1 (t) + az3 (t) é2 (t) (2.6.7)

Por otra parte, como {é1, é2,é3} forman una base ortonormal, es:
éi(t)'éj(t)zo Vi # j;Vt € R
Derivando, obtenemos:

%(éi-éj)(t):o@éi(t).éj(t)+éi(t)-éj(t):aji(t)mij(t):o@aji(t)z—aij(t) Vi#j A VtER

donde hemos usado la ecuacion [2.6.3 en la pagina anterior] En consecuencia, la matriz A es antisimétrica,
pues su diagonal ya sabemos que son Gnicamente ceros. Asi, los a;; dan las componentes del cambio de los

vectores é1, és, €3.
A continuacion, definimos:

@ (t) = (w1 (t) ;w2 (t) ;w3 () := (as2 (t) , a13 (), a21 (t)) = — (azs (t) ;a1 (1) ,a12 (1)) VEER

De esta forma, podemos reescribir las ecuaciones[2.6.5 en la pagina anterior], [2.6.6 en la pagina anterior]y [2.6.7

en funcién de omega como:

' e1(t) éa(t) eés
ég (t) = W9 (t) él (t) — W1 (t) éQ (t) = |W1 (t) w2 (t) w3 (t) =w (t) X é3 (t)
0 0 1

Las ecuaciones anteriores nos permiten expresar la ecuacion [2.6.2 en la pagina anterior| como:
7.7]€ (t) = rp1W (t) X €1 (t) + rpoW (t) X €9 (t) + 730 (t) X €3 (t) Vk=1,...,N
Como el producto vectorial es distributivo respecto a la suma, obtenemos:

7 () = @ (8) % [rp1é1 (t) + rroée (8) + raés (8)] Vek=1,...,N

=7 (t)

y, por la ecuaciéon [2.6.1 en la pagina 93| el término marcado es justo la posicién de la particula k-ésima. Por

ende:

Fe)=a& () x 7 (t) Vk=1,...,N
Q.E.D.

Definiciéon 20. A la funcion & () cuya existencia viene dada en la proposicion |26 en la pagina 93|1a llamaremos
velocidad angular instantanea.

W= w161 + weéy + w3és
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Observacion 23. La proposicién 26 en la pagina 93| nos dice que siempre existe un un eje de giro que estara
fijo en un cierto instante de tiempo (un eje de giro instantaneo). Es decir, si yo miro el solido rigido en un
determinado instante 7, puedo considerar que el solido rigido esta girando en torno al vector & (7) en dicho
instante de tiempo 7.

Ademaés, la proposicién 26 en Ia pagina 93| nos asegura que todo el desarrollo realizado en la seccion
len la pagina 71| es valido para cualquier tipo de giro.

Observacion 24. En la practica, si no hay punto fijo en el sélido rigido, usaremos coordenadas con respecto
al centro de masas. Es decir, siempre podemos encontrar & respecto al centro de masas.
Haremos uso de las siguientes ecuaciones del movimiento:

= Si hay pivote, tenemos:

l

N
T

I=3"%

i X LG
i=1

~

con J = Iwié1 + Iswoés + I3wsés, donde tanto {wi}?zl como {éi}?zl cambian en el tiempo.

= Si no hay puntos fijos, trabajamos desde el sistema de referencia centro de masas:

. N
=N e —
J - E T‘Z» X FZ
i1

7

con J* = Ifw1 € + I3wqél + I3wsél, donde {€], €5, €3} nos dan las direcciones de los ejes principales de
inercia, pero anclados en el centro de masas.

2.7. Ecuaciones de Euler

Los ejes (€1, é2,¢é3) forman un sistema de referencia en rotaciéon con respecto a un observador externo
inercial. En otras palabras, se trata de un sistema de referencia no inercial. En consecuencia, podemos aplicar
todo lo que conocemos de sistemas de referencia no inerciales en rotacion.

Notacion 4. En particular vamos a distinguir:

aJ | =

= 4]

dt
donde usaremos la notacion de Leibniz para el sistema de referencia inercial (el externo) y notacion de Newton
para el sistema de referencia no inercial {é1, é3, é3}. Al término con la notacion de Leibniz lo llamaremos ritmo

de cambio absoluto, mientras que al término con la notacién de Newton lo denominaremos ritmo de cambio
relativo.

Teorema 7 (Ecuaciones de Euler). Sea un sdlido rigido con N particulas y sean I, Is, I3 sus momentos
principales de inercia y €1, €2, 3 las respectivas direcciones de sus ejes principales de inercia. La velocidad
angular instantdnea & (t) = (w1 (t) ,wa (t) ,ws (t)) expresada en la base de vectores propios del tensor de inercia
del solido rigido, satisface las ecuaciones diferenciales:

L + (13 — 12) wowz = Ny
Irwo + (Il — Ig) wiws = No
I3ws + (12 — I1) wiwa = N3

donde Ny, Na, N3 son las componentes del momento de fuerzas externo en la base {é1,éz,é3}.
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Demostracion. Vamos a trabajar con dos sistemas de referencia distintos, pero con origen comun. El sistema
del espacio sera el sistema de referencia inercial, mientras que el sistema del cuerpo es un sistema de referencia
no inercial en rotaciéon con respecto al inercial. Ademaés, sabemos que dicha rotacién se produce en torno a la
velocidad angular instantanea & (¢). En consecuencia, sera:

a7 - .
=J+dxJ 2.7.1
s (2.7.1)

por nuestros conocimientos de sistemas de referencia no inerciales.
Por otra parte, por la proposicion [20 en la pagina 79| es:

j: Twié1 + Toweés + I3wsés (2.7.2)

Y derivando con respecto al sistema de referencia no inercial (para él los ejes é1,éz,é3 no cambian en el
tiempo), obtenemos:

j: Tiwiéq1 + Toweés + I3wsés (273)

pues los momentos principales de inercia no cambian en el tiempo.
Ademas, por el teorema de conservacion del momento angular (ver teorema |3 en la pagina 26), tenemos:

=4 N
%:Zﬁxﬁizﬁ (2.7.4)
=1

Juntando las ecuaciones 2.7.1] 2.7-3| y 2.7.4] obtenemos:
N = w1 + Ioweés + Iswsés + & X jZ

€1 €y €3
= Lwié1 + Iowgég + Iswzés + (w1 w2 ws
Ji J2 J3
Haciendo uso de la ecuacion [2.7.2] llegamos a:
ér e &3

N = L1006y + Intnég + I3zéz + | w1 wy w3 | =
L, Iwy Isws
= Lwié + Iaweéy + I3wsés + (Iswaws — Tawows) €1+
+ (Lwiws — [3wiws) éa + (Towiwe — [Hwiwe) €3 =
= [Lw1 + (I3 — o) waws] é1 + [laws + (I1 — I3) wiws] é2 + [Isws + ([2 — I1) wiws] €3

Expresando la ecuacién anterior por componentes, llegamos al enunciado:

Liw + (13 — IQ) wows = Ny
Iywso + (Il — 13) wiws = No
I3ws + (IQ — Il)wlwg = N3

Q.ED.

Observacion 25. La solucion de las ecuaciones diferenciales dadas en el teorema|7 en la pagina anterior|es & ().
Es decir, solucionéandolas obtenemos el movimiento de rotaciéon del sélido rigido en el tiempo. En general, son
unas ecuaciones dificiles de resolver analiticamente. Ademas, N1, No, N3 son las componentes de Next en la
base {€é1, é2, €3}, no en la base del espacio y, en general, la fuerza externa aplicada suele estar fija en el espacio.
Como é7, é9, 63 varian, las componentes de Next en la mencionada base también cambian en el tiempo, aun
cuando sea Next = cte. No obstante, las ecuaciones anteriores todavia resultan ttiles si Next =0.
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Definicién 21. Diremos que un sélido rigido es libre cuando sobre él no actiie ninguna fuerza externa.

Corolario 16 (Solido rigido libre). Sea un sdlido rigido libre con N particulas y sean Iy, Is, I3 sus momentos
principales de inercia y €1, €2, €3 las respectivas direcciones de sus ejes principales de inercia. Si el solido rigido
estd rotando inicialmente unicamente en torno al eje és con velocidad angular ws, este movimiento de rotacion
permanece constante en el tiempo.

Demostracion. Como el solido rigido es libre, por la definicién no hay fuerzas externas y, en consecuencia
es N = 0= Ny, Ny, N3 = 0. Aplicando las ecuaciones de Euler (ver teorema |7 en la pagina 96|), obtenemos:

Lo + (I3 — IQ) wowsz =0
Irwso + (Il . I3) wiwg =0
Isws + (IQ — Il)WlCL)Q =0

Ademas, en el instante ¢ = 0 son w1, ws = 0, por hipétesis, luego, obtenemos:

Iun (0) =
Iywy (0) =
I3ws (0) =

o O O

En consecuencia, wy, we, w3 permaneceran constantes en un intervalo de tiempo (0, dt). Es decir, sera wy (dt) =
0,ws (dt) = 0,ws (dt) = w3 (0) = w3 y, llegariamos de nuevo a las mismas ecuaciones. Por tanto, debe ser
wy () ,wa (t),ws (t) =0Vt € (0,00). Asi, es wy (1) =0, w2 (t) = 0,ws (t) = w3 Vt € (0,00). Q.E.D.

Corolario 17 (Estabilidad de la rotacion en torno a un eje principal de inercia). Sea un sélido rigido libre
con N particulas y sean 11, Is, I3 sus momentos principales de inercia y é1,és, €3 las respectivas direcciones
de sus ejes principales de inercia. Supongamos que el solido rigido estd rotando inicialmente unicamente en
torno al eje €z con velocidad angular ws. En un momento dado, se le comunica una pequena perturbacion de
forma que aparecen unas componentes wy,wa # 0 tales que |wi], |wa| K |ws| y wiwe ~ 0. La rotacion en torno
al eje é3 serd estable si y solo st Is < Iy, 1oV I3 > 11, I>.

Demostracion. Como el solido rigido es libre, por la definicion sabemos que no actdan fuerzas externas;
por consiguiente, es Ny = Ny = N3 = 0. Aplicando las ecuaciones de Euler (ver teorema |7 en la pagina 96}),
llegamos a:

L + (13 — IQ) wowsg =0

Irwsy + (Il — 13) wiwg =0

Isws 4+ (Is — I1) wywa =0
~0

De la tltima ecuacioén, obtenemos:
3wy ~ 04 w3 = 0s ws ~cte

Con esto, las restantes dos ecuaciones se han convertido en un sistema de ecuaciones lineales:

=:a?

e N
. (- I3)ws
W = W
L, + (13 — IQ) wowsz =0 PN 1
(;JZ = T(JJ]_
——
\ =5
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Definiendo o y 8 como hemos definido antes, podemos expresar el sistema en forma matricial como sigue:

d}l . 0 042 w1

W) \B% 0 ) \wo
Para resolver el sistema anterior, tenemos que hallar los vectores propios generalizados de la matriz anterior.
Para ello, hallemos primero los autovalores:

B

g2y =0 X -’ =0 XN =8> < A= +af

Como obtenemos dos autovalores diferentes con multiplicidad uno en el polinomio caracteristico, la matriz es
diagonalizable. Asi, la solucién general de nuestro sistema sera de la forma:

<Z; 8) = A 4 Beo¥!

con A,B € C?. Para estudiar la estabilidad de la solucién, tnicamente tenemos que ver si el producto o3
tiene parte real o no. Si tiene parte real, entonces la solucién tendra un término exponencial creciente que
har& que wy y wsy crezcan hasta que la hipotesis |w1|, |we| < |ws| ya no sea cierta y la solucion no sera estable.
En cambio, si af es un nimero imaginario puro, Unicamente habra términos oscilantes que siempre estan
acotados en moédulo y la solucion seré estable. Para ello, estudiemos:

12—13)(4)3 (Ig—]l)w:g (12—13) (13—11) 2

252 _ ( _
@B = I, 1 L1, w3

Si a?B? < 0, entonces af serd un nimero imaginario puro y, en caso contrario, si o242 > 0, entonces o3 € R.
En funcion de la relacion entre I, Is e I3 llegamos a las siguientes conclusiones:

» Sil3 < I, IV (I3 > Ih,15), entonces a?B% < 0y, por consiguiente, a3 es imaginario puro. En este caso,
w1 (t) ,wo (t) son oscilantes y la rotacion se mantiene estable.

2 Si (I1 < I3< 1)V (I > I3 > I5), en ese caso o232 > 0 y a3 € R. Por lo comentado antes, la rotacién
no seré estable.

Q.E.D.

Ejemplo 16 (Estabilidad de la rotaciéon). Mediante una simulacién numeérica, vamos a tratar de comprobar
lo expuesto en el corolario [I7 en la pagina anteriorl Para ello, partiremos de un sélido rigido de forma de
paralelepipedo con momentos principales de inercia Iy = 2, Is = 4, I3 = 8. Llevaremos a cabo tres simulaciones;
en cada una de ellas partiremos de una situaciéon en la cual el sélido rigido esta rotando en torno a uno de
sus ejes principales de inercia é;,és 0 é3 con velocidad angular w. Entonces, introduciremos una velocidad
inicial 0,05w en los otros dos ejes, perturbando el sistema. Segun el corolario [I7 en Ta pagina anterior] cuando
sea el eje I1 o I3 el que rota inicialmente, la perturbaciéon no deberia afectar casi a la rotaciéon y ésta deberia
permanecer estable. Sin embargo, cuando el eje de rotacién inicial sea I, la perturbacion deberia desestabilizar
el so6lido rigido.
Veamos el resultado de las mencionadas simulaciones:

= Rotacion inicial en torno a éy:
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6.00 1

5.98 A
3 wi(t)

|
B AL RARRRRRRR

0.500 -

3 0.0
~0.500 - — w(t)
ws (1)

0.00 2.50 5.00 7.50 10.0 12.5 15.0 17.5 20.0
t

El video correspondiente puede verse aquﬁ Como puede verse, la velocidad de giro w; en torno a é;
apenas varfa, mientras que las velocidades de giro wo, w3 en torno a és y €3 siguen soluciones armoénicas
tal y como se ha demostrado en el corolario [I7 en la pagina 98|

= Rotacién inicial en torno a és:

“https://www.youtube.com/watch?v=tKJt3ZCHWic
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— wa(t)
6.00 - w3(t)
— wi(t)
4.00 -
2.00 - \‘
3 0.00 -
~2.00 -
~4.00 -
~6.00 -

0.00 2.50 5.00 7.50 10.0 12.5 15.0 17.5 20.0
t

El video correspondiente puede verse aquﬂ Como puede verse sobre todo en el video, la rotacion es un
completo caos. Ademaés, fijandonos en la gréfica, vemos que las soluciones de wy, w2, ws no son armoénicas.

= Rotacion inicial en torno a és:

Shttps://www.youtube.com/watch?v=pL_LoUyznKs
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El video correspondiente puede verse aquﬂ Como puede verse en la escala vertical de la grafica, la velo-
cidad w3 no varia practicamente nada, mientras que las velocidades w; y ws siguen soluciones armoénicas.

2.8. Angulos de Euler

2.8.1. Definiciéon y explicacion

Sea un soélido rigido de N particulas con N € NV N = oo. Partimos de un sistema de referencia fijo
{%,j’, l%} Dicho sistema recibira el nombre de sistema del espacio. Por otra parte, tendremos el sistema de

referencia no inercial {é1, é2, €3}, que llamaremos sistema del cuerpo.

Si existe un punto fijo, tomaremos dicho punto como origen para ambos sistemas y si no existe punto fijo,
tomaremos el centro de masas como origen para ambos sistemas.

Los angulos de Euler son tres coordenadas angulares (¢, 6,1) con las que se puede describir el estado
de rotacion de un soélido rigido. Veamos cémo podemos llegar a la posicién de los ejes principales de inercia
{é1, é2,é3} a partir de los angulos de Euler:

~

1. Partimos de los ejes i, 7, k-

Shttps://www.youtube.com/watch?v=d3WyXAvMZzE
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2. Ahora, hacemos rotar los ejes ¢ y j alrededor del eje k un angulo ¢. Llamaremos €7, &5, é5 = k a estos
nuevos ejes:

» I

3. A continuacion, rotamos los ejes €/ y €4 en torno a é5 un angulo 6, obteniendo unos nuevos ejes

Al sl — a5l
€1,65 = &5, é5.
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s 4
6/2 632

4. Por ultimo, rotamos los ejes €] y €, en torno al eje €4, con lo que llegamos a los ejes é1, é2, €3 = €5, que

ya son los ejes principales de inercia de nuestro sélido rigido.

~! k é/
~ 3 €3

. €3

ey
S 4
6/2 632
Lo anterior puede verse mas detallado en el siguiente vide(ﬂ donde se ha tomado p = —¢,0 = —

"https://www.youtube.com/watch?v=x4S085j- Jk8
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2.8.2. Propiedades derivadas

Proposicion 27. Sea un sdlido rigido de N particulas tal que Iy = Is. En funcion de las variaciones de sus
dngulos de Fuler (gb,é,z/}) y de la base de ejes principales de inercia, la velocidad angular instantdnea del
solido rigido queda:

& = —psené, + 06, + (gbcos@ + 7,/}) é3

Ademds, la direccion k dada en las ilustraciones de la subseccion |2.8.1 en la pdgina ZOQ es susceptible de
descomponerse como:

A~

k = —senfé; + cosfég

Demostracion. En el proceso explicado en la subseccién [2.8.1 en la pagina 102, hemos rotado los ejes un
angulo ¢ en torno a k, luego un angulo # en torno a é; y, por ultimo, un angulo ¢ en torno a é4. Por tanto,
podemos descomponer la velocidad angular & precisamente como:

= @k + 06 + ey = ok + 08 + Yés (2.8.1)

Como, por hipotesis, Iy = I2, cualquier par de ejes perpendiculares a és que sean perpendiculares entre
si, son ejes principales de inercia. Luego, en particular, podemos tomar la combinacion de ejes {é1, éa,é3} :=
{€), €}, és}; de esta forma, unicamente falta descomponer la direccion k. Notemos que es kL él,, como puede
verse en la subseccién [2.8.1 en la pagina 102] Por consiguiente, fijAndonos en el tercer grafico disponible en la
subseccion [2.8.1 en la pagina 102] sabiendo que el angulo 6 que aparece en el dibujo es negativo, obtenemos
que:

k = sen |0] é1 + cos |0] é3
Como, 6 es negativo, sen (—x) = —senz y cosz = cos (—x), obtenemos:
k= —sen 0éq + cos fé;
Introduciendo el valor anterior de k en la ecuacién obtenemos:
W= —psenhé; + ey + (gbcose + ¢> é3
Q.E.D.

Corolario 18. Sea un sdlido rigido de N particulas tal que Iy = Is. En funcion de las variaciones de sus
dangulos de Euler (gb, 9,¢) y de la base de ejes principales de inercia, podemos expresar su momento angular
Y Su energia cinética como:

J = —Lipsen0é, + Lbés + I (¢ cos 6+ 1/}) &5

1 1. 1 .\ 2
T = 5]1Qb2 sen” ) + §I292 + 5[3 (¢COS¢9 —|—1j}>

Demostracion. El resultado se sigue trivialmente de las proposiciones [27] v [20 en la pagina 79| Q.E.D.

2.8.3. Movimiento libre de sélidos rigidos simétricos

Proposicion 28. Sea un sdlido rigido libre de N particulas tal que Iy = Is y sean ,0,1 sus dngulos de
Euler. Tomamos k en la direccion del momento angular J ent = 0. Los dngulos de FEuler satisfacen las
ecuaciones:

p =cte, 6 =cte, d) = cte
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Ademds, la velocidad angular instantdnea viene dada por:
W= —¢psenfé; + <gbcost9 + w> és

y es constante en modulo. Es mds, los vectores J (que es constante), & y k estdn stempre contenidos en el
plano generado por los vectores €1 y €s.

Por anadidura, tanto G como ég preceden en torno a k con ritmo p = cte y la velocidad angular & precede
en torno a €3 con Titmo 1/1 = cte. Por ultimo, 8 = cte es el dngulo que forma el eje é3 con la direccion del
momento angular J.

Por dltimo, se cumple la relacion:
T3ws

- I cos @

Demostracion. Como el sélido rigido es libre, por la definicion [21 en la pagina 98] no hay fuerzas externas.
En consecuencia, por el teorema |3 en la pagina 26, tenemos:

5,

— o J=cte

Es decir, J apunta siempre en la misma direccién, que hemos llamado k. Entonces, por la proposicion
[la pagina anterior, obtenemos:

J = Jk = —Jsenfé; + J cos Bés (2.8.2)

donde J = cte.
Pero, por otra parte, por el corolario [I8 en la pagina anterior] sabemos que:

J = —Ligsen0é, + Léy + I (¢) cosf + ¢) é (2.8.3)
Igualando componente a componente las ecuaciones y [2.8.3] llegamos a:
—lipsent = —Jsenf < J =11
I29:0<:>9:O<:}9:cte
I3 (gbcosG +1/1> = Jcosf

Asi, de la primera ecuacion y tercera ecuacion, como 6, J, I, Is, I3 son constantes, obtenemos que, necesaria-
mente:

J=1¢ =cte & ¢ =cte (2.8.4)
Is (cp cosf + ¢> = Jcosf = cte & 1) = cte (2.8.5)

Asi, obtenemos las ecuaciones: '
P =cte, 6O =cte, 1 =cte (2.8.6)

Por otra parte, usando las ecuaciones [2.8.4] y [2.8.5] obtenemos:

I3 (gbcos@+¢) = Jcosh = I1pcosb
—_——

=ws3

donde el término marcado es ws debido a la proposicién 27 en la pagina anterior]l Operando, concluimos:

_ I3ws
Y= Ii cosf
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Utilizando la proposiciéon 27 en la pagina 105| teniendo en cuenta los resultados hallados en la ecuacion 2.8.6
len Ia pagina anterior] llegamos a:

W= —¢psenbé; + (gbcost9+¢) és

pues es 6 = 0, como hemos visto antes. Como vemos, & estd siempre contenida en el plano definido por é1y
é3. A partir de la ecuaciéon anterior y de la ecuacion |2 8.2 en la pagina anterlorl deducimos que tanto J como
W estan siempre contenidos en el mismo plano: el definido por é; y é3. En consecuencia, por definicién de k,
k también estara en dicho plano.

Veamos el modulo de la velocidad angular instantanea. Como {é1, é2, €3} es una base ortonormal, tenemos:

& = \/sb2sen20+sb2cos29+1/}2+2¢n/}cos6: \/¢2+¢2+2¢¢cosezcte

pues 0, p, 1/1 son constantes.

Mirando el tercer dibujo de la subseccion [2.8.1 en la pagina 102] podemos ver que el angulo que forma
é3 = & con el vector k es justo 6, que es constante. También mirando ese dibujo, podemos deducir que, como
v es el &ngulo de giro con respecto al eje 12:, ¢ debe marcar la velocidad de rotacion del solido rigido en torno a
k. Como {€é1, é2, é3} giran con el cuerpo, ¢ debe ser la velocidad con la que los ejes é; y é3 preceden en torno
a k. Como @ es combinacion lineal de é; y €3, W también precedera con ritmo ¢ en torno a k. Por altimo,
fijandonos en la ultima ilustracion de subseccion [2.8.1 en la pagina 102, vemos que 1 es el angulo de giro en
torno a és, luego w serd la velocidad a la que precedera el eje €1 en torno a és. Como & es combinacién lineal
de é1 y é3, @ también precederé con ritmo ) en torno a és. Q.E.D.

Definicién 22. Sea un soélido rigido libre de N particulas tal que I; = I5. Llamaremos cono del espacio
al cono que describe el vector & en torno al eje k segiin dado en la proposicién |28 en la pagina 105|.

Anéalogamente, llamaremos cono del cuerpo al cono que describe el vector & en torno al eje €3 segun
dado en la mencionada proposiciéon [28 en la pagina 105|

Observacion 26. Observemos los conos del espacio y del cuerpo mencionados en la definicion 22}

A

b

W

>
Uy

Licencia: Creative Commons 107


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 2. SOLIDO RIiGIDO
Lain-Calvo-Cano-Guerrero 2.8. ANGULOS DE EULER

El cono rojo se corresponde con el cono del espacio, mientras que el cono verde se corresponde con el cono
del cuerpo. Si consideramos k fijo, entonces & describe el cono rojo entorno a k. Sin embargo, si dejamos €3
fijo, el vector & describe el cono verde en torno a éz. Puede verse esto en el siguiente Videcﬁ en el que se ha
tomado ¢ — 3 — § sy _ § vushas

Estos dos movimientos mencionados han de ser posibles los dos a la vez. Recordemos que & nos da el eje
de rotacion en torno al cual gira el solido rigido en un instante dado. En consecuencia, los puntos del eje &
estan fijos en dicho instante. Esto se asemeja a un movimiento de rodadura.

i

W

-

N
Wo

Por consiguiente, podemos interpretar esto como dos conos en movimiento de rodadura cuyo eje que
toca «el suelo» estd compartido entre ambos sistemas. Por ende, podemos hacernos una nueva visién de esta
situacioén: es como si tuviéramos dos conos que ruedan sin deslizar el uno con el otro.

Proposicion 29. Sea un sdlido rigido libre de N particulas tal que I = Iy. El dngulo 8 que forma la velocidad
angular instantdnea & con el vector és del sdlido rigido satisface la ecuacion:
psenb

I
tan 8 = Btanf=
L P+ pcosb

k

&l

€

8https://www.youtube.com/watch?v=7ZV6rTEVRVo
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Demostracion. Por la proposicion [28 en la pagina 105] sabemos que sera 6, D, ¥ = cte y:

@ = —¢psenfé; + <c,£> cosf + 1/1) €3 = w161 + wsés

Como podemos ver con el dibujo anterior, podemos relacionar § con las componentes de & en la base
{€é1,é2,é3}. Asi, obtenemos que:

—w b sen 0
tan g = —— = - 4 - (2.8.7)
w3 Y+ @cosl
Por otra parte, por la proposicion 20 en la pagina 79| tenemos:
jz Tiwié1 + I3wsés (2.8.8)
que es constante, pues el sélido rigido es libre. Ademas, por la proposicion [27 en la pagina 105 es:
J = Jk = —Jsen0é; + J cos 0és (2.8.9)
Juntando las ecuaciones [2.8:8 y [2:8.9 por componentes, llegamos a:
—Jsenf
LT
—Jsenl = [{w; 1
JcosO = Isw <
— 343 J cos 6
wa =
3 Ts
Sustituyendo en la ecuacion [2.877], obtenemos:
tan 3 —w1 J%lne I3senf I3 tan 8
1n = = — = — 1
w3 JCI(;SQ Iicos® I,
Q.E.D.

Corolario 19. Sea un sdlido rigido libre de N particulas tal que Iy = Is = I3. El dngulo 8 que forma la
velocidad angular instantdnea @ con el vector és coincide con 6 (B =0). Ademds, en este caso, & || J.

Demostracion. Partimos de la proposiciéon 29 en la pagina anteriorf

I
tan 8 = 23 tan6
I

Como en nuestro caso es I3 = I, obtenemos:
tan 8 = tan6

Como 6 y 8 son angulos entre ejes, sera 3,6 € [0,7]. En consecuencia, como la tangente es inyectiva en ese
rango, tenemos = 6.

Por otra parte, recordemos que 6 era el angulo que formaban los ejes k y €3 y que [ era el angulo que
formaban los ejes é3 y . Como ambos son iguales y cumplen que el dngulo que forma el vector & con el eje
koes 6 — B = 0, tenemos que necesariamente & debe coincidir en direcciéon con k.Y k era tenia la direccion de
J; luego es @ || J. Q.E.D.

Definicién 23. Sea un soélido rigido de N particulas simétrico tal que Iy = Is, siendo [y, I, I3 sus momentos
principales de inercia. Diremos que el sélido rigido es:

= Oblato si I3 > I;.
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= Prolato si I3 < I3.
Corolario 20. Sea un sdlido rigido de N particulas. Considerando 3,0 > 0, en ausencia de fuerzas se cumple:
= Un sdlido rigido es oblato si y sdlo si 5> 6.

= Un sdlido rigido es prolato si y sélo si B < 6.

Demostracion. El resultado se obtiene trivialmente a partir de la definicion 23 en la pagina anterior] y de la
proposicion [29 en la pagina 108[al tener en cuenta que la tangente es creciente en [0, 7]. Q.E.D.

Observacion 27. Lo expuesto en el corolario [20| puede verse en los siguientes videos: oblatoﬂ (¢ = % = %

i, — 1 vueltas 10| (,;; — 2 _ 1 vueltas i — 1 vueltas
y ¢ =g e )yprolat(w—g—z Sy p = — g TR,
Observacion 28. Veamos una aplicaciéon de los conocimientos vistos hasta la fecha a la Tierra. Como la Tierra

tiene un ligero ensanchamiento ecuatorial es I3 < I;. Por consiguiente, como no se da el caso del corolario
hay una pequefia precesion de & en torno a k, al ser 5 5 6.

vueltas
S

Notese que esto no tiene nada que ver con la fuerza gravitatoria. Se da simplemente por el hecho de que
la Tierra gira en torno a si misma. Esta precesion de & alrededor de k tiene lugar en la naturaleza y recibe el
nombre de «bamboleo de Chandlery. Lo que se espera en teoria es que la velocidad angular instantéanea describa
una trayectoria circular en torno al eje perpendicular al plano de la ecliptica. El radio de esta precesion seria
de unos 3 m. Sin embargo, como la Tierra no es simétrica, los momentos de inercia cambian constantemente
en el tiempo. Por eso, la trayectoria observada no es circular, sino erratica y el radio de dicha trayectoria
reside entre 3 m y 15 m. Ademaés, su periodo es de unos 400 dias.

%https://drive.google.com/open?id=11zrrh1QrYW_00zepvGyzoTGaTwi_FtwJ
https://drive.google.com/open?id=1GilUeJiMpkFL6016zP_pU233AXigkkoc
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2.9. Mecanica lagrangiana

Proposicion 30. Sea un solido rigido con N particulas tal que Iy = Iy que estd sometido a un campo
gravitatorio constante § y que cuenta con un punto fijo O por el que pasa el eje és del solido rigido. Llamemos
R a la distancia entre el punto fijo O y el centro de masas del solido rigido. Los dngulos de FEuler p,0,1) del
solido rigido deben cumplir las ecuaciones:

. J.—J3cost
~ Iysen2é

L0 = I1p?*sen B cos 6 — I3 (1/}—1—@6050) ¢sentd + MgRsent

J. = I1psen? 0 + I3 (@Z) + ¢cos€) cos f = cte

J3 = Isws = I3 (1/} + gbcos&) = cte

Demostracion. Por el corolario [18 en la pagina 105, sabemos que en la base de vectores propios del tensor de
inercia de nuestro sélido rigido, podemos expresar el momento angular como:

J = —Lipsenbé, + Iés + I (QL + $cos 9) &5

Por otra parte, haciendo uso de la proposiciéon 27 en la pagina 105, podemos hallar:

Jo=J k= (—Ilgbsen 06, + Ihfés + I (1/} + pcos 9) ég) (= sen §é, + cos Bés) =

= Ilcpsen29—|—13 <¢+¢0080> cosf &

—Ts
J, — J3cosf

2.9.1
I, sen? 6 (2.9.1)

s J, = IlgbsenQG + J3cosl & ¢ =
Ahora, escribamos el lagrangiano del sistema:
L. 9 9 Lo oo 1 P 2
L=T-V = 51190 sen” 0 + 5[20 + 5[3 <w + gocos@) — MgRcos0

Notese que la energia potencial efectivamente es V- = MgR cos 8, ya que 6 es el &ngulo que forma el eje é3 del
solido rigido con la vertical y la energia potencial serd maxima cuando el centro de masas esté en la vertical,
es decir, cuando 6 = 0.
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Tenemos tres grados de libertad; en consecuencia, tendremos tres coordenadas generalizadas (los tres
angulos de Euler). Por ende, llegaremos a tres ecuaciones de Lagrange. Por el teorema [5 en la pagina 35|
obtenemos:

d (ac) oL d

at \ 29 20 & 1 < 29) 1¢“ sen ) cos 3<1/1+gacos9>cpsen9+ gRsenf <

& Lo = Ip?*senf cos b — I (1/)—#@0080) psent + MgRsen 6

d (oL oL d . 9 p
" <8cp) =9 o e [Ilgosen 0+ 1 (¢+<pcos€) cosﬂ] =0«

oL :
& P,=— = Lipsen?0 + I3 <¢+¢COSQ> cosf = cte &

oo

=I3ws=J3

& Ipsen? 0 + J3cosf = cte

donde recordamos que g—g recibe el nombre de momento generalizado en torno a ¢. Utilizando la ecuaciéon

len la pagina anterior] llegamos a que:

J, = Ilgbsen2 0 + J3cosf = cte

(i(gi’) —g)i@(i(h(zb—i—gbcos@))—O@

(:)Pd,:ggzlg <¢+gbcos€) = cte
S

=w3
De esta forma, vemos que:
J3 = Isws = ¢ + pcos = cte
Q.E.D.

Corolario 21. Sea un sdlido rigido con N particulas tal que Iy = Io que estd sometido a un campo gravitatorio
constante § y que cuenta con un punto fijo O por el que pasa el eje és del sdlido rigido. Llamemos R a la
distancia entre el punto fijo O y el centro de masas del solido rigido. Si se cumple, ademds que 8 = cte y

wsy = <¢ + ¢ cos 9) =0, entonces p cumple la ecuacion de un péndulo fisico:

I sen 6 cos 0> + MgRsen = 0

Demostracion. Por la proposicion [30 en la pagina anterior| es:

L0 = I1p?senfcos b — Iy (1/'14-@0089) psent + MgRsent

S
—is

Como en nuestro caso es 6 = cte, serd § = 0. Ademas, como w3 = 0, llegamos al enunciado. Q.E.D.

Proposicion 31. Sea un solido rigido con N particulas tal que Iy = Iy que estd sometido a un campo

gravitatorio constante g y que cuenta con un punto fijo O por el que pasa el eje és del sdlido rigido. Llamemos
R a la distancia entre el punto fijo O y el centro de masas del sdlido rigido. Supongamos, ademds, que 8 = cte

Yy que es:
Isws > /4l cosOMgR
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Entonces llegamos a dos posibles soluciones aprorimadas para p:

MgR . Isws
Igu)g ’ - Il cos

~
~

que se corresponden con la precesion lenta de un solido rigido sometido a fuerzas pequenas (la primera solucion,
como vimos en la proposicion|25 en la pagina 89) y con la precesion rapida de un solido rigido libre (la seqgunda
solucion, como vimos en la proposicion 28 en la pagina 105).

Demostracion. Por la proposicién [30 en la pagina 111} es

~ J,— Jzcost

2.9.2
I, sen? ( )

J. = Ipsen’ 0 + I3 (Lb + @cos@) cos 6 = cte

I3 (w + ¢ cos 0) = cte

Como es 6 = cte y, por la proposicién [30 en la pagina 111] es también J, = cte y J3 = cte, a la vista de
la ecuacion [2.9.2] necesariamente, debera ser ¢ = cte. De esta forma, por la tercera ecuacion sera, también,
w = cte. Ademas, como es = cte, sera 6 =0 y, en consecuencia, por la proposiciéon |3O en la pagina 111|,

tenemos: )
0=Ip%senfcosf — I3 (w + gbcosﬁ) psenf + MgRsen

Definimos ws := (1,[) + ¢ cos 9) = cte. Asi, obtenemos:

0 = Iy sen 6 cos 0¢p? — Izwssenfp + MgRsend <

S0=10L c059¢2 — Iswsp + MgR

Despejemos ¢ de la ecuacion anterior:

2 92 411 cosOMgR
_ T3ws £+ \/I§w§ — 411 cosOMgR _ Ty & \/I3w3 ( I2w32 ) _
211 cos b 21 cos @
Igu)g (1:|:\/1 4[10086’ng)
217 cos

Como, por hipoétesis es Isws > /411 cosOM gR, podemos suponer que:

411 cosOMgR
2 2 0
I3w3
y estaremos en disposicion de aplicar el desarrollo en serie de Taylor-Young a primer orden de f () = /1 + a:

1
\/1+m:1+§x+o(x) cuando x — 0

Asi, obtenemos:
w3 (1 + [1 _ 2L cosOMgR C;;U‘jngD
373

L 211 cos 6 -
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( .
IgWg (2 _ M) 2[3Ld3 _ 2I1cosOMgR

w3 I3ws
217 cos O 217 cos
211 cosOMgR
Lws™ g MgR
L 217 cos Isws

Recordemos que, por hipdtesis, era:

I3ws > \/4I cosOMgR < I2w2 > 41 cosMgR <

AL cos OMgR 27, cos OMgR
SACBTHIN () 9 > ST I

& Iawg >
33 I3ws T3ws

De esta forma, podemos aproximar algo més la primera de nuestras soluciones, obteniendo:

. 2wy Izws
L 2I,cos  Ijcosf

con lo que llegamos al enunciado. Q.E.D.

2.9.1. Nutacién

Definiciéon 24. Diremos que en el movimiento de un sélido rigido hay nutaciéon cuando 6 # cte.

Proposicion 32. Sea un sdlido rigido con N particulas tal que Iy = Iy que estd sometido a un campo
gravitatorio constante § y que cuenta con un punto fijo O por el que pasa el eje és del sdlido rigido. Llamemos
R a la distancia entre el punto fijo O y el centro de masas del sélido rigido. Es posible expresar el movimiento
del sélido rigido a través de una energia cinética Tty que sélo depende de 6 y de una energia potencial efectiva
Verr que sélo depende de 0. Las expresiones para dichas energias son.

1.
Tes(0) = 51202
1(J; — Jscos 0)? 1.J2

6) = e}
Vess (0) 2 Iysen20 2 I3
Ademds, existen 01,6 € [0, 7] tales que 6 € [61,02] Vt € R.

+ MgRcos
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Vers(0)

91 92

Demostracion. Por el corolario [18 en la pagina 105 tenemos:

1 1. 1 N 2
T = Shg*sen®0+ S0 + Ty (¢ cosf + 1/})

Por otra parte, por la proposiciéon [30 en la pagina 111} es:

. J.—J3cost
~ Iysen2éd

siendo .J,, J3 = cte. Operando:
L sen’0 = J, — Jycosl = I12gb2 sent 9 = (J, — J3cos 9)2 &

(J. — J3cos0)?
Iy sen?4

Ademas, también por la proposicion [30 en Ta pagina 117]es:

o [1p%sen? 0 =

J2
= Igwg) = Tz

2
2 J3

:>W3:T32

i J:
J3 = I3wz = I3 (¢~I—gbcos€> = cte & wy = 1_—3
3

(2.9.3)

(2.9.4)

(2.9.5)

De esta forma, mediante las ecuaciones [2.9.5] y [2.9.4] podemos escribir 2.9.3] como una funcién que tdnica-

mente depende de 0:
1(J, — Jzcos0)® 1 ., 1J2
T=- —10° + ——=
2  Iisen20 +22 +2[3

Por anadidura, sabemos que la energia potencial viene dada por:

V =MgRcosf
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Por consiguiente, podemos definir Ve rr, T, ¢y tales que Veyp =§!(0) y T = §! (9), obteniendo:

1. .
Tefr (0) == 51'292

1(J, — Jscos 0)2 1 J??

Verr (0) := 5 5 ST

2 11 sen? 60 2 I3

Ahora, como un campo constante es conservativo, la energia del sistema debe permanecer constante, luego
debe ser:

+ MgRcos6

Teff—F‘/eff:T—l-V:Cte

Estudiemos el comportamiento de la energia potencial efectiva cerca de los puntos criticos § = 0, 7.
lim Verr = 400, Um Vgpp = 400
60 7 o 17

pues en ambos casos el término que diverge m es siempre positivo. Asi, por el teorema de Weierstrass,
sabemos que hay minimo absoluto en (0, 7) y que este debe alcanzarse en un minimo local de la funcion Vs . En
consecuencia, para una energia dada F siempre debera haber al menos dos valores de 6 tales que V.5 (0) = E;
llamemos a esos puntos 61 y 0. Por tltimo, como es Ver¢ < E V0, pues debera ser 6 € [61,602] Vt € R. Q.E.D.

Observacion 29. Consideremos un soélido rigido como el expuesto en la proposicién [32 en la pagina 114} Por
la proposicién [30 en la pagina 111} sabemos que es:

) J, — J3cosf
0) = — 2> ——
#(0) Iy sen? 6

donde J,, J3 = cte. Notemos que segin los valores de J, y J3, puede ser que ¢ varie de signo para algin 6.

» SiesJ, > J3cosf VO € [01,03], como son J,, J3, 1 > 0, sera siempre ¢ > 0. Asi, el vector é3 tendré su
final en alguna posiciéon entre las lineas trazadas por 01 y 6.

01

» Si, en cambio es J, < J3cosf para al menos algin 0 € [0, 03], entonces ¢ cambia de signo para cierto
0 y el vector é3 pasard de moverse hacia adelante a moverse hacia atras y viceversa. Noétese que, como
el coseno es inyectivo en [0, 7], cuando se dé la condiciéon anterior siempre existird un tnico 6y tal que

J, — Jgcosf = 0.
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= Supongamos que es justo 6y = 61, es decir que es ¢ (A1) = 0. Entonces, el movimiento queda de la
siguiente forma:

Ejemplo 17. Mediante tres simulaciones numéricas, vamos a intentar ilustrar cada uno de los casos expuestos
en la observacion 29 en la pagina anterior]

= Caso ¢ (61) = 0A ¢ (0) > 0V # ;. Puede verse un video al respecto aquil]

https://wuw.youtube . com/watch?v=c000tpg3A-1I
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4 4
3 3
S- S-
2 9
1 1 1 A
0 L I I I I I 0 L I I
0.6 7 28
0.4 7 A 26 .
> )
0.3 7 25 7 =
VUV
23 A
0]‘ (. T T T T T T T
0 5 10 15 20 027 04w 0.6 7
t 0

En la grafica anterior podemos ver la variacién de 6 y ¢ con respecto al tiempo ¢ asi como la variacion
de ¢ y Veys (segn definida en la proposicion [32 en la pagina 114)) con respecto a 6.

= Caso ¢ (61) > 00 € [61,05]. Puede verse un video al respecto aquf’}

?https://www.youtube . com/watch?v=hI4RBmg- sU4
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4.0 4.0
3.5 1 3.5 1
9. 3.0 1 3.0 1 9
2.5 1 2.5 1
2.0 1 2.0 A

0.4 7 ﬂ ” ” ” ﬂ ” ” _—
0.3 7 A |
- 37.0 ;5
. } U U U V U U N
0.1 7 - T T T T T 36.0 ™ T T T
0 5 10 15 20 01mx 0.2 0.3 7 0.4 7
t 0

En la grafica anterior podemos ver la variacién de 6 y ¢ con respecto al tiempo ¢ asi como la variacion
de ¢ y Veys (segn definida en la proposicion [32 en la pagina 114)) con respecto a 6.

= Caso del signo de ¢ oscilante. Puede verse un video al respecto aqui™]

3https://wuw.youtube . com/watch?v=WeISWLzQAUY
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5 1 5 7
0 1 [ 0 1

> _5- 5 o
—10 A —10 A
—15 A —15 1
0.6 7 A 321
30 A

0.4 7 4 98 - -

= T

~
26

0.2 7+
0 5 10 15 20 02w 04 m 0.6 7
t 0

En la grafica anterior podemos ver la variacién de 6 y ¢ con respecto al tiempo ¢ asi como la variacion
de ¢ y Veys (segn definida en la proposicion [32 en la pagina 114)) con respecto a 6.

2.10. Problemas

Ejercicio 10 (Problema 2.5). Un cuerpo rigido formado por tres particulas de masas m, 2m y 4m situadas
en los puntos (2a,0,2a), (a,—a,a) y (—a,a,0) respectivamente. Calcula el momento angular J del cuerpo si
gira alrededor del origen con velocidad angular & = b(3, —2,4).

Solucién. Sabemos por teoria que J = & siendo I el tensor de inercia del cuerpo. A su vez, las componentes
de este vector vienen determinadas por las expresiones siguientes:

(siendo I, = I, y por tanto I simétrica).
Asi pues, calcularemos primero las componentes diagonales como:

Ly = ) mi(y} +27) = m [0° + (20)’] + 2m [(~a)? + a?] + 4m [a® + 07] =

= 4ma® + 4ma® + 4ma® = 12ma’
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Iy = Zml(fnf +22)=m [(2(1)2 + (2@)2] +2m [a2 + ag] +4m [(—a)2 + 02] =

= 8ma® + 4ma® + 4ma® = 16ma®

I.,= Zml(x? +y2) =m [(20,)2 + 02] +2m [a2 + (—a)2] +4m [(—a)2 + a2] =

= 4ma® + 4ma® + 8ma® = 16ma>

A continuacion se calcularan los elementos restantes, empleando la propiedad de I, = I,, para ahorrar
calculos:

Iy = Iy = — Zmlmzyl = —m(2a)(0) — 2m(a)(—a) — 4m(—a)(a) = —0 — 2ma® + 4ma’® =

= 2ma’®
Iy, =1, =— Zmzyzzz = —m(0)(2a) — 2m(—a)(a) — 4m(a)(0) = —0 4 2ma® — 0 =
= 2ma?
L,=1,.=— ZmzxzzZ = —m(2a)(2a) — 2m(a)(a) — 4m(—a)(0) = —4ma® — 2ma® — 0 =
= —6ma®

Puesto que tenemos todos los componentes del tensor de inercia, podremos calcular el momento angular como:

12 2 -6 3 8 4
J=Id=mda’| 2 16 2 2| =ma® | =18 | =2ma® | -9
-6 2 16 4 42 21

Q.EF.

Ejercicio 11 (Problema 2.7). Un insecto de masa m esté en reposo en el borde de un disco plano uniforme
de masa M y radio R,que gira alrededor de un pivote sin rozamiento con velocidad angular w. Si el insecto
se mueve hacia el centro del disco, calcula la velocidad angular del disco cuando el insecto lo alcanza y lo que
ha variado su energia cinética.

Solucién. Sabemos por teoria que la variacién del momento angular de un sistema es causado por fuerzas
tanto internas como externas siguiendo la siguiente expresion:

T=3"S"rx Fy+ S i F

Puesto que nos informan de que la rotacion en torno al pivote no genera rozamiento (y asumiendo que no
existen otras influencias externas al sistema), podemos concluir que el sumatorio > 7; X F; sera nulo, es decir:

J=2 ) rixFy
En las fuerzas internas debemos considerar no solo las fuerzas entre los componentes del disco o del insecto,
también deberemos considerar las interacciones entre el disco y el insecto (puesto que el sistema estudiado es
el formado por ambos cuerpos). Asumiendo que tanto el disco como el insecto son cuerpos rigidos y estables,
podremos decir que sus fuerzas internas son nulas (aqui se mete la explicacion magica de Andrés sobre que si
hay fuerzas internas el solido acelera hasta reventar); pero deberemos pararnos a pensar en el comportamiento
de las interacciones entre el disco y el insecto.
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Podemos obviar interacciones como el peso y la normal que genera el disco sobre el insecto, puesto que
estas fuerzas se cancelaran entre si; sin embargo consideremos (puesto que no se nos indica lo contrario) que
existe una cierta fuerza de rozamiento entre el disco y el insecto , en este caso, la fuerza sera paralela al vector
posicion del insecto (suponiendo que el insecto presente un movimiento con direccion directa hacia el centro
del disco, tomando este como centro de coordenadas), causando que Trpsecto X F Rozamiento = 0. De este modo,
la variaciéon del momento angular seré nula y asi, el momento angular J seré constante:

J=0—J=cle

Ahora bien, al ser un sistema con rotaciones deberemos considerar el momento de inercia tanto del disco
como del insecto (consideraremos a este como una particula puntual), para facilitar los calculos solo conside-
raremos un momento de inercia escalar, que en el caso de un disco es igual a:

1
Ipisco = §MR2
en el caso del momento de inercia de una particula puntual a una distancia d del eje de rotacion:

2
Irnsecto = md

Por lo tanto, tendremos que el momento de inercia del sistema cuando el insecto se encuentra a una cierta
distancia d del centro del disco sera:

1
I(d) = IDpisco + Irnsecto = QMRQ + md2

Ahora bien, la relacion entre el momento angular y el momento de inercia viene determinada por la expresion
J = Iw, puesto que J es constante, J también lo serd, de modo que cuando el insecto de encuentra al borde
del disco d = R y cuando se encuentre en el centro del mismo d = 0, el momento angular sera el mismo:

Jo = Jf — I(R)wo = I(O)Wf

1 1
(MR2 + mR2> wo = <2MR2 + m02> wy

2
2m
Wy = wo 1+Tr

Habiendo calculado la velocidad angular del sistema una vez el insecto se ha desplazado desde el borde del
disco hasta el centro del mismo, podremos calcular la variaciéon de la energia cinética del sistema. Sabemos
que la expresion que relaciona las cantidades antes calculadas es:

Asi pues:

1
T = -Iw?
51w
Por lo tanto, la variacién de energia cinética sera igual a:
g1 2 1 2 _
AT =Ty - Ty = 2I(R)w0 I(0)ws =

1 /1 2 2) 2 1 (1 2 2\ 2
Sustituyendo omegay por el valor anteriormente calculado:

1/1 1/1 2
AT = <2MR2 + mR2> Wi -3 <2MR2> (1 + 2m> W2 =

Licencia: Creative Commons 122


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 2. SOLIDO RIGIDO
Lain-Calvo-Cano-Guerrero 2.10. PROBLEMAS

1, ,[/1 1 (. 2m 1, L1 om
_ - “M MR (14| =2 (112 _

Por lo tanto:

Q.EF.

Ejercicio 12 (Problema 2.9). Un disco uniforme de masa M y radio R se encuentra bajo un campo gravitatorio
y tiene adherida una masa m puntual a una distancia a del centro del mismo. El disco puede rodar sin deslizar
sobre un plano horizontal. Calcula la frecuencia de las pequenas oscilaciones en torno al punto de equilibrio,
si el plano que contiene el disco es vertical.

NV L R R ¢ TN A g

Solucién. Este ejercicio se resolvera empleando mecanica lagrangiana, de modo que tendremos que senalizar
las coordenadas que emplearemos; al encontrarnos limitados a un plano, solo emplearemos coordenadas x
e y donde denotaremos con el subindice 4 a las coordenadas del centro del disco y con el subindice ,, a las
coordenadas de la masa puntual. Asi pues, recordando que el disco rueda sin deslizar, tendremos las expresiones

siguientes:
g = —RO ya=R

Tm = xq+ asenf Ym = Yqd — acost
Puesto que seran necesarias a continuacion, calcularemos las derivadas temporales de las anteriores expresiones:
iq=—R0 Ug =0
By = dg + abl cos 0 ym:yd+aésen6
Puesto que debemos calcular el lagrangiano £ =T — V| desarrollaremos estas magnitudes por separado:
T=T43+1T,,

Recordemos que el disco es un sélido rigido, por lo que su energia cinética sera igual a la energfa cinética del
movimiento de su centro de masas sumado a la enrgia cinética de su rotaciéon, esta tltima componente sera

T= %192, siendo para el caso de un disco [ = %MRQ:

1 . 1 1
T— {_ (§MR2) 02+ SM (55 +33) | +5m (@2 +52) =
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_1 1 949 949 1 ey . 2 . 2 B
—2M<2R9 4+ R0 +2m ( R9+a90089) —l—(a@sen@) =

3 . 1 ) ) ) )
= 1MR292 + im (R292 + a26? cos® 0 — Rab? cos b + a*6? sen® 9) =

= ZMR%Q + %m@Q (R2 + a? — Racos 0)
Habiendo calculado la energia cinética, calcularemos la energia potencial (en este caso gravitatoria):
V = Mgyq + mgym = g[MR+m (R — acosf)] =
= g[R(M + m) — macos 0]

Teniendo las expresiones para la energia cinética y para la energia potencial, el lagrangiano de este sistema
seré el siguiente:

3 . 1 .
L=T-V = ZMRQc92+§mHQ (R2+a2—Ra0089) — g[R(M 4+ m) — macos 0]

Para obtener la ecuaciéon del movimiento de este sistema usaremos las ecuaciones de Fuler-Lagrange:

oc_d (ocy
90 dt \ 9o )

oc 1 .,
20 = §m9 Rasenf — gmasen 6
oL 3

~ — “MR%0+mb (R2+a2 —Racos@)
00 2

i ((%) = §MR2{§ +mb (R2 +a® — Racos 9) +mb%Rasend
dt \ 98 2

Asi pues, por las ecuaciones de Fuler-Lagrange:

1 . . . .
[QmGQRa sen  — gma sen 9} — BMRQG + mé (R2 + a% — Racos 9) +mb@?Rasend| =0

1 . 3 .. .
—imOQRa sen — gmasen 6 — §MR29 —mb (R2 +a% — Racos 9) =0

—mbO?Rasen b — 2gmasend = 3M R0 + 2mo (R2 + a% — Racos 9)
Ahora bien, si consideramos (tal como nos dicta el enunciado) oscilaciones pequenas, podremos efectuar ciertas
aproximaciones; la primera de ellas es que si 6 es pequeiio #? ~ 0, ademés de esto, emplearemos las mas que
conocidas aproximaciones (para dngulos pequenos) senf ~ 6 y cosf ~ 1; de este modo, la anterior expresion
sera (para pequenas oscilaciones) equivalente a:

—2gmal = 3M R0 + 2ml(R? + a® — Ra)

Reordenando los términos, observamos la expresion de un oscilador armoénico:

0 [3M R? + 2m(R® + a® — Ra)] + 2gmaf = 0

2
2
d*6 [ gma 90

a2 3R om(RE + a® — Ra)

Por lo tanto, la frecuencia para pequefias oscilaciones de este sistema seré:

Y 2gma
- \/ 3MR2 + 2m(R? + a? — Ra)
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QETF.

Ejercicio 13 (Problema 2.11). Calcula los momentos principales de inercia alrededor del vértice de un cono
macizo uniforme de altura h y radio R. ;jPara qué valor del cociente % son ejes principales cualquier eje que
pase por el vértice?

Solucién. Tomando como ejes Z, § y Z los mostrados en la siguiente imagen (siendo 2 aquel que pase por el
eje de simetria del cono y & e ) dos ejes ortonormales entre si y con Z cualesquiera), tendremos que la matriz
de inercia I serd diagonal, con sus componentes verticales I, Iy, e I.. siendo los momentos principales de
inercia: Estos momentos principales de inercia cumplirdn que I, = I, puesto que por simetrias de rotacion

estos dos ejes pueden ser arbitrarios (siempre que se encuentren en el plano normal a £), por lo visto en teoria,

estos momentos se calculardn como:
_ _ (o2 2
Lo =1y = [[[ oo + v
1%

.- [f /V p(7)(a? + y?)aV

Puesto que el enunciado dicta que el cono es macizo y uniforme, podremos decir que p(7) = p = cte.
Tomando coordenadas cilindricas, tendremos los cambios:

x =rcosf y = rsenf dV = rdfdrdz

En cuanto a los limites de integracion, 8 variara entre 0 y 27, z entre 0 y h mientras que r dependeré de la
altura del cono a la que nos encontremos. Calculemos pues, los momentos de inercia I, e Iyy:

27 rh r(z)
Ly = I, = /// p(y? + 22)dV = p/ / / (r?sen? 0 + 2%)rdfdrdz
14 0=0 J2z=0 Jr=0

Para conocer la funcion r(z) (esto es, el radio del cono en relacion a la altura), solo debemos estudiar el angulo
de apertura del cono (el cual permanecera constante). La tangente de este angulo (llamémoslo «) sera igual

a:
tana:h:cte:r(j)—)r(z):%

27 rh Rz/h
Ipw = Iy = /// p(y? + 22)dV = ,0/ / / (r¥sen? 0 + 2)rdfdrdz =
\% 0=0 J 2=0 Jr=0

Asi pues:
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Rz/h Rz/h
= / / / r3 sen? 0dOdrd + / / / rz2dfdrd| =
0= z=0 Jr= z=0 Jr=
Rz/h Rz/h
/ / 3drdz+27r/ / rz2drdz| =
z=0 Jr= r=
h 4 Rz h 2 Rz
T | | 2
= — d 2 — dz| =
p[ﬂ/z:()(‘lo) o W/z:0<20>2 Z]
1 h R4 4 h R2Z4
= — —dz ——d =
i [ e [ e
LR (25)h R? [ 25h 4 2,3
= o Luﬁ <5’o> iy <5’o>] s { Roh+ Boh }

Puesto que el volumen V' de un cono es igual a V = %WRQh, lo anterior puede ser reescrito en funcion de la
masa M del cono (ya que M = pV):

_sen2 — 20 29 29

3

11
- [4R4h + R2h3] =pV= 5

1 2 _ 1 2

El procedimiento a seguir con I, es practicamente el mismo (empleando mismos limites de integracion
incluso), solo que este momento se calculard como:

Rz/h
ZZ—/// (7)(x* + ¢* dV—p/g / / (r*sen? 0 4 r% cos? 0)rdfdrdz =
z=0Jr=

Rz/h Rz/h
/ / / r3dfdrdz = 27Tp/ / r3drdz =
0=0J2=0Jr= 0Jr=
4 Rz
TR 1 R 4
—277,0/2:0(40>dz 2h4p7r/ dz =

1 R 5h 4
_ 1R w<Z’ >:p7rRh SR = 3 MR

217"\ 5o 10 10 10

El enunciado nos pregunta a continuacion el valor del cociente % para que todo eje que pase por el vértice
sea eje principal de inercia; si todo eje que pase por el eje es eje principal de inercia, eso indica que debe
cumplirse:

3.1 3
M |-R*+h| = —-MR?
[4R+] 1OR~>

h
Ly = Iy = L. — ==3

5
QEF.

Ejercicio 14 (Problema 2.15). Un cono macizo de masa M, radio R y altura h rota con velocidad angular w
en torno a su eje de simetria, siendo su vértice un punto fijo. Si se supone que no hay nutacién y se sabe que
su velocidad de precesion es €, calcula la energia cinética del cono.

Solucién. Sabemos que el tensor de inercia de un cono en torno a su vértice (tomando como ejes de coorde-
nadas sus ejes principales) es el siguiente:

2
L 0 0 L(n+ %) 0 0
I= = 1 R2
I 8 102 10 3M 0 L+ 2) o
3 0 0 LR?
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Segin los datos del enunciado, tendremos que para los dngulos de Euler se cumplira que:
p=10Q =w 6=0

Sabemos por teoria que la expresion de la velocidad angular & en términos de los dngulos de Euler es la
siguiente: . . .
b= —psenbé; + 0éx + (pcosh +1)és = —psenbhé; + (¢ cosb + )és

La energia cinética T" de un sélido rigido en revoluciéon vendra determinada por la expresion:

T = %me

Donde definiremos w; como el término que acompana a €;, es decir:
w1 =—psenld ws =0 ws=(pcosl+ 1))

Por ello: )
3L (1 B eomon it (L) (osens?] -

T—2M [5 <h + 4)(gocos0+¢) +<1OR>(¢sen9) =

3

B 1
2

2 . . 1

M [5 <h2 + }jl) (¢* cos? 0 + ¥* + 2¢1h cos 0) + ER2¢2 sen? 0] =

cos? 6
10

Sustituyendo los valores derivados de los dngulos de Euler:

3 1
_° L p2.2 2
2M [IORQ <sen 0+

Loof.o o 2 . }ﬁ e
>+5h (go cos” 0 + 1 +2wgocos0>+ 10¢ 10+<pcos€

3 1 cos2 0 1 R? Q
T=>-M|-—-R?Q? 29 —h2 (92 cos? 2 L B
5 LOR <sen + 10 +5 (Q cos”“ 0 +w +2chos¢9)+ 10w 1O+Qc089

QETF.
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Capitulo 3

Pequenas oscilaciones y modos normales de
oscilacion

En general, vamos a suponer que tenemos siempre sistemas conservativos con un nimero de grados de
libertad igual al nimero de coordenadas generalizadas. Por lo tanto, vamos a tener siempre un ntimero n de
coordendas generalizadas que denotaremos con (g1, ¢2, - - ., ¢n) y €l tiempo t. Supondremos, ademas, que la posi-
cion de equilibrio de nuestro sistema se alcanza cuando las coordenadas generalizadas se anulan q1,...,q, = 0.

3.1. Coordenadas ortogonales

Definicion 25. Sea un sistema de n grados de libertad. Diremos que unas coordenadas generalizadas {g;};,
son ortogonales si la energia cinética del sistema puede expresarse como:

n 1 Y
T= Z §min‘
i=1

Es decir, si en la expresion de la energia cinética no aparecen términos cruzados.

Lema 1 (Teorema de Gauss-Lagrange). Sea V' un espacio vectorial de dimension n y ¢ una forma cuadrdtica.
Entonces, existe un cambio de base en V' que reduce ¢ a su forma diagonal.

Demostracion. Haremos induccion sobre la dimension del espacio vectorial n. Sea {é;};._; una base arbitraria
n
de V ysea T = E x;é; un vector genérico de V. Ademaés, llamaremos A = (a;;) € C(n) 3 1a matriz hermitica

=1
asociada a la forma cuadratica ¢; de manera que es:

donde con la daga 1 denotamos «transpuesto conjugado».

= n = 1: En este caso es:
¢ (f) = a11T121

que claramente esta expresado en forma diagonal.

= Supongamos que la hipdtesis se cumple para n— 1y veamos que se cumple para n. A su vez, distingamos
ahora dos casos:

128
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1. Existe un indice i € {1,...,n} tal que a; # 0: Podemos suponer sin pérdida de generalidad que
dicho coeficiente es el aq1; si no lo es, reordenamos las variables hasta que lo sea. De esta forma,

tenemos:

Z Z a;jT;xrj = anxl + 1 Z a1 T; + T1 Z aj;rj + Z Z ;T T (3.1.1)

i=1 j=1 1=2 j=2

Ahora definimos:

o, ..., Tp) = —a Zaljx] —}—ZZ(LUJJZJJJ (3.1.2)

7=2 =2 j=2
que es una forma cuadratica de n — 1 variables s, ..., x,. A continuacién, consideramos:
2 2
= E ajjTy| — — E a1y =
an = an |95

n n n
g a1;T; E ayx; | — E 1% E a1
a11 , P

J=1 Jj=2

n n
E E a1;05T;T5 — E E 130T T
all

i=1 j=1 i=2 j=2
Como la matriz A es hermitica, se da @;; = aj; Vi,j = 1,...,n. Por tanto, podemos expresar lo
anterior como:
n
a g g 101 TiT5 — g E i101;T;T 5
L i—2 j—2
1 n n
= — |anen%ir; + g a;10112;71 + E a11a41;T1%5 | =
aii — —
=2 7j=2
n n
= a11%;T; + 21 E a;1T; + T E 1% (313)
i—2 =2
Mediante la ecuacién podemos expresar la ecuaciéon €omo:
2 2
n n n n
=L+ E E Qi L% = E 1| — T E a1jxj| + E E Qi T 5
i=2 j=2 11 j=2 =2 j=2

haciendo uso de la ecuacién podemos escribir lo anterior como:

2
o 1
¢(‘r)_a Za’ljxj +90(x27"'7 )
u =
Hacemos el cambio de variables:
n
Y1 = Zauﬂﬁj, Y2=1T2, ...y Yn=1In
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con lo que obtenemos:
. 1
¢ (@) = —yi + 0 (Y2, Yn)
ai

Por hipoétesis de induccion, existe un cambio de coordenadas que permite expresar ¢ en forma
diagonal. Haciendo uso de ese cambio y de la definicién de y; obtendremos una forma diagonal en
la que expresar ¢.

2. a; =0Vi=1,...,n: Supongamos que existe un a;; con i # j tal que Re (a;;) # 0. Si no fuese asi,
entonces extraemos factor comin 7 y obtenemos una forma cuadratica que ya satisface la condicién
mencionada; a menos que sea A = (0) en cuyo caso ¢ ya seria diagonal. De esta forma, podemos
suponer sin pérdida de generalidad que es Re (a12) # 0; si no fuese asi, reordenamos las variables
hasta que lo sea. Tomaremos el cambio de variables:

Y1 =T1+2x2, Y2=T1—T2, Y3=2T3, ..., Yn=2Tp <

Sr1=Y1+Y2, T2=Y1—Y2, TI=Y3 ...y Tpn=1Yn
De esta forma:

n

¢(@) =YD ayTiw; = an (yi + v2) (1 +y2) + a2 (1 + v2) (11 —va) +
=1 j—1 ~

+a +ya) + ass (U1 —92) (1 — v2) +
21 (y1 — ¥2) (y1 + y2) _25 (y1 —y2) (y1 — y2)

n n n
+Y and; (i +y2) + Y a (g Fy2) g+ Y iy (v —ye) +

+ ZCLQ] yl - y2 Y + Z Zaljyzy]
=3 j=3
= a12 (T1y1 + Yoy1 — Y1Y2 — Yay2) + a21 (T1y1 — Yoy1 + 12 — Yaly2) +

n
+(y1 +y2) Zailyi U1+ 72 Z aijy; + Z Zal]yzyj

1=3 =3 j=3

Como es a2 = a1, obtenemos:

¢ (&) = (a12 + a12) (Y7 — 93) + (a12 — @12) (Yovn — Yry2) +

n n n n
) Y aad; + @ +T2) Y ayyi+ DY iy =
=3

=3 =3 j=3

= 2Re (a12) (y% - y%) + 2Im (Yoy1 — U1y2) +

———r
n

+ (1 +2) D> anTi + T+ 7a) Z a1jy; + Z Zawyzya
=3 =3 j=3

donde el término marcado con * es el coeficiente de y? que es distinto de cero por hipétesis. En
consecuencia, podemos aplicar el punto 1.

Q.ED.
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Proposicion 33. Sea un sistema con n grados de libertad. Siempre existen coordenadas generalizadas orto-
gonales.

Demostracion. La demostracidén se basa en que, en su forma més general, la energia cinética es una forma
cuadrética. Llamemos {¢;};; a un conjunto de coordenadas generalizadas de nuestro sistema. Entonces,
sabemos que existe un matriz A = (a;;) € RG?) tal que:

n n
(D
T=Y > i =dq"Aq
i=1 j=1

donde T indica «transpuesto».
Por el teorema de Gauss-Lagrange (ver lemal|l en la pagina 128)), sabemos que dada una forma cuadratica
¢ : R? — R, existe una base B en R? para la cual la expresion de A es diagonal. Si A es diagonal, entonces

tenemos:
el Bl &1,
T=2 2 0l =)D 0udiydids = Y 5aid;
i=1 j=1 i=1 j=1 i=1
Y, por la definicion [25 en la pagina 128| las coordenadas {g;};_, son ortogonales. Q.E.D.

Ejemplo 18 (Deduccién de existencia de coordenadas ortogonales para n = 2). Supongamos que tenemos

un sistema con n = 2 particulas.
. |
T = -a114} + a12d1d2 +=
N——

-2
B 26122%

*

donde el término * es el llamado término de acople. Ahora, vamos a usar el cambio de coordenadas:
ai2
/
G1=q+—q
ai

@b = q

Estas coordenadas nos van a permitir escribir la energfa cinética sin términos de acople. Despejando, tenemos:

/ a2 . ./ a2 .,
qlqu_TQQ Q1ZQ1—G7QQ
11 N 11
/ . ./
q2 = 42 q2 = gy

Sustituyendo, llegamos a:

1 L a2 )\ g 12 1
T=—an (¢ ——=d) +an(d——2d)dh+ zand3=
2 all 2

2 a2
1 . a2\ . a2 . 1
=-an (¢T+(—) d3 27(13(1& + dhdhara — 71261’§+ Sang'3 =
2 ail 2

1“12 .12 %2 o 1
5 a1y —=q Q_QIQQ1QQ+GIQQ1QQ_7q 2+

|
= sand' i+ 5

—a =
5 22q 2

1 .12 1 a’12 12
= —a + — |agg — —=
5 119 1 B [ 22 a1 q 2

!
=ilgo
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Definicion 26. Sea un sistema de n grados de libertad. Diremos que unas coordenadas generalizadas {g;};-,
son ortonormales si la energia cinética del sistema puede expresarse como:

= 1
T=> 54
i=1

Proposicion 34. Sea un sistema de n grados de libertad. Siempre existen coordenadas ortonormales.

Demostracion. Por la proposicion [33 en la pagina anterior, sabemos que existen coordenadas {¢;};-; tales que
permiten expresar T’ como sigue:
n
1
2
T= E 5 %iidi
=1

donde a;; > 0 Vi =1,...,n, ya que debe ser T' > 0 independientemente del valor de las {¢;},—,. Por tanto,
podemos definir las coordenadas generalizadas:

G :=+auq Yi=1,...,n=

= ¢ = \/a;G; Vi=1,...,n

que permiten expresar la energia cinética como:

n n n
1 1 1 1.
T= ;:1 5%‘61@2 = ;:1 5 V@iidiy/ai¢i = > 3 (Vaag)® = 56?

i=1 i=1
. ., n ,
Por la definiciéon tenemos que las coordenadas {c;};_; son ortonormales entre si. Q.E.D.

Definicién 27. Diremos que una oscilacién es pequena si es razonable aproximar su funcién energia potencial
y su funcién energia cinética asociada a segundo orden mediante un desarrollo de Taylor.

Ejemplo 19 (Péndulo doble). Tenemos un péndulo doble de longitudes L y [ y de masas M y m como se
expone en la siguiente ilustracion:

Dado el sistema, diriase que lo mas sencillo es utilizar coordenadas angulares. Asi, tenemos:
xy = Lsenf, ypy = Lcos6

Tm = Lsenf +lsenp, y, = LcosO+1lcosp

Licencia: Creative Commons 132


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. PEQUENAS OSCILACIONES Y MODOS NORMALES DE OSCILACION
Lain-Calvo-Cano-Guerrero 3.1. COORDENADAS ORTOGONALES

Derivando, llegamos a: . '
Ty =Lcos0O, ypy=—Lsen6o

G = LcosO0 +1cospp, Gm=—Lsenff — lsen @
i, 4+ 13, = L2 cos? 062 + L% sen” 0 0% = L?6?
i 4+ 92 = L?cos’ 0 0% + 12 cos® ¢ ¢* + 2L1 cos  cos p O+
+L%sen? 062 + 1% sen® ¢ ¢? + 2LIsen O sen O =
= L20% + 12p% + 2L10p cos (o — 0)
En consecuencia, la energia cinética queda:
1 N2 1 .
To = 5M (L0) = SML2)?
2 2
1 . .
T = 5m <L202 1297 4 2L10 cos (¢ — 9))

1 o 1 )
T = 5 (M +m) L*6* + iml%bz + mLl0o cos (p — 0)

Notemos que 6, ¢ no son ortogonales, porque hay un término cruzado.

Supondremos que las oscilaciones son pequenas. De esta forma, por la definicion [27 en la pagina anterior
)

podemos hacer una oscilacién a segundo orden de la energia cinética, obteniendo:

_ 2
(M +m) L*6* + %m12¢2 + mLlfg (1 - M) =

T ~
2

N |

1 . 1 . .1
=5 (M +m) L%6? + iml2¢)2 +mLp = mLIfp (¢ — 200 + 6%) =

1 . 1 . 1 . . 1 .
=5 (M+m) L*6? + 5m52¢2 +mLlfp — §le9¢>¢2 +mLIfp0p — §mL19¢92
N—_—— N—_———
orden 2 — orden 4 —

orden 4 orden 4

Como estamos haciendo un desarrollo de Taylor a orden 2, despreciaremos todos los términos de orden 4. Asi,

obtenemos: ) 1
T~ 3 (M +m) L?6? + mLIf¢ + iml2¢2

Vamos a tomar como coordenadas generalizadas q; := L8 y g2 = lp. Notese que en nuestro caso es:
ann=(M+m), aip=m, ax=m

Consideramos el cambio:

a2
G =q+—q=L0+ ly
ai

m
M+m
7 =ly
Y también el cambio: , ats m
=0+ n =lp+ LO=lp+L0=q+q
¢, =1L0

Ambos son igualmente validos, pero la segunda opcién parece més sencilla. Utilizando esta segunda solucion,
obtenemos:

1. . 1 .
T =M1+ 5md'3
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Ahora, podriamos definir unas nuevas coordendas generalizadas para que sean ortonormales:
no.__ ./ /
qr = VMg
"o /
4 = Vg

Asi, obtendriamos:

Q.EF.

Proposicion 35 (Ecuaciones del movimiento para pequenas oscilaciones). Sea un sistema de n grados de li-
bertad sometido a pequerias oscilaciones y sea V' la funcion potencial asociada al sistema. Ademds, sean {¢;};,
coordenadas generalizadas ortogonales para dicho sistema que cumplen @ = 0 en un punto de equilibrio del
sistema y que permiten expresar la energia cinética como:

1 n
1S mad?
=1

siendo m;; = 0 Vi # j. Es decir, la matriz M = (my;) es diagonal.
Entonces se satisface:

my 0 - 0 )
0 : 41 kii - kip q1
MQ~-KQ<& | ' ' = : :
(:] o 0 m(im ijn knl e knn dn

donde Q = (q1,---,qn) = Q = (41, ,4n) = Q = (G1,- -, ) y K = (kij); ;_, viene dada por:

A
Y 0;9q;

(Q:G) Vi,j=1,2,3

Demostracion. Por hipo6tesis, podemos expresar la energia cinética del sistema como:

1 n
1S mad?
=1

Consideremos el lagrangiano del sistema:

1 & 9
E—T—V—2;miiqi—v

Por el teorema [5 en la pagina 35| obtenemos las siguientes ecuaciones del movimiento:

0L A (0LY OV _d OV
an‘ ~dt an a(h T itqi iidi = aﬂ_h'

Vi=1,...,n (3.1.4)

Como el sistema estd sometido a pequenas oscilaciones, por la definicion 27 en la pagina 132, podemos
aproximar la funciéon V' a segundo orden, obteniendo:

V@)=V (Q = 6) +Zzn;g}; <Q ) Zzn: 8%8% ( 6) qiqj +o<|Q|2) cuando Q — 0 <
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SVQ=V(e=0)+Vv(Q=0) @+ Ziaqla%( Q=0)qig; +0(IQI*) cuando @ — 0

Por hipétesis, el punto de equilibrio del sistema viene dado por @ = 0. Por definicién de punto de equilibrio,
sabemos que la fuerza total que actia cuando el sistema se encuentra en esa posiciéon es nula, luego se da

R vi% (Q - 6)

=F (Q = 6) = 0. De esta forma, la ecuacion anterior se simplifica a:

Z Z 8%3% (

11]1

V(Q) =V ( ) 6) Gid; + 0 (yQF) cuando Q — 0

Usando la matriz K = (kij)szl podemos reescribir lo anterior como:

% Z Z kijqiq; + o <\Q|2> cuando @ — 0

i=1 j=1

V=V (Q=0)+
Hallemos las parciales de V' aproximado con respecto a cada una de las coordenadas ¢;:

IV 1~ 0
o~ 2 2 2 g Foa) =

=1 1
1 n n n n 8
= 5 a1 (kllql) Z p) (liQZQJ) + Z da (kiZQiQZ) + Z Z p) (km%%) =
j e 1= 1 = 1] == 1
j#l i#1 i#1lj#I

1 n n
=5 |Zhua + > kg + Y kagi

donde lo anterior es valido VI = 1,...

j=1
j#l

i=1
i 41

,n. Noétese que por la definicién de la matriz K, como el potencial V'

es C@) (en caso contrario, no podriamos hacer su desarrollo de Taylor), es k;; = kj; Vi, j = 1,2, 3. Por tanto,

podemos reescribir lo anterior como:

ov 1 - - 1 -
a2 huqr+ Y kgt a Y kuti| = 5 |2kua +2 > kg | =
j=1 i=1 j=1
i J#1 i 71 J#1 |
n n
=kuq+ Y kg =Y kg
j=1 o
J#l
siendo lo anterior valido VI =1,... ,n.
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Esto nos permite reescribir la ecuacion [3.1.4 en la pagina 134] como:

n
m”ql ~ —Zk‘ijqj' Vi = 1,...,7”L
j=1

La expresiéon anterior es equivalente a la del siguiente producto matricial:
MQ~-KQ
con lo que queda demostrado el enunciado. Q.E.D.

Corolario 22. Sea un sistema de n grados de libertad sometido a pequenas oscilaciones y sea V' la funcion
potencial asociada al sistema. Ademds, sean {¢;};_, coordenadas generalizadas ortonormales para dicho
sistema que cumplen QQ = 0 en un punto de equilibrio del sistema. Entonces se satisface:

Q~-KQ
donde Q = (q1,---,qn) = Q =(q1,---,qn) = Q =(G1,---,qn) y K = (kij)ijzl viene dada por:

-V
Y 04;0q;

(Q:G) Vi, j=1,2,3

Ndtese que este caso la matriz K es diferente de la expuesta en la proposicion |35 en la pagina 157

Demostracion. Como las coordenadas {g;};~; son ortonormales, en particular son ortogonales. Asi, por la
proposicioén [35 en la pagina 134] obtenemos:

MQ~-KQ
Como {g;};"_, son ortonormales, sera M = I,,, con lo que llegamos al enunciado. Q.E.D.

Ejemplo 20 (Ecuaciones del movimiento del péndulo doble).

L — Lcosf
(L — Lcosf) + (I —lcosyp)

Vamos a continuar con el trabajo realizado en el ejemplo [3.1.4 en la pagina 134}
Cogiendo el origen del potencial en el punto de equilibrio, la masa M asciende una altura (L — Lcosf) y
la masa m asciende (L — Lcos®) + (I —lcos ). Asi, tenemos:

Ve = MgL (1 — cosf)
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Vi = mgL (1 — cos ) + mgl (1 — cos )

En consecuencia es:
V=Vy+Vy=(M+m)gL(1—cosf)+ mgl(l—cosyp)

Aproximando a segundo orden, obtenemos que:

vt 1- 4] ems1--5)) -

2

0 2
= (M +m)gL + mgl 2

2

Vamos a partir de las coordenadas utilizadas en el ejemplo 119 en la pagina 132% ¢ = VMLO Vg2 =
vm (L0 + 1p), que son coordenadas generalizadas ortonormales. Despejando, obtenemos:

q1
vML

0
Q1 m @ — /1
Q2:\/m<+590><:>Q2— Mcn:\/ml(p(:)go: M= = v M

VM

De esta forma, llegamos a:

V=

Como V es un polinomio en dos variables de segundo grado, el desarrollo de Taylor de un polinomio de grado
j a orden j coincide con si mismo y las derivadas parciales de segundo orden de un polinomio de segundo
grado con constantes, podemos «leer» el valor de las mencionadas parciales directamente de la expresién de
V. Por consiguiente, tenemos:

1lg | M+m m| o 1g o mg
V==L = 22 =2
QM[ L +z}‘h+2ﬂ2 M1
~—

=k :’WM
ka2 = %2;%/ = %q%
kl?zk?l:aa;l‘;:_ ]\n;%

Por el corolario [22 en la pagina anterior, debe cumplirse:

(C'h) _ (1\9/1 [+ 7] - ﬂ?) <q1>
Go Vit g ip)

Q.EF.
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3.2. Modos normales de oscilacion

Teorema 8. Sea un sistema de n grados de libertad sometido a pequenas oscilaciones y sea V' la funcion
potencial asociada al sistema. Ademds, sean {¢;};—, coordenadas generalizadas ortogonales para dicho sistema
que cumplen Q = (q1,...,qn) = 0 en un punto de equilibrio estable del sistema. Consideremos las matrices
K y M dadas en la proposicion |35 en la pdgina 134 Supondremos que la matriz M es definida positiva
y llamaremos A1,..., A, a los valores propios de M—'K (no necesariamente distintos entre si). Entonces,
existen 6; € R y v; € Vj, (M_IK) (donde con esto tltimo denotamos el espacio propio de M—'K asociado al
autovalor \;) Vi =1,...,n tales que la solucion general del movimiento del sistema puede aproximarse como:

Q(t) = cos(wit+6;)v;
=1

siendo w; = ++/\; y siendo {v;};—, una base de vectores propios de MK.

Demostracion. Como el punto de equilibrio es estable, la funcién potencial V tendra en @ = 0 un minimo
estricto local. En consecuencia, por nuestros conocimientos de analisis, sabemos que el hessiano de V' sera una
matriz definida positiva. Por ende, todos sus autovalores seran positivos. Por otra parte, nétese que segin la
proposicién |35 en la pagina 134 es:

9%V 9%V
ki oo ki o2 " 9q10an
K= ~ = & -~ = [=H
k e k 9%V L 9%V
nl nn Do 9a2

Es decir, K coincide justo con el hessiano de V. Por tanto, los autovalores de K seran todos positivos.
Como estamos en el caso de oscilaciones pequenas, estamos en disposicion de hacer uso de la proposicion [35]
|en la pégina 134| y, en consecuencia, debe cumplirse MQ ~ —K(. Nuestro objetivo es, ahora, resolver la

ecuacion diferencial anterior, que es lineal y de segundo orden. Para ello, primero debemos pasar la M al otro
lado:

MQO~-KQ&Q=-M"1KQ
Notese que lo anterior esta bien definido, dado que al ser M definida positiva por hipétesis, es invertible. En lo
sucesivo llamaremos Y a la matriz M ~'K. Ahora, necesitamos pasar al sistema de primer orden equivalente.
Con tal fin, definimos las variables:
T = (g; Vi:1,...,n
Tn+i = G Vizl,...,nii‘n+i:(ji Vi=1,...,n

De esta forma, el sistema de primer orden equivalente a la ecuaciéon Q ~ —KQ queda:

. 0 |I,
X_<_Y : )X@
N——

=:A

I 0 0 . 0 0 1 0 --- 0 O T

To 0 0 s 0 0 1 0 O T
Tp—1 0 0 s 0 0 0 0 1 0 Tp—1

N Ty _ 0 0 e 0 0 0 0 0 1 Ty
Tp41 —y11 —yi2 - —Yln—1 —y1n |0 0 0 0 T
Tp42 —21 —y22 v —Y2,n—1 —yon |0 0 0 0 Tt
Top—1 “Yn—1,1 ~—Yn-12 " “Yn-1n-1— Yn—1n 0 00 Top—1

Ton —Ynl —Yn2 s —Yn,n—1 —UYnn 00 --- 00 Ton
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Para proseguir, debemos calcular los autovalores de la matriz A:

wl,, I,
Y | —uwl,

—wlj, I,

Y | —ol, =0

|A—w]I|:O<:>’

:0<:>‘

Multiplicamos cada columna n -+ i-ésima por w y se la restamos a la columna i-ésima, haciendo esto Vi =
1,...,n. Dicho de otra forma, mutliplicamos los bloques derechos de la matriz anterior por w y se los restamos
a los izquierdos. Como dicha operaciéon no altera el determinante, obtenemos:

wlh —wl, | I,
Y + w2, ‘ —wll,

\A—w]I|:0<:>‘ =0

- 0 | I
a Y+w2]ln‘—w]1n

A continuacion, expandimos el determinante anterior por la primera fila n veces hasta que la primera fila de
la matriz sea la fila n + 1-ésima. Es decir:

0o | 1,
’ Y + %L, ‘ —wl, 0«
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 “e 0 0 0 0 1 0
o 0 0 e 0 0 0 0 0 1 _0

y11 + w? Y12 e Y1,n—1 Yin —w 0 0 0
Y21 Yoo + w? - Y2,n—1 Yon 0 —w 0 O
Yn—1,1 Yn—1,2 o Yn—1n—1 + w2 Yn—1,n 0 0 B — 0

Yni Yn2 T Yn,n—1 Ynn + w2 0 o ... 0 —w

nxXn nxn
nXn nxn

A continuacion, expandimos el determinante anterior por la primera fila, obteniendo:

0 | L |_
Y + w?l, ‘ —wl, =0e
0 0o .- 0 0 1 . 0 0
0 0 e 0 0 0 1 0
0 o - 0 0 0 0 1
& | yn o’ Y12 o Yin—1 Yin 0 0 0 |[=0

Y21 Yo +w? .- Y2,n—1 Yon —w 0 0
Yn11  Un-12 0 Ynin1+@  Yoim | O 0 —w 0

Ynl Yn2 t Yn,n—1 Ynn + w2 0 - 0 —w

(m—1)xn (n—1)x(n—-1)
nxmn nx(n—1)

De nuevo, expandimos el determinante por la primera fila:

0 | I

Y+, | —ol, =0e
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0 0 0 0 1 0 0
0 0 e 0 0 0 1 0
0 0 i 0 0 0 0 1
Y11 + w? Y12 R Y1,n—1 Yin 0 o 0 | 0
< Y21 Yo2 +w? o e Y2,n—1 Yon 0 0 0 |~

) . . ) . .

yn—l,l yn—172 P PR yn—l,n—l + W2 yn—l,n O . —w 0

Yni Yn2 R Yn,n—1 Ynn + w? 0 s 0 —Ww

n—=2)xn (n—2)x(n—2)
nxn nx(n—2)

Repitiendo este procedimiento n veces, llegamos a:

0 | L

=0& &
Y+, | —wl,
Y11 + w? Y12 e Y1,n—1 Yin
Y21 Yoo +w? - Y2,n—1 Y2n
< : : : : —0< |V +%Il =0
Yn—1,1 Yn—1,2  ° Yn—1p—1T w? Yn—1,n
Ynl Yn2 te Yn,n—1 Ynn + w?

nxn

donde debajo de cada matriz por cajas hemos indicado la dimensién de cada uno de sus bloques.

De esta forma, vemos que los valores propios de la matriz A son las raices cuadradas de los opuestos de
los autovalores de la matriz Y, pues éstos tltimos vienen dados por la ecuacion |Y — M| = 0. Dicho de otra
forma, por cada valor propio A de la matriz Y, obtenemos dos valores propios w = +v/—-Ayw = —v/—X de la
matriz A. Recordemos que anteriormente hemos argumentado que K era definida positiva. Como el producto
de matrices definidas positivas es definida positiva y M ~! era definida positiva (por serlo M), tenemos que
Y también sera definida positiva; por ende, todos los autovalores de Y seran positivos; o sea, sera siempre
w? < 0. En consecuencia, los w seran siempre ntimeros imaginarios puros. De hecho, sabemos que por cada
valor propio A de la matriz Y, w = +iv/ X y w = —iv/\ seran valores propios de A.

Nuestro objetivo ahora es ver que la matriz A es diagonalizable. Para ello, partimos de que sabemos que
K es diagonalizable, ya que es simétrica. De esta forma, Y = M 'K también sera diagonalizable. Por tanto,

sean Ai,..., A, con r < n los autovalores distintos de la matriz Y; entonces el polinomio minimo de Y vendra
dado por:
'
Pmin,Y (Y) = H (Y - Az]In) (321)
i=1

Es decir, aparecera cada autovalor distinto sélo una vez. Ahora, estudiemos:

T

p= H (4= iv/Ailan) (A+ivAl2n) = [T (4% + Ailln) (3.2.2)
=1

=1

Ahora, calculemos cuanto vale A?:

= () ()= () 62
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De esta forma, sustituyendo en la ecuacion [3.2.2 en la pagina anterior] obtenemos:

P I (o] M- () -

_ r . Y_Az]ln‘ 0 _ r i=1
- (1) ( )~ )

<

Y — NI

i=1

T

donde la expresion H [Y — \L,] es justo el polinomio minimo de Y (por la ecuacion [3.2.1 en la pagina
i=1

evaluado en Y, por lo que es nulo. Es decir, tenemos:

P= H (A - i\/Eﬂgn) (A + i\/mgn) = (0)
=1

Por consiguiente, la expresién anterior interpretada como un polinomio en A es el polinomio minimo de A.
Como en el polinomio minimo de A no hay ningan autovalor repetido, todos los factores del polinomio estéan
presentes con multiplicidad uno y, por consiguiente, la matriz A es diagonalizable.

Aplicando nuestros conocimientos de ecuaciones diferenciales, obtenemos que la soluciéon general de la
ecuacion X = AX viene dada por:

2r
X ()= Z e“ity;
j=1

donde v; € V,,, (A), ya que el numero de autovalores distintos de A es el doble que el de Y. Podemos reescribir
lo anterior como:

,
X=Y (ei Aty + e—i\/rﬂwj) (3.2.4)

j=1
donde u; € Vl\/g (A) y w; € Vfi\//\—j (A). Como X (t) € RVt € R y las exponenciales correspondientes a

autovalores distintos son linealmente independientes entre si, cada uno de sus sumandos del sumatorio anterior
debe ser real, es decir, debe darse:

ei\/rjtuj + efi\/)‘ijtwj = ei\/rjtuj + efi\/rjtwj Vi=1,...,2r<
& ei\/rjtuj + e*i\/’\ijtvj = €7i\/)\7jtﬂj + ei\/rjtwj &

PN ei\/)‘?tuj = ei\/rit@j PN {uj = @]
e—i\/thwj _ e—i\//\ﬁ-tﬂj
donde el 1ltimo paso se debe a que las exponenciales son linealmente independientes entre si, siendo valido el

argumento anterior Vj =1,...,r.
Descompondremos u; y w; en su parte real y su parte compleja. En consecuencia, definimos:

wj:uj

aj:=u;+u; Vji=1,...,r

ijZQ(Uj—ﬂJ) Vi=1,...,r
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De esta forma, podemos expresar la soluciéon dada en la ecuacion [3.2.4 en la pagina anterior| como:

X (t) = Z (67;\/21t (aj + ibj) + €7i\/>\7jt (aj — Zb])) =

Jj=1

<

= Z [aj (ei\//\?t + efi\/rjt> + ib; (ei\/rjt - eii\//\ijtﬂ =

= zi: [Qaj cos (ﬁt) — 2bj sen (@t)]

Bien, a continuacion, veamos que aj,b; € ker (A2 + )\j]Ign). Por definiciéon de a; y de b;, ambos toman
valores en ker (A — 14 /)\j]lgn) + ker (A + 74 /)\j]Ign) y es:

ker (A — i\/)\?]lgn> + ker (A + i\/rjl[gn) = ker [(A — i\/)TjI[gn) (A + i\//\?]lgnﬂ =

= ker [A% + \;Ip,

Luego, efectivamente, a;, b; € ker (A2 + )\jﬂgn). Ademas, como era:

s vy (Y] O Ao | 0N (Y =XAL | 0
A+AJH2"_( o v ) \7o [an ) T 0 | Y Al

por lo visto en la ecuacion [3.2.3 en la pagina 140} necesariamente, tanto las primeras n componentes de a; y
bj como sus tultimas n componentes entendidas como vectores de R™ son vectores propios de Y.

Muy bien, sabemos que la solucion de @ = —M 1K (Q vendra dada por las primeras n componentes de la
solucion X (t). Es decir, seré:

T

Q) ~ Z [204]- Cos (\/Et) — 203 sen (\/Etﬂ (3.2.5)

J=1

donde o = (aj1,...,ajn) ¥y Bj = (bj1,...,bjn). Por lo que acabamos de comentar en el parrafo anterior,
sabemos que «j, B € V), (Y'). Ahora mismo, tenemos la solucion expresada como combinacién lineal de senos
y cosenos y queremos expresarla como combinacién lineal de cosenos con desfase. Para ello, consideremos el
polinomio caracteristico de Y: Py (A) = (A — A1) ... (A= \)™" siendo Ay, ..., A\, los autovalores distintos
de Y y mq,...,m, sus respectivas multiplicidades en el polinomio caracteristico. Como Y es diagonalizable
(por lo argumentado anteriormente), sabemos que el espacio propio asociado al autovalor \; tendra dimension
my; es decir, serd dim V), (Y) = m;. En consecuencia, tomando una base para cada uno de los espacios propios
de Y, podemos expresar o; y 3 como:

myj

o = Zyj,kﬁ‘j,k Vi=1,...,r
k=1

mj

6]' = ZijkujJﬁ Vj = 1,...,7"
k=1

donde y; 1, zjx € Ry {pjr},’, forma una base de V), (Y). Sustituyendo en la expresion obtenemos:

Q) ~ 27“: [2 (% yj7k,uj7k> cos (@t) -2 (% Zj,k#j,k) sen (\/)\»]t>] =
j=1 k=1 k=1
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r mj
= Z [Qyj,k cos (@t) — 2zj ) sen (\/)\»]t)} 4.k
=1 k=1
eR

Ahora, podemos aplicar la equivalencia conocida entre la solucion de una oscilacion armoénica expresada como
combinacién lineal de un seno y un coseno y la solucién expresada como un coseno con un desfase. De esta

manera, obtenemos que existen B, ¢;r € RVE=1,... ,m; A Vj=1,...,r tales que:
r My
Q(t)~> > Bjjcos (\/ At + ¢j,k) 145
j=1k=1

-
Como es necesariamente E m; = n, podemos reescribir el doble sumatorio anterior en funcion de un tnico
J=1
indice. De forma que la expresiéon anterior es equivalente a:

Q(t) =~ z": cos (\//\jt + 51-) v;
i=1

donde v; € Vy, (Y) y los A\; no son necesariamente distintos entre si. Ademés, por construccion, los v; forman
una base de vectores propios de Y. Q.E.D.

Corolario 23. Sea un sistema de n grados de libertad sometido a pequenias oscilaciones y sea V' la funcion
potencial asociada al sistema. Ademds, sean {¢;};_, coordenadas generalizadas ortonormales para dicho
sistema que cumplen Q = (q1,...,qn) = 0 en un punto de equilibrio estable del sistema. Consideremos la
matriz K dada en el corolario |22 en la pigina 136| y llamemos A1, ..., \, a los valores propios de K (no
necesariamente distintos entre si). Entonces, existen §; € R y v; € Vy, (K) (donde con esto ltimo denotamos
el espacio propio de K asociado al autovalor \;) Vi = 1,...,n tales que la solucion general del movimiento
del sistema puede aproximarse como:

Q(t) ~ Z cos (wit + 9;) v;
i=1

siendo w; = ++/ i, siendo {v;};—, una base de vectores propios de K.

Demostracion. FEl resultado se obtiene trivialmente al aplicar el teorema [§ en la pagina 138|tomando M =1,
ya que las coordenadas {¢;};_; son ortonormales. Q.E.D.

Definiciéon 28. Cada uno de de los sumandos que aparecen en el sumatorio de la expresion de @) (t) dada en
el teorema [8 en la pagina 138|reciben el nombre de modo.

Observacion 30. Cuando en la expresion de la ecuaciéon dada en el teorema |8 en la pagina 138 todos los
sumandos son nulos menos un modo, entonces las coordenadas ¢1,...,¢q, oscilan con la misma frecuencia,
aunque no necesariamente con las mismas amplitudes.

Como la soluciéon general es una combinacion arbitraria de modos (segin expuesto en el teorema
, estudiar el comportamiento del sistema dado por cada modo resulta tutil para entender el
funcionamiento del sistema en su totalidad.

Proposicion 36 (Ecuacion de amplitudes). Consideramos un modo (el j-ésimo) de los que aparecen en la
expresion de Q (t) en el teorema |8 en la pagina 138

Q; (t) = cos (wt+0) v
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donde v € V2 (K). Consideremos v = (A1,...,Ay), de forma que A; es la amplitud de oscilacion de la
coordenada q;. Entonces se cumple la ecuacion:

w2Ai = Z kijAj
7j=1

Demostracion. Como v es un vector propio de K asociado al valor propio w?, debe ser:

ki - kin Aq Ay n
Kv = w?y < = w? <:>w2A¢:Z/€ijAj
knl e knn An An j=1

Q.E.D.

Ejemplo 21. Tenemos dos particulas iguales de masa m, sin rozamiento, acopladas con tres muelles iguales
entre si con constante k como se muestra en la figura:

Nuestra intenciéon va a ser aplicar el corolario [23 en la pagina anterior| Para ello, primero tenemos que
hallar unas coordenadas ortonormales con las que describir nuestro sistema. Con tal fin, debemos estudiar la
energia cinética:

1 1
T = ~mi} 4+ ~mi3
p M M
Por la definicion 25 en la pagina 128| las coordenadas {z1,z2} ya son ortogonales, por tanto, tinicamente

tenemos que normalizarlas:

q1i=vVmz & 11 = %, Qo = Vmx9 & 9 = % (3.2.6)

De esta forma, podemos expresar la energia cinética como:

1 1
T= §Q%+§qg
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A continuacién, vamos con la energia potencial:
Lo 1 2, 1, 5
V= ikxl + §k (2 —x1)" + 5/%2

En funcion de las coordenadas q1 y g2, el potencial queda:

1k 1 q qQ 1k 4
V=c-—g@+sk|—=-—F—= —qy =
2 1_*_2 <\/m vm 2m 2
1k, 1k s 1k o
=gty (e2—a) + 5

Como V ya es un polinomio de segundo grado, no necesitariamos hallar las parciales para obtener la matriz
K. Sin embargo, para evitarnos el trabajo de expandir los cuadrados y juntar los términos, vamos a derivar
en su lugar. De esta manera:

0*V o |k k k k 2k
k = — = — | — — — —1 = — _— = —
11 aZ " oa [m(h + (@2 —q1) ( )] +
k _ﬂ_ik _|_£( _ )_£+£_2k
22 = 8q§ = Eys le m 92 —q1)| = m
9’V 0 |k k
kio=koyn=—"7—=—|— — =——
12 21 991040 g1 [m (Q2 Q1)]
De esta forma, la matriz K queda:
2k _k
(4 9
Ahora debemos hallar los autovalores de la matriz K:
2k _ )2 _k
[K—w I =0&|m " 5 ™o =0

2 2 2 2 2
o () -2 v (-2 (o2 e
m m m m m m

L
k m
& (—w2> <3k—w2> =0 w?=
m m 3k
m

De donde obtenemos que las frecuencias de oscilaciéon son:

k
w1 = —
m
3k
Wy = —
m

A continuacion, debemos hallar una base de vectores propios. Para el valor propio w? %, tenemos:

0= DO
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k k
—a—-rb=0 a\ ([«
o= () = (3) veee

De esta forma, aplicando el corolario [23 en la pagina 143 obtenemos el primer modo:

1
Q1 (t) = A <1> Ccos (wlt + 51)
donde A;,91 € R. Asi, q1 y g2 oscilan en fase. Haciendo el cambio de vuelta a las coordenadas {x1,z2} segin
dado en la ecuacién [3.2.6 en la pagina 144] obtenemos:

X1 (1) = \% G) cos (wit + 61) = By G) cos (w1t + 61)

=:B1

Este modo recibe el nombre de modo simétrico.

X (t)

T (t)

Actuemos de forma anéloga para obtener el segundo modo, el correspondiente al valor propio w3 = %

(o) () oe (1 ) () e

k kyp—
{+m]ga++mkb_ = (‘Z) - <_65) VB e C

m m
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Aplicando el corolario [23 en Ta pagina 143] obtenemos el segundo modo:

Q2 (1) = Ay (_11> cos (wat + d2)

donde Ag,d2 € R. Asi, q1 y g2 oscilan en desfase. Haciendo el cambio de vuelta a las coordenadas {z1,z2}
segiin dado en la ecuacién [3.2.6 en la pagina 144} obtenemos:

Ao

Xy (t) = 22
ym

=:Bso

(_11> cos (wat + d2) = Bo (_11) cos (wat + d2)

Este modo recibe el nombre de modo antisimétrico.

Asi, tenemos dos soluciones (dos modos normales):

X (t) =B G) cos (w1t + 01)

X () = By (_11) cos (wat + 6)
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Por ende, la solucion general, segin el corolario 23 en la pagina 143] vendra dada por:

Xt)=X1(t)+Xa(t) =

1 1
=B (1> cos (w1t + 1) + Bs <_1> cos (wat + d2)

siendo B, Bs, d1, 02 € R constantes arbitrarias que dependen de las condiciones iniciales.

QEF.

3.3. Osciladores débilmente acoplados

Muchas veces en fisica nos encontraremos con un sistema formado por dos particulas oscilantes que estén
débilmente acopladas. Por ejemplo, dos particulas sometidas a fuerzas de Van der Waals cumplen esta con-
dicién. Para visualizar esto, podemos imaginarnos un sistema con dos masas m y tres muelles de constantes
ki=k=kyy ko <k.

Por la segunda ley de Newton, obtenemos las ecuaciones:
miy = —kwy + k12 (v2 — 1) o JMiL = - (k + k12) 21 + k1222
mag = —k:l'g — k12 (—Il + l‘g) mag = — (k + ki12> xTo + k12:131

. k+Fkia  —ki2
MX =— X
< ( —k12  k+ k12)

m 0

donde M = (0

>. Por analogia con la expresiéon dada por la proposicion |35 en la pagina 134} debe ser:

k+kiz  —kio
K =
( —ki2  k+ k12>

Por el teorema [8 en la pagina 138 para hallar las frecuencias de oscilaciéon del sistema, debemos hallar los
valores propios de la matriz Y = M ~'K:

_ 1 (k+ ki —kio
Y=M'K==—
m ( —klg /ﬁ + klg
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De forma que los valores propios de Y seran los mismos que los de K pero multiplicados por % Asi:

k+kia— A —k12

K-)\|=0&
| | —k12 k4 ki — A

‘_0@
& (k+ko—N2 =kl =05 (k+kig—A—Fkia) (k+kig— A+ ki) =0

k

<:>(k)\)(k7+2k‘12)\):0@)\:{]{:_1_2%12

De esta forma, los valores propios de Y seran:
k
m

k+ 2k
m

Por consiguiente, las frecuencias de oscilacién quedan:

k k+ 2kia
wi=4\[—, wr=4/——
m m

donde wy se corresponde con el modo simétrico y wy se corresponde con el modo antisimétrico (como veremos
ahora). Como k13 < k, tenemos que w; y wy seran muy parecidas. Esto motiva que trabajemos con la
frecuencia central wy:
w1t w2
W = 5
Ahora, expresaremos las frecuencias wy y wsy en funcion de wg. Para ello, sabemos que debe existir € > 0 tal
que:

W1 =wp—€&, Wy=wgy+EeE

A continuacién, para poder hallar los modos, segiin el teorema |8 en la pagina 138 debemos encontrar una
base de vectores propios de Y = M 'K . En nuestro caso, los vectores propios de Y también seran vectores
propios de K y viceversa; luego podemos simplemente hallar los autovectores de K:

a o k12 —k‘lg a o 0 k‘lza — klgb =0
(K — kT) <b> =0e <—k12 k1o ) (b) - <o> < {—k12a+k12b —0%
o ay [«
b) \a
ay —k‘lg —k‘lg ay 0 —]{312a - klgb =0
(K = (k+2k2)T) <b> =0 (—ku —k12> (b) - <o> < {—k12a kb =0

con € C. . <Z> ) (_ﬂﬁ)

De esta forma, aplicando el teorema [8 en la pagina 138 obtenemos que los modos seran:

con o € C.

X1 (t) = Cl <1) COS [(WO — E) t+ 51]
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Xy () = Cy (_11> cos [(wo + €) t + 6]

con C1, (5, 01,02 € R. Por el teorema |8 en la pagina 138| la solucién general queda de la forma:

X (t) = X1 (t) + X2 (t) = Cl <1) COS [(wo — €)t + 51] + CQ (_11

) cos [(wo + &)t + 2] =

=C <1> cos (wot + 91 — et) + Ca (_11> cos (wot + 92 + €t)

Supondremos nulo el desfase inicial §; = 0 = do:

X(t)=0C (1) cos (wot — et) + Co (_11) cos (wot + €t)
Por la férmula del coseno de la suma cos (o + ) = cos acos f — sen asen 3, obtenemos:

X(t)=0C <D [cos (wopt) cos (—et) — sen (wpt) sen (—et)] +

+Cy <_11) [cos (wpt) cos (et) — sen (wot) sen (et)] =

X(t):<

C [cos (wot) cos (et) + sen (wot) sen (t) + cos (wot) cos (et) — sen (wot) sen (£t)] ) _
C [cos (wot) cos (—et) + sen (wot) sen (et) — cos (wot) cos (et) + sen (wpt) sen (et)]

B <2C1 cos (wot) cos (et))

~ \ 203 sen (wot) sen (gt)
Ahora, supondremos C; = Cy y llamaremos A := 2C] = 2C5. De esta forma, podemos expresar la soluciéon
como: (o) cos (&)
B cos (wot) cos (et
X{t) =4 (sen (wot) sen (d))

Notemos que es € < wp. Esto hace que nuestra solucion pueda entenderse como una oscilacion rapida (el
término con wyp) cuya amplitud estd modulada por una oscilacion lenta (los términos con ¢).
Ahora vamos a suponer que en t =0sedaxy = Ay xo =0 con &1 =0y &2 = 0. Para { muy pequenos,
va a ser aproximadamente:
x1 (t) = Acos (wot), w2(t) =0

Luego, en t ~ 5 se dard:
x1(t) =0, x2(t) =~ Asen (wot)

Es decir, ambos osciladores se estan transfiriendo la energia de uno a otro, de manera que uno permanece
estatico mientras el otro oscila. Veamos las graficas de 1 (¢) y x2 (t):
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- N - ”
t

Puede verse una animacion al respecto en el siguiente vided!]

3.4. Propiedades para la base de autovectores

Proposicion 37. Sea un sistema de n grados de libertad sometido a pequenas oscilaciones y sea V' la funcion
potencial asociada al sistema. Ademds, sean {¢;};—, coordenadas generalizadas ortonormales para dicho siste-
ma que cumplen Q = 0 en un punto de equilibrio estable del sistema. Si existe una base de vectores propios de
K (donde consideramos K la matriz dada en el corolario [22 en la pdgina 130) que sea ortonormal, entonces
las coordenadas generalizadas {c¢;};_, dadas por C = PQ (donde P es la matriz del cambio entre la base
candnica y la base que en la que K es diagonal) son ortonormales; es decir, satisfacen:

"1
T:Z§¢3

=1

"https://www.youtube . com/watch?v=LuKNaFmNjAo
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Ademds, para estas coordenadas {c;};_, los modos se corresponden con la oscilacion armdnica de una y sélo
una de las coordenadas c;j. Es decir, el modo j-ésimo viene dado por:

0
0
Cj(t) = | acos (wt +9)
0

donde a,d € R y w? es un valor propio de K.
Por otra parte, en funcion de las coordenadas {c;};_,, la energia potencial adopta la forma:

1 n
=1
2

donde w3, ..., w? son los valores propios de la matriz K, es decir, los cuadrados de las frecuencias de oscilacion.

Por 4ltimo, el lagrangiano del sistema expresado en funcion de las coordenadas {c;};_, es separable en n

lagrangianos independientes.

Demostracion. Como las coordenadas {g¢;},_; son ortonormales, por la definicion 26 en la pagina 132] podemos
expresar la energia cinética como:

S N
T:;qu = 2;%’ :§<Q7Q>
donde con () denotamos producto escalar. Por otra parte, por conocimientos de algebra lineal es:
C=PQ&eQ=P'C=Q=P'C

Sustituyendo en la expresion para 7', tenemos:

1/ e .
T = 5<P 1o p 1c>
Si la base de vectores propios es ortonormal (respecto al producto escalar canoénico), entonces, sabemos que
el cambio de base entre la base de vectores propios de K y la base candnica vendra dado por una matriz
ortogonal, por lo que P~! sera ortogonal. Ahora, recordemos que una matriz ortogonal no es mas que la
representacién coordenada de una isometria y una isometria preserva el producto escalar. Por consiguiente,
Sera:

R B R WA W

Y, por la definicion [26 en la pagina 132] las coordenadas {c¢;};"; son ortonormales.
Consideremos ahora, el modo j-ésimo de oscilaciéon. Por la definicion 28 en Ia pagina 143]y el corolario
len la pagina 143] sabemos que dicho modo puede expresarse como:

Q; (t) = cos (wt+0) v

donde w? es un autovalor de K, § € Ry v € V2 (K). Para pasar a las coordenadas {c;}\_; debemos multiplicar
la expresion anterior por P (ya que P era la matriz del cambio entre la base canénica (la de las {¢;};—,) y la
base en la que K es diagonal):

Cj(t) = PQj(t) = Pcos(wt+ ) v = cos (wt + 9) Pv
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Como estamos considerando el modo j-ésimo, v serd proporcional al vector j-ésimo de la base de vectores
propios de K; llamaremos a € R a dicha constante de proporcionalidad. De esta forma, en su base de auto-
vectores, v debe ser proporcional al vector j-ésimo de la base canénica con constante de proporcionalidad a.
Ahora bien, dado que Pv es justo la expresion de v en base de vectores propios, tenemos:

0
0
Cj(t) = | acos (wt+6)
0

0
Vamos con la energia potencial V. Como estamos en el caso de pequenas oscilaciones, estamos tomando la

funcion energia potencial como un polinomio de Taylor de segundo grado, cuyos términos lineales y constantes
son nulos. Por consiguiente, es:

Por otra parte, recordando la definicién de la matriz K dada en el corolario 22 en la pagina 136] podemos

1 n o n
V= 522]@7‘@%

i=1 j=1

expresar la energfa potencial V' como:

Como K es diagonal en la base en la que estan expresadas las {¢;};-, llegamos a:

1 n
V= 2;kiic?
1=

En base diagonal, necesariamente los k;; son los autovalores de K. Por consiguiente:

1 n
E: 2.2
V:§.1wici
1=

Por tltimo consideremos el lagrangiano del sistema. Por lo argumentado antes, sabemos que seréa:

1o, 1 - 2 2 — (1 2 1 55, -
L=T-V = 56— 5 ic; = 26— gwici —ZL’@
=1 =1 =1 ~ =1
donde cada £; = §!(¢;, ¢;). Es decir, hemos obtenido n lagragianos independientes unos de otros. Q.E.D.

Observacion 31. Un condicién suficiente aunque no necesaria para que se satisfagan las hipotesis de la pro-
posicién [37 en la pagina 151] es los valores propios de K sean todos distintos entre si. Ya que, en ese caso,
al ser la matriz K simétrica, sabemos que autovalores distintos se corresponden con vectores propios que son
ortogonales entre si. Y, si todos los valores propios son distintos entre si, entonces todos los vectores propios
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seran ortogonales entre si y, por consiguiente, la base de vectores propios de K sera ortogonal. Una vez tenemos
una base ortogonal, resulta trivial obtener una base ortonormal.

En particular, si consideramos un sistema con dos grados de libertad y coordenadas generalizadas {x1, x2}
acopladas, por la soluciéon del problema de dos cuerpos, sabemos que las coordenadas x1 + 2 y 1 — T2
transforman el problema en dos problemas de una particula. La proposiciéon [37 en la pagina 151| es una
generalizaciéon del problema de dos cuerpos para el caso de oscilaciones pequenas.

Ejemplo 22. Vamos a dar un ejemplo de la aplicacion de la proposicion [37 en la pagina 151}
Tenemos un sistema con 2 masas iguales m y 3 muelles de constante k. Por la segunda ley de Newton,
obtenemos las ecuaciones del movimiento:

mi, = —2kx1 + kxo
mio = kx1 — 2kxo

Sumando y restando las ecuaciones anteriores (como se hace con el problema de dos cuerpos), llegamos a:
m(xl +CC2) = (k_ Qk)fﬂl + (k—?k):cg = —k(;cl —{—g;z)

m (¥ — #2) = (—2k — k) x1 + (k + 2k) 2o = —3k (v1 — 2)
Definimos las coordenadas:

1

q1 = m (1 + 372)
1

q2 = m (71 — x2)

En funcion de estas, las ecuaciones del movimiento quedan:

. k

g1 = ——q1
m

.. 3k

2 = ——@q2
m

Comparando la expresiéon anterior con la dada en el corolario 22 en la pagina 136| deducimos que:

()G 4

=K

Por lo que la matriz K es diagonal en la base en la que se expresan {qi,q2}. Segun lo explicado en la
proposicién [37 en Ta pagina 151] la diagonal de la matriz K deben ser los cuadrados de las frecuencias de

oscilacién; de donde deducimos:
w1 = \/ wa = \/

También por la proposicion |37 en la pagina 151} deducimos que (gq; (£),0) y (0,g2 (t)) son los modos de
oscilacion expresados en base de autovectores. Es mas, por definicion de q; (t) y g2 (t) se da:

(23) = (6 ) =2 ()03 () e

Por el corolario [23 en la pagina 143, deducimos que <1> y (_11> son vectores propios de K expresados en

base candnica que forman una base de vectores propios de K.
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Por ultimo consideremos el lagrangiano:

1, 1

T= 501 T iqg
1k 13k 1 1
Vi=ggi + 503 = wial + 5wl
De forma que el lagrangiano queda:
1, 1, 1 1 1,. 1,.
L= 5@% + 5(13 - iw%‘ﬁ - 5“%(13 =3 (Q% - W%Q%) + 3 (q% - W%Q%)

Por lo que el langrangiano es separable en dos lagrangianos correspondientes a dos osciladores armoénicos sin
ningun término de acople. De esta forma, hemos comprobado para n = 2, lo que ya conociamos para el caso
general segiin dado por la proposicién [37 en la pagina 151]

3.5. Problemas

Ejercicio 15 (Problema 3.3). Una masa m cuelga de un muelle de constante elastica k y masa despreciable
y, de ella, otro muelle y masa idénticos a los primeros. Calcula el lagrangiano del sistema, utilizando como
coordenadas generalizadas los desplazamientos verticales de las masas, respecto a la posicién que tienen cuando
los muelles estan sin estirar. Obtén la posicion de equilibrio y las frecuencias y los modos normales de las
oscilaciones verticales.

Figura 3.1: Sistema del problema

Solucién. Comencemos definiendo como z; a la posicidén de la particula més cercana al punto de anclaje y
22 a la otra, segin esto, es facil ver que:

1 1
T= §m¢% + §m9'cg

1 1
V = —mgzy — mg(x1 + x2) + ik(a:l —1o)* + ik[azg — (z1 4+ 1p))?
Podemos definir unas nuevas coordenadas que simplificarén las anteriores expresiones:
¢ =vmz; i=12

Asi pues, las expresiones para la energia cinética y potencial tendran las siguientes formas:

1. 1.
T:§q%+§q§

(o) (%)’

k

V =—Vmg(qi + q2) + 3
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Por lo tanto, el lagrangiano del sistema tendra una expresion:

L=T-V

Podemos ahora emplear las ecuaciones de Euler-Lagrange % (%—g) %ﬁ = 0 para encontrar las ecuaciones del

d (OL\ .
i (a) =
- 0 o2 -

— % <2q1 o mx{fg)
(%2:—\/%9+k[2<%\/%‘11—10>\/%}::L@Q_ql_mlo_mﬁg)
g1 = <2q1—q2_Lﬂ>

fj2=k(2—q1 flofmiﬂ)

Podemos nuevamente hacer un cambio de coordenadas que simplifiquen estas expresiones (haciendo que no
tengan términos constantes), este cambio de variables sera pues, una traslacion:

movimiento del sistemas:

G =q+a G =q2+b
con a, b constantes que cumplirin:
mvemm [ ammym(or )
—a+b=—/mly — ™™ b:—\/ﬁ(2zo+3%)

Asi pues, las ecuaciones del movimiento seran:

q = o (291 — q3) Gy = 7 (a5 — 1)

Las posiciones de equilibrio del sistema se daran cuando ¢§ = ¢, = 0, lo cual deja el siguiente sistema de

ecuaciones: 3
0=~ (2% - QQ) / /
m —q; =¢,=0
{ 0=2%(¢h—qf) PR

Ahora bien, puesto que por definicion ¢; = ¢1 + a y ¢4 = g2 + b tendremos que las posiciones de equilibrio

seran:

= = 2mg — — 3mg
o equilibrio — T \/m (lo + T) QQ‘equilz’brio =-b= \/ﬁ <2l0 + T)
Podemos expresar las ecuaciones del movimiento en forma matricial, de la siguiente forma:
O-( D@
) =
g “m om 5

Sabemos por teoria que las frecuencias normales de oscilacion del sistema se obtendran como la soluciéon

de:

2% _ 2 _k
m k m
— W

det(K —w’T) =0 — =0—

2

k
m m
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2k k k\? k2 2%k k k2
WP 2P (-] =02 P - =0
m m m m?2 m m m?2
—>w4—w2%+k—22:0_> W? =355k
m o m

Asi pues, las dos frecuencias normales del sistema seran:

3—\/5£
2 m 2

W2 =

Podemos ahora comenzar a calcular los modos normales de oscilacién. Comenzando con el modo relacionado

con wq:
R AN CAN AN e R SR N CA N (AN
—E k) \a 0 _k Z1V5k | \a 0
2 m

m

1+V5 . 1
— a2 = 5 a]; — |V =a 145

Y el modo relacionado con ws:

Mg kN () (o) (SEE k) 0y (o)
0 x)) 7o) U2 i) () = o
— be = 5 by — Ub:b<_l—\/5>

Asi pues, por lo visto en teoria, tendremos que los movimientos del sistema estaran dados por la expresion

siguiente:
/ t 1 1
<q}gt;> =a <1+\/5) cos (wit+d1) + b < 1_\/g> cos (wat + d2)
ds 5 T2

Deshaciendo cambio de variables de ¢} a ¢;:

a(t)) _ 1 1 lo + 22
<qz(t)>—a<1+2\/5>cos(w1t+51)+b<_1_\/5 cos (wat + d2) +v/m 2l0—|—3kﬂ

2 k

Y volviendo a las coordenadas originales x;:

l’l(t) 1 1 ZO n 2mg
<x2(t)) =a (1+2\/g> cos (w1t +01) + b (_ 15 | cos (wat + d2) + oy + gk%

2

Q.EF.

Ejercicio 16 (Problema 3.16). Dos particulas de masa m estan ensartadas en sendas guias parabolicas
verticales. Si x; es la separacién de cada particula respecto al centro de su parabola, la altura de cada
una es y; = Q—:Wx?, donde k es una constante y g es la aceleraciéon de la gravedad. Un muelle ideal de
constante k&’ y longitud natural a une ambas particulas. Suponiendo que la distancia vertical entre ambas
particulas se mantiene pequena, y teniendo en cuenta la gravedad, determine: a) la posicion de equilibrio, b)
el lagrangiano cerca de dicha posicion y c) las frecuencias normales; d) discuta cualitativamente qué sucede

cuando inicialmente s6lo se separa una de las particulas de la posicion de equilibrio, cumpliéndose que &’ < k.

Solucién.

Licencia: Creative Commons 157


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 3. PEQUENAS OSCILACIONES Y MODOS NORMALES DE OSCILACION
Lain-Calvo-Cano-Guerrero 3.5. PROBLEMAS

Apartado a:
k
2m 2 (:):% + x%)

Es como si tuviéramos dos muelles con origenes en x = —

k
Vg = mgy: + mgys = mg5 (27 +23) =

yr=

(JIS]
[\GlIS]

2

1
Vim = §k/ [\/(362 +ta—2) + (-’ —a
Podemos suponer (3 4+ a — 21)* < (y2 — y1)?, obteniendo:

1 1 1
Vi &~ ik’[\xgqtafxl! —a]2 = §k/ (2 +a — 1 *a]2 = Qk/ (532*5”1)2

/

k k 1
F=-VV=0&VV=0&dV =0

oV _
dV=0&%%

oz =V
oV
0:%:(k+k’)x1+k’x2kal—i-k’(a:l—i-xg)
1
ov / / /
Ozgz(k}—Fk)fL'g—i—k‘l'l:kl‘g—l—k (l’1—|—l'2)
2

Restando, obtenemos:
O:k(xl—x2)<:>x1 = T2

Sustituyendo en alguna de ellas:
21 =0 21=0=>20=0

Solucién de equilibrio 21 = 0, z9 = 0.

Apartado b:
X1, = k .1:2 = k 1172
1, 27y1_2mg 17y2_2mg 2
1 1
Tzim:z%—l—gmavg
1 / 2 2 /
Vzi(k+k)(x1+x2)+kxlx2
L=T-V=
1 2 1 2 1 / 2 2 /
:§mx1+§mx2—§(k¢+k‘)(561+:1:2)—kx1a:2
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Apartado c: Tenemos que ortonormalizar las coordenadas:

q1 = \/ﬁﬂ?h q2 = \/5562

Q1:0<:>1‘1:O, QQ:0<:>£U2:0

l‘qu :E:CJ2
T ymt T Um
1 1
T— 224 2g2
2Q1+2QQ

1 i, B Q@ lk+W K
V==(k+k) (2 +2 5 = 2 2 X
Podriamos extraer el valor de las parciales directamente de aqui, pues es un polinomio y el desarrollo de
Taylor de un polinomio es el propio polinomio.

9V [0V (k+ K 4 k4 K k+ K
ki = el = 190 Q1+ —q = =
41 10,0 L9401 m m (0,0) (0,0) m
OV [OV (k+ K K k4 K k+ K
koo = a2 =90 ©+—a = =
92 10,0 L9492 m m (0,0) m - 10,0 m
[ 02V ] [81/ <k+l<:’ K > [k’] k'
12 21 94104 | 00) o1 2T Lo ] P
btk & L (k+k K
e=(r ) =5 (0 )
w? = i)\
m

k+k =X K ’_1

m

[+ K =2 = K?
SO0=(k+K-A=K)(k+F -A+FK)=((k-X) (k+2K -)) &
; k2K [ 2k
<:>)\:{k+2k <:>w2:{ m <:>w{ n

k i’ \/E
m
Hallamos los autovectores:

a\ K K'Y\ (a) (0 Ka+kb=0 B
(K = K1) <b>_(0)®<k’ k’) <b>_ (0)‘:’{k’a+k’b—o‘:’“__b

m

(K — (k +2K') 1] (Z) —0) = <k]f, _k};,) <Z> — <8> o {k’f;“jk]fl;b:oo Sa=b
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Apartado d: Como es k' < k, es k + 2k ~ k. Ast:

(a4 ) sen \/%t + (B4 0) cos \/%t
(o — y) sen \/gt + (8 —9)cos \/%t

(a4 ) sen \/gt + (B4 0) cos \/%t
(o — ) sen \/gt + (B — ) cos \/%t

Tenemos las condiciones iniciales zo (0) = 0 y &2 (0) = 0.

q(t) ~

X (t) =~

Bl

O=22(0)=B—-0B=3

De forma que es z2 (t) = 0Vt € R.

QEF.
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Capitulo 4

Oscilaciones mecanicas

4.1. Oscilaciones de particulas en una cuerda

Proposicion 38. Consideremos un sistema de n particulas de masa m situadas sobre una cuerda sin masa y
eldstica como viene descrito en la ilustracion siguiente.

Llamaremos y1, ..., yn a los desplazamientos transversales de cada particula con respecto a su posicion de
equilibrio y denotaremos con l a la distancia longitudinal (es decir, en horizontal) que hay entre cada una de
las particulas. Asimismo, supondremos constante el médulo de la tension de la cuerda, que denotaremos con
F. Ademds, consideraremos que los extremos de la cuerda estdn fijos en la posicion de equilibrio, de forma
que es Yo = Ynt1 = 0. Supondremos, de forma adicional, que las particulas unicamente oscilan en vertical
(transversalmente), o sea, que no hay ningin desplazamiento horizontal (longitudinal). Entonces, la energia

potencial del sistema, siempre que se de yj41 —y; K1 Vj=0,...,n, puede aprorimarse como:
F& 5
Vo > Wi — )
j=0

161
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Ademds, se satisface el siguiente sistema de ecuaciones diferenciales:

—wd 2w3 —wi 0 0
:’jl 0 —wg 2(,4)3 —wg 0 e . 0 Y1
Un 0 e 0 —wl 2w@ —-wi 0 Yn
0 0 —w} 2w} —wi
0 0 —w? 2wl
donde w} = %

Demostracion. Primero, consideremos la energia cinética:

1 . .
T=om (g + 95+ + 1)

Notese que estas coordenadas son ortogonales.
La forma de hallar la energia potencial del sistema es, en este caso, aplicar su definicién:

VB —Va=—-WasB

Es decir, la diferencia de potencial entre los puntos B y A es igual al opuesto al trabajo necesario para ir de A
a B. En nuestro caso, la unica fuerza que hace trabajo es la tension F'. Por ahora, consideremos un segmento
de cuerda ! delimitado por las particulas y;41 e y;. El trabajo realizado por la tension seré:

siendo 4l el alargamiento de la cuerda que une ambas particulas. Notese que el signo menos es debido a que
la tension tiende a reducir la distancia entre la particulas. Esto puede verse mejor con el siguiente dibujo:

Yj+1 — Yy

yi+1

De esta forma, por el teorema de Pitagoras, tenemos:

I+ 5l)2 =1’+ (yj+1 — yj)2 &

<:>l+5l—\/l2+(- —y)? =, |12 (Wi — )
- Yj+1 y]) = 1+ B =
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. 02
<:>l+6l:l\/1+(y]+1l2yj) (4.1.2)

X a2
Como es y;4+1—y;j < [, podemos hacer un desarrollo de Taylor de la expresién anterior cuando w —
0. Es decir, queremos hacer un desarrollo de Taylor a primer orden de la funcion:

1

f(x):\/m:>f/($):27m

De esta forma, por el teorema de Taylor-Young:
1
\/1+a::f(0)+f'(0):1;:1+§:z: cuando z — 0
Aplicando este desarrollo a la expresion obtenemos:

a2 N2
l+(5l%l<1+(y]+1yj)><:>5l%(yj+lyj)

212 21

A continuacion, sustituyendo en la ecuacion [4.1.1 en la pagina anterior] llegamos a:

F
21

Wiig15) = (yjr1 — ;)

Ahora, aplicamos la definicién de energia potencial, obteniendo:

n n
F 2
V=- Z Wiit15) = Z 2 (Yj+1 — Yj)
j=0 Jj=0
Para obtener las ecuaciones del movimiento, aplicamos la segunda ley de Newton, sabiendo que la fuerza
que actta sobre la particula j-ésima es justo:

ov

F=_—"
J ayj

Como el movimiento de las particulas solo puede darse en la direccion vertical, aplicando la segunda ley de
Newton llegamos a:

ov 10V
Mij; = ——— & jjj = ——— 41.3
J ayj J m 8yj ( )
Ahora, determinemos g—;;. Al ser la derivada una aplicacion lineal:
AV ~F 0 5
:E :7 s 4.1.4
ay] g 2 8y] (yl+1 yl) ( )

Dado que es j # 0 A j # n+ 1 (esos indices no representan particulas), cada sumando de la expresion m
tnicamente serd no nulo cuando sea ¢ +1 = j o i = j. De esta forma, obtenemos:

ov_F[d 5.0 ]
dy; 2 [ayj (45 —yj-1)"+ ay; (i1 —us)"| =
F

=5 2(y; —yj—1) + 2 (yj+1 —y;) (—1)] =

F F
=7 [yj —Yj—1 — Yj+1 + Z/j} = 7 (_yj—l + 2y; — yj+1)
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Sustituyendo en la ecuacion [4.1.3 en la pagina anterior], obtenemos:

. F
by = = (=yj-1+ 2y; — Y1)

Dado que es yg = yn+1 = 0, obtenemos las siguientes ecuaciones diferenciales:
F
=0 (2y1—12)

.. F
o = —— (—y1 + 2y2 — y3)
ml

. F
Yn—1= ——— (_yn—Q + 2yp_1 — yn)
ml

.. F
Yn = Tl (=Yn—1+ 2yn)

El sistema de ecuaciones diferenciales anterior, puede ser escrito matricialmente como:

ng —wg 0 0
—wg ng —wg 0 0
i 0 —wi 2wf -w¢ 0 - o 0 U1
Un 0 e 0 —w 2@ —wi 0 Yn
0 0 —wg 2w§ —wg
0 0 —w% ng
donde wg = %, que tiene unidades de frecuencia al cuadrado. Q.E.D.

Observacion 32. Noétese que la proposicion 38 en la pagina 161 nos dice que un cuerda formada por n particulas
es equivalente a un sistema de los estudiados en el teorema [8 en la pagina 138| Es decir, que tendremos que
hallar los valores propios y los vectores propios de la matriz que aparece en la proposiciéon |38 en la pagina 161|
para hallar la solucién. A continuacién, representamos todos los modos posibles para n =1, 3,2, 4.

Il
w

n w=3.41 wy
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n=3 w=2.00 w n=3 w=0.586 w,
M\

n=2 w=23.00 wy n=2 w=1.00 w,
/\/

n=4 w=3.62 wy n=4 w=2.62 wp
W

n=4 w=0.382 w n=4 w=1.38 w
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Pueden verse todos los modos posibles correspondientes a n = 1,...,10 en el siguiente video[ﬂ

4.2. Ecuaciones de Lagrange en una cuerda tensa

Lema 2 (Lema fundamental del calculo de variaciones). Sea 2 un abierto de R™ y sea f : Q@ — R una
funcion continua en Q. Si para toda funcion h: Q — R de clase C™°) con soporte compacto se da:

/Qf<w>h<x>=o

Entonces, f es idénticamente nula: f = 0.

Lema 3 (Primera identidad de Green). Sea Q un abierto de R™ y sean ¢, : Q@ — R dos funciones de clase

C@. Entonces:
| (Fe-90) = [0 (F-a) - [ v

donde n indica el vector normal a 0N y con O) indicamos la frontera de €.

Teorema 9 (Ecuacion de Euler-Lagrange para medios continuos). Sea [to,ts] C R y Q un abierto de R"™ que
contiene el volumen de estudio (para n = 3), el drea de estudio (para n = 2) o la longitud de estudio (para
n =1). Ademds, sea:
Y [to,ﬁﬂ xQ — R
L7  — y(b.D)
una funcion de clase cW y consideremos la densidad lagrangiana £ (y, %, ﬁfy, t, 53') (por unidad de volumen,

longitud o drea, dependiendo del caso) de un sistema fisico, donde con 655?; denotamos el gradiente de y
restringido a las componentes de X. Entonces, la funcion y que hace que la integral:

ty -
F = / L (y, ay,vfy,t,a?> d"Zdt
t Ja ot

sea estacionaria satisface:
oL o9 oc S, oL
) () -
oy Ot o (%) = ox; 9 (%)

Demostracion. Para simplificarnos el estudio, vamos a realizar un cambio de variables zy = ¢, z; = x; Vi =

1,...,n. Asimismo, llamaremos I' := [to,t7] x 2 C R""L. De esta forma, serd z € R""!. Mediante este
cambio, podemos agrupar las dependencias de L respecto de % y ﬁfy = (;—;’1, e %) en un uUnico término
= 0 2] 2] dy O e} . - -
Vy = (%’szﬁ'”’%) = (%,%,...%) y las dependencias respecto a t y & = (x1,...,2,) en Z =
(20,21, -+, 2n) = (t,x1,...,2y). De esta forma, el funcional F' queda:

F:AE(y,ﬁy,Z)

Nuestro objetivo es hallar qué condicién debe cumplir y para que F sea estacionaria. Para ello, supondremos
que y hace que la integral F' sea estacionaria y trabajaremos con la funcién:

9(2) =y (2) +en(2) (4.2.1)

"mttps://youtu.be/TIzr02EeGDk
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donde e € Ry n: ' — R es cualquier funcion arbitraria de clase C(>) que satisface:
n(z)=0 VzZedl (4.2.2)
donde con " denotamos la frontera de I'. Derivando obtenemos:
Vg (2) = Vy(2) +eVn(2) (4.2.3)

En funcién de g, el funcional F' queda:

F= /FE <g,ﬁg,5)
dF

Sabemos que [d—s] = 0, ya que, por nuestras suposiciones € = 0 = g = y hace la integral F' estacionaria.

De esta forma, nuestro objetivo va a ser calcular & d . Suponiendo suficientemente buenas propiedades para L,
por el teorema de Leibniz de derivacién bajo signo integral, llegamos a:

dF oL dg d = dz
i = 4.2.4
de /[8gd€+v Tab dVg—l—VE de} ( )
donde:
- oL oL oL
Ve L=
VQ 8 9 8 ) 9 8
o) o) o ()
dg _(d (99 d (o9 d(og
de 97 \de \ 020 ) 7de \ 021 )7 de \ 0z,
- oL oL oL
V§£—<azo,821,,azn>
ii B dzo dz1 dﬁ
de  \de’' de’ 7 de
De las ecuaciones [£.2.1 en la pagina anterior] y [4.2.3] deducimos:
dg d > -
&= EvI=Vvn

Ademas, como Z = (t,z1,...,2,) no depende de ¢, es % =0. Sustituyendo en la expresion obtenemos:

dF oL
== [a N+ Ve, L vn] /8gn+/(vvg£ )

Por la primera identidad de Green (ver lema [3 en la pagina anterior) tomando ¢ = £ y 1) = 1, obtenemos:

dF [ oL B}
T = 8977+/(9 Vs c/ )

Por la ecuacion[4.2.2] 1 se anula sobre todo punto de 9T, luego dicha integral es nula. De esta forma, obtenemos:

dF oL - - oL - o
@Iwﬂ‘ﬂﬂvv%@/(@ VV%Q”

A continuacion, recordemos que cuando € = 0, g = y y la integral F' es estacionaria. Por tanto, debera ser:

dF /<8£ . > ]
- =0 — —-V.-Ve L =0
[df Lo [ r \ 99 Ve K e=0
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Por la ecuacion [4.2.1 en la pagina 166, sabemos que g (¢ = 0) = y. Asi, obtenemos:

dF oL = =
—| =0 = _V.Ve L)n=0
[dglzo ®L<8y v VVy )77

Por iltimo, como la igualdad anterior debe cumplirse para cualquier forma funcional de 1 y como 7 es
(), podemos aplicar el lema fundamental del calculo de variaciones (ver lema2 en la pagina 166)), obteniendo
que, necesariamente, se da:

oL -
5y~ V Ve, =0

Para dar cima y cabo a esta demostraciéon, inicamente tenemos que deshacer el cambio de variable hecho
anteriormente. Asi tenemos:

oL - - oL o 8 ) oL oL oL
():ay—V'Vﬁyﬁzay—<6zo,821,...,azn>- 6<%>,6<%>,...,8(%) =
oL o 0 ) oL oL oL B
o o) Aoy oty o)
oL 0 oL "0 oL
"o alom) mE )
con lo que llegamos al enunciado. Q.E.D.

Proposicién 39. Sea una cuerda considerada como un medio continuo de densidad lineal de masa p constante.
Sea y (x,t) la funcion que describe el desplazamiento transversal de cada punto x de la cuerda. Si suponemos
que cada uno de los diferenciales de cuerda (que forman la cuerda) tunicamente puede desplazarse en el eje
vertical (transversalmente), entonces y (x,t) satisface la ecuacion de ondas en una dimension:

Oy _F&y
ot2  p Ox?

siendo ¢ = % el cuadrado de la velocidad de propagacion de la onda en el medio.

Demostracion. En el caso discreto, segtin la proposicion |38 en la pagina 161} la energia potencial venia dada
por:

F n
~ 21 Z (Yj+1 — yj)2

J=0

Vv

Consideremos la energia potencial por unidad de longitud, que denotaremos con V, que aporta uno de los
sumandos anteriores: v P
2
V= T ﬁ(yjﬂ—yj)
Vamos a utilizar el cambio de notacion Ay := yj41 —y; y Az =1 (recordamos que [ era la distancia entre
dos particulas sucesivas de la cuerda discreta). Asi, obtenemos:

F(Ay)? _F (2@1)2

F

— 2_7 N
V= 2 (Ax)? (Bo)" =5 (Az)? 2

Si hacemos tender Ay v Ax a cero, obtenemos el limite de un cociente incremental, que es justo una derivada:

V= g <gi>2 (4.2.5)
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De esta forma, hemos obtenido la densidad de energia potencial V. Para hallar la energia potencial total
dinicamente tendriamos que hacer:
V= / Vdx
C

donde con C denotamos el conjunto de puntos de la cuerda. Por otra parte, la densidad de energia cinética

por unidad de longitud queda:
1 [0y 2

T= | Tdzx
c

Mediante las ecuaciones [£.2.5 en la pagina anterior] y [£.2.6] vemos que la densidad lagrangiana del sistema

tiene la expresion:
B 1 [0y 2 F dy 2
L=T=V=3n <6)t> ) <8x>

Por el teorema [9 en la pagina 166 debe ser:

0L O [_9c ) _ 9 (_ 9L _0@_M3<@>+Fa<ay>_0@
oy ot a(%) Ox 3<%) ot \ ot Ox \ Oz

0%y 0%y 0%y Fo%y
ZJ _pZ7 I _ Y
THoE T 02 T a2 T L oa?

que es la ecuaciéon de ondas unidimensional correspondiente a ondas que se propagan con velocidad ¢ =

\/% Q.E.D.

Corolario 24. Sea una cuerda considerada como un medio continuo de densidad lineal de masa p constante.
Sea y (x,t) la funcion que describe el desplazamiento transversal de cada punto x de la cuerda. Supondremos
que cada uno de los diferenciales de cuerda (que forman la cuerda) inicamente puede desplazarse en el eje
vertical (transversalmente). Entonces, la densidad de energia mecdnica por unidad de longitud € =T +V no
se comserva, en general. Es mds, se satisface la relacion:

& _ 9 (9yoy
dt Oz \Ox Ot

de forma que:

siendo F' la tension de la cuerda.
No obstante, la energia mecdnica total E = fc Edx si que se conserva, donde con C' denotamos el conjunto

de los puntos de la cuerda.
1 [0y 21 oy 2
= = — = —F | ==
E=T+V 2“<at> 3 (m)

A continuacion, derivamos con respecto al tiempo, obteniendo:

2
& _ yoy | poy o <8y)

Demostracion. Tenemos:

at Moroer T ozot \ox

Suponiendo que la solucién y es C®@ entonces:

€ ydy oy 0 (y
at Por ot T drox \ ot
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Ahora, dado que por la proposicion 39 en la pagina 168|se da:

%y Fo%y 0%y 0%y

_ 7 — —L s —s = F—=
8z~ pozz Farr T ag2
sustituyendo en la ecuacién que tenfamos llegamos a:

& 0%y Oy dy 0 (oy\ _ Pydy Oy 0 [y
dt_F81:26t+F8x8x<8t>_F[W&f+8x8x<az€)]

Por la regla del producto (pensada en sentido inverso), obtenemos:

a0 (g0
dt ~ ~ ox \ oz ot

Y, la expresiéon anterior es, en general, distinta de cero.
Ahora, consideremos la energia total E:
E = / Edx
C

donde con C denotamos los puntos de la cuerda. Suponiendo suficientemente buenas propiedades para y, por
el teorema de derivacion bajo signo integral, obtenemos:

de  d B 0 (0yoy
dt_dt(/gdx> /dx / m(mm)dx

Ahora, consideraremos x = 0 un extremo de la cuerda y x = [ el otro extremo. Dado que los extremos no se
mueven, debe ser % (x=0)=0= % (x =1). De esta forma, la integral anterior queda:

dE (Y 0 (0yoy dy Oy
dt 0F6x<6 8t> F/ 833<8x8t>d

Por la regla de Barrow, obtenemos:

dE Oy dy
—=F =F(0-0)=
dt [81: at} (0-0)=0
De esta manera, la energia total de la cuerda si que se conserva. Q.E.D.

Proposiciéon 40. La solucion general de la ecuacion de ondas presente en la proposicion|39 en la pagina 168
puede ser expresada como:

y(t,x)=f(x+ct)+g(x—ct)

siendo f,g : R — R dos funciones arbitrarias. Imponiendo que los extremos de la cuerda estén fijos, la
solucion puede simplificarse a:

y(tx) =f(zt+ct)— f(-z—ct)

siendo f : R — R una funcion arbitraria de una variable con periodo 21, siendo 1 la longitud (en horizontal)
de la cuerda.

Demostracion. Tenemos la ecuacion diferencial en derivadas parciales presentada en la proposicion [39 en laj

Q
pag 0O

] 9%y &%y
Vamos a hacer el cambio de variable:

E=x—ct, n=x+ct
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Ahora, debemos ver como queda la ecuacion diferencial con el cambio de variable. Para ello, resulta tutil el

siguiente diagrama:

T
v —y— €_>{t
t Y {x

Usando el diagrama, vemos que deben darse las siguientes igualdades:
oy _oyos , oyon
or 0£0x  Onox
Oy _ 0y o€ Oy on
ot 0£ot  Onot

A continuacion, debemos hallar el valor de todas las derivadas parciales que aparecen:

o oo o
or ot 7 ox ot
De esta forma, las ecuaciones quedan:
O _ 0y Oy
ox  0¢  On
dy_ oy Oy, _ (Dy 0y
ot ot on  \on o€

Derivando otra vez, llegamos a:

Py_Pyos Fyon Ty ok Pyon_ Oy Ty By
0x2  0€20x  OnoEdx  0ondx  On2dx  O&2 onog  on?
>y C( Py o6 Pyon Pyog %y 077)
o2 o2 ot 0ot

acon ot T oF ot o2 ot onoE ot
2 2 2 2 2 2 2
—c 3y(_c)+@0_@<_c)_6yc _ 2 (%Y 9y, Py
00 On? €2 OnoE 02 on? Ono¢
Sustituyendo en la ecuaciéon diferencial [4.2.7 en la pagina anterior] llegamos a:

5‘2y 82y 623/ 82y 82y 823/
2 (Y Y, _2(%Y o )
‘ (852 T o 877(%) ‘ <a§2 om0 T 8n2) <

0? 0?

v o %y _
onog oo
Claramente, la solucién general de la ecuaciéon diferencial anterior es:

y(&mn) =1 +gn)

donde f, g son dos funciones arbitrarias de una variable real. Deshaciendo el cambio, obtenemos que:

< 0=4 0

y(t,x)=f(x—ct)+g(x+ ct)

Ahora, consideraremos x = 0 y = [ los extremos de la cuerda. Entonces, como éstos estan fijos, debe

cumplirse:

y(t,0)=0% f(—ct)+g(ct) =0 g(ct)=—f(—ct) VteR
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Tomando p = ct, obtenemos:
g(pw)=—f(-pn) VweR

Por tanto, como ¢ y f son funciones de una variable, lo anterior debe darse siempre. Asi, podemos expresar
Yy como:

y(tz)=f(z—c)—f(-z—ct)
Por otra parte, evaluando en x = [, obtenemos:
O=yt,)=f(l—-ct)—f(-l—ct)s f(l—ct)=f(-l—ct) =
S fQ@—-c—-1)=f(—ct—1) VteR

Llamando pu = —ct — [, obtenemos:
f@A+p)=f() VYpeR

De esta forma, f es una funcién periédica con periodo 2I. Q.E.D.

Corolario 25 (Propagacion de una perturbacion). Consideremos una cuerda tensa de longitud infinita (es
decir, que sus extremos se encuentran muy lejos de nuestro intervalo de estudio). En t = 0, producimos una
perturbacion en la cuerda que hace que su forma venga dada por una funcion conocida yo (z). Entonces, el
desplazamiento transversal de la cuerda de un punto x de la cuerda para cualquier instante t viene dado por:

1 1
y(t,x) = in (x —ct) + §y0 (x +ct)

Es decir, la perturbacion inicial yg se propaga en ambas direcciones con velocidad ¢ y amplitud % de la inicial.

Demostracion. Consideramos la soluciéon general dada en la proposicion [40 en la pagina 170f

y(t,z)=f(x—ct)+g(x+ct) (4.2.8)
Cuando es t = 0, por hipétesis, se da:
yo(x) =y (0,z) = f(z)+g(x) VreR (4.2.9)

donde la igualdad anterior se satisface, de esta forma, para todo el dominio de f. Examinemos ahora la parcial
con respecto al tiempo. Recordemos que es f es una funciéon de £ = x — ¢t y g una funciéon de n = = + ct. De
esta forma, por la regla de la cadena, obtenemos:

Ay _df dg
Y (t,x)—dg(x ct) ( c)+dn(ﬂc~l—ct)c
Como partimos del reposo, debe ser % (0,2) =0Vz € R. Ast:
dy df dg df dg
= — —_ —C— - —_— —_ R
0 5t (0, z) Cd§ (x)+cdn(x)(:>d§ (x) dn(m) Vr €

Es decir, las derivadas de f y g coinciden. Por tanto, por el teorema fundamental del calculo integral, tenemos:
fw =g +K vVueR (4.2.10)

Combinando las ecuaciones y obtenemos:

Yo (u) — K

5 (4.2.11)

Yo (1) =29 (p) + K & g (1) =
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Por otra parte, combinando las ecuaciones 4.2.8 en la pagina anterior| y [4.2.10 en la pagina anterior]
obtenemos:

yt,z)=g(x—ct) + K+ g(x+ct)

Haciendo uso de la ecuaciéon [4.2.11 en la pagina anterior] llegamos a:

—ct)— K t) — K
:yo(ﬂ3 20) +K_Fyo(l“%—;) _

y(t,z)

1 K 1 K
:iyo(x—ct)—5+K+§yo(x+ct)—5:

1 1
= in (x —ct) + §y0 (x +ct)

Q.E.D.

4.3. Modos normales en una cuerda tensa

Proposicion 41. Suponiendo dependencia armdnica con respecto al tiempo, la solucion general de la ecuacion
de ondas dada para una cuerda con extremos fijos en la proposicion[40 en la pagina 170 puede expresarse como:

y(t,z) = ni:o:l Ay sen (n%x) cos (n%t)

donde ¢ es la velocidad de propagacion en la cuerda, I es la longitud de la cuerda y {An},~ | es una sucesion
de constantes (numeros reales) que dependen de las condiciones iniciales.

Demostracion. Vamos a buscar soluciones de la forma:
y(t,z) = A(x)cos (wt)

donde A : R — R es una funcién de una variable y w es un pardmetro a determinar. Derivando, obtenemos:

% (t,x) = —wA (x)sen (wt)
gig (t,x) = —w? A () cos (wt)
% (t,z) = % () cos (wt)
Py T2 (@) cos ()

Sustituyendo en la ecuacion de ondas (ver proposicion [39 en la pagina 168]), llegamos a:

—w?A (z) cos (wt) = chQ—A (x) cos (wt)
- da?
Suponiendo que cos (wt) no se anula, llegamos a:
d2A w? d2A d2A w?
2 _ 2 _ _

que es la ecuacion diferencial de un oscilador armoénico simple. Llamando:

R= ap=2
C

(4.3.1)
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la solucién general de la ecuaciéon diferencial anterior es:
A(x) = acos (kx) + bsen (kx)

donde a,b € R son constantes que dependen de las condiciones iniciales.
A continuacion, imponiendo las condiciones dadas por los extremos de la cuerda A (0) = A(l) = 0,
obtenemos:
A(x=0)=0<acos(0) +bsen(0) < a=0
A(a::l):0<:>bsen(k‘l):O<li—0>sen(k:l) =0 ki=nr VneZs

@k:n%

Como la cuerda no puede tener longitud nula (n = 0) ni amplitud negativa (n < 0), tnicamente tienen sentido
fisico las soluciones con n > 0. Por otra parte, el parametro b dependera de las condiciones iniciales. A partir
de este momento, llamaremos A, al valor del pardmetro b para un valor de n especifico.

Por la ecuacion 4.3.1 en la pagina anterior] debe ser:

De esta forma, hemos obtenido que:

yn (t,z) = Ay, sen (n%w) cos (n%ct)

es una solucion de la ecuacion de ondas (ver proposicion [39 en la pagina 168)).
Veamos, ahora, que para cada valor de n, las funciones ¥, son linealmente independientes entre si. Para
ello, tenemos que ver que la tnica solucion de la ecuacion:

Yn (6, 2) + ym (t,2) =0 YV (t,2) c R?

es que sea A, = A,, = 0, considerando n # m. Podemos escribir la ecuacién anterior como:

T e T e
A, sen <n7x> cos (nTt) + A, sen (mjx) Ccos (m7t> =0 V(tz)cR?
Sies A, = A,, = 0, entonces la ecuacion se cumple. Si sélo fuese A, = 0, entonces para que la ecuacion
se cumpliera para cualquier (t,2) € R? deberia ser A,, = 0. Analogamente sucede si suponemos A,, = 0.
Por tanto, supongamos que es A,, A, # 0 y veamos que llegamos a contradiccién. De esta forma, podemos
reescribir la ecuacién anterior como:

Ay, sen (n?az) cos (n%t) = —A,,sen (m?w) cos (m%t) VY (t,z) € R? (4.3.2)
Evaluando en t = 0, obtenemos:
Ay, T
Ay, sen (’I’Lwl') = —A,,sen (mE:E) =0 VreR & cte=—= —M =:g(x)
l l A sen (m %x)
Es decir, lo anterior s6lo puede darse si es g— (x) = 0 Vx € R. Calculando dicha derivada, obtenemos:
dg (2) cos (nFx) n7 sen (m7x) — sen (nFx) cos (mFz) m7
— () = —
dz sem2 (m7z)

Si consideramos x = %, entonces tenemos:

dx

dg <2l> _ nfcos (nT2) sen (mT2) — mT sen (nT2) cos (mT2)
dz \n T2
I

sen? (
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=1 =0
—
n7 cos (2m) sen (2r2) — m7 sen (27) cos (272) ny

_ )7Ao

sen? (271%) " sen (2%%

Luego, no es j—g (x) = 0 Vz € R. Por consiguiente, es imposible que se dé la ecuacion |4.3.2 en la pagina anterior

sies Ay, Ay # 0.
De esta forma, efectivamente las soluciones obtenidas y, (¢,2) son linealmente independientes entre si.
Dado que la derivada es lineal, una combinacién lineal de soluciones sigue siendo solucién. Por tanto:

- > s e
y(t,z) = nglyn (t,z) = ngl Ay, sen (njzn) cos (nTt)

serd solucién de la ecuaciéon de ondas dada en la proposicion [39 en la pagina 168 Dicho de otra forma, las
funciones {sen (n%x) cos (n%t) }:;1 forman una base de un espacio vectorial de dimension infinita (el espacio
vectorial de las soluciones). Como no es posible llegar a una dimension superior a infinito, necesariamente la
suma infinita de todas las y,, sera la solucién general. Q.E.D.

Definicion 29. Cada uno de los sumandos que aparecen en la expresion de la proposicion 41 en la pagina 173
recibe el nombre de modo normal.
Ademaés, llamamos frecuencia angular w, del modo normal al factor que multiplica a la t en el coseno:

Denominamos niimero de ondas k,, del modo normal al factor que multiplica a la = en el seno:

T
kn :=n—
"1

Adicionalmente, llamamos longitud de onda )\, del modo normal a:

El modo correspondiente a n = 1 recibe el nombre de modo fundamental y su frecuencia angular

temporal asociada:
e
w1 = —
l

recibe el nombre de frecuencia fundamental.
El resto de modos correspondientes a n > 1 reciben el nombre de arménicos.

Observacion 33. Notese que por la definicion de frecuencia fundamental dada en la definicion [29] todo el
resto de frecuencias son miltiplos de la fundamental. De hecho, la frecuencia n-ésima es n veces la frecuencia
fundamental. Puede verse la forma de la solucién de los modos normales en las siguientes ilustraciones:
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n=3 n=4
n=>5 n==6
n="7 n=28

asf como en este vided?

Corolario 26. La frecuencia fundamental de una cuerda puede expresarse como:

F
W1 =T —

Ml

siendo F' la tension de la cuerda, M su masa y | su longitud.

Demostracion. Combinando la definicion de frecuencia fundamental dada en la definicion [29 en la paginal
con la expresion para la velocidad de propagaciéon dada en la proposiciéon [39 en la pagina 169

obtenemos:
¢ w |F T F T \/? \/?
wl = — = — —_— = — _—= — —_— =T —_—
l L\ p ViVl VIVM Ml

Observacion 34. Fijandonos en la expresiéon dada por el corolario 26| vemos que:

Q.E.D.

= Si aumenta la tension, la frecuencia fundamental aumenta.
= Si la masa aumenta, la frecuencia fundamental disminuye.
= Si aumentamos la longitud, la frecuencia fundamental disminuye.

Esto ultimo es la razén por la que instrumentos de cuerda més grandes como el contrabajo (que tienen sus
cuerdas més largas) suenen méas graves que aquellos que son més pequenos como el violin (que tienen sus
cuerdas méas cortas).

Observacion 35 (Percepcion humana). Nuestro cerebro interpreta el modo fundamental de una vibracion como
el tono, mientras que el resto de armoénicos son interpretados como el timbre. De manera que, en funcién del
reparto de energia entre los armoénicos, nuestro cerebro discierne qué instrumento ha producido el sonido.

“https://www.youtube.com/watch?v=wcswpyIFpJ4
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4.4. Ondas longitudinales

Proposicion 42. Sea un medio continuo tridimensional que puede asemejarse a un cilindro de seccion cons-
tante A despreciable en comparacion con la longitud del cilindro. Si el medio sufre una perturbacion (que
viene dada por una funcion ¢ (t,z)) en la direccion del eje longitudinal del cilindro, entonces ésta se propaga
satisfaciendo la ecuacion de ondas:

0?1 _E 0%

o2 p 922

con velocidad ¢ = \/%; siendo p la densidad volumétrica de masa del medio (que suponemos constante) y

siendo E el modulo de Young del medio, el mdédulo de cizalladura del medio o el mddulo de compresibilidad
del medio, dependiendo de la naturaleza de la perturbacion.

Demostracion. Consideremos un cilindro de seccion A y llamaremos Z al eje perpendicular a su seccion.
Ahora, nos centraremos en un segmento cilindrico de espesor dz (cuando se encuentra en equilibrio) y drea A
que sometemos a una perturbacion.

z | z+dz ‘
N\ /7 N\
[ [
IAI | |
\ ) \ |
\ / \ /

(¢, 2) Y(t, z +dz)

Debido a esta perturbacion, los segmentos cilindricos sufrirdn una traslacion o un alargamiento. Ambos
efectos necesitaran de una fuerza para tener lugar, en concreto, el alargamiento se vera debido a fuerzas de
igual médulo y sentido opuesto que actiien sobre el segmento cilindrico, mientras que la traslacién se debera
a una fuerza neta no nula sobre el centro de masas del segmento cilindrico. En un instante ¢, el extremo
izquierdo de nuestro segmento se encuentra en la posicion z + 1 (¢, z) y el extremo derecho se encuentra en
z+dz+1 (t,z + dz). En dicho instante ¢, por la ley de Young, la fuerza que acttia sobre la cara izquierda del
segmento cilindrico satisface:

1 Al Al
donde A es la secciéon del cilindro, E es el modulo de Young, [ es la longitud «de equilibrio» de nuestro
segmento cilindrico (en nuestro caso es | = dz) y Al es el alargamiento de nuestro segmento cilindrico. En

nuestro caso Al viene dado por la resta de la perturbacion en z 4+ dz y la perturbacion en z a tiempo t:
Al = (t,z+dz) =9 (t,2)

Usando la definicién de derivada parcial, podemos escribir lo anterior como:

Al = Zf (t,2z)dz
Sustituyendo en la ecuacion [1.4.1] obtenemos:
9 (t,2)d
F(tz) = AEaz(d’;)z - AE%Z’ (t, 2) (4.4.2)
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que es la fuerza que actia sobre la «tapa izquierda» de nuestro segmento cilindrico.
Ahora bien, la fuerza neta que actta sobre el centro de masas de nuestro segmento cilindrico sera:

Focta = F (t,z+dz) — F (t,2)

De nuevo, podemos escribir lo anterior a través de la definicién de derivada parcial como:

OF
Fneta = a (t7 Z) dz

Derivando en la ecuacién 4.4.2 en la pagina anterior|, podemos obtener la expresiéon de %—Z (t,2). Asi:

RN .
Fneta = % <AE8Z (t, Z)> dZ = AEW (t, Z) dZ (443)

A continuacion, por la segunda ley de Newton aplicada al centro de masas de nuestro segmento cilindrico,
llegamos a:
0%
Freta = mﬁ (t’ Z)
donde la masa del segmento vendra dada por m = pAdz. Sustituyendo el valor de la masa y lo obtenido en la

ecuacion [£.4.3] llegamos a:
0% 02
AFE— = pAdz——
552 (t,2)dz = pAdz 92 (t,2) &
0% 0% 0%

E 0%y
< E@ (t,2) = P o (t,z) < prl (t,2)

= ;@(t,z)

De esta forma, hemos llegado a una ecuaciéon de ondas, con velocidad de propagacién ¢ = \/% . Q.E.D.

Observacion 36. Noétese que la velocidad de propagacion de las ondas longitudinales obtenida en la proposi-
cion 42 en la péagina anterior| no depende de la seccion del material, ni de su longitud. Unicamente depende
de sus propiedades fisicas. De esta forma, todo el desarrollo hecho para ondas transversales servird también
para ondas longitudinales.

Ejemplo 23. Tenemos una varilla de acero con densidad p = 8000 % y B =2-10" % Haciendo uso de

la proposicién |42 en la pagina anterior|, obtenemos una velocidad de propagacion ¢ = 5 kTm En general, E
es siempre muy grande (del orden del dato de este ejemplo). Esto hace que la velocidad de propagacion de
ondas longitudinales sea mucho mas rapida que la velocidad de propagaciéon de las ondas transversales. Esto
se debe a que la velocidad de propagacién longitudinal esta relacionada con E mientras que la velocidad de
propagaciéon transversal esta relacionada con la tension.

Si la rigidez de un medio aumenta, entonces también aumenta la velocidad de propagaciéon de las ondas
longitudinales.

4.5. Ondas en una columna de gas

Proposicion 43. Sea una superficie tridimensional susceptible de asemejarse a una superficie cilindrica de
altura mucho mayor que su radio. Si su interior estd relleno de un gas de densidad volimica de masa p
constante y con un modulo de compresibilidad k, entonces cualquier perturbacion ¥p (t,z) en la presion del
gas en el interior del «tuboy satisface la ecuacion de ondas:

Pyp 1 Ppp
o2 kp 022

. . 1 . .,
siendo ¢ = \ 7o la velocidad de propagacion de las ondas en el gas.
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Demostracion. Al igual que en la demostracion de la proposicion 42 en Ta pagina 177] vamos a considerar un
segmento cilindrico de seccion A y espesor dz en un instante t. La diferencia es que ahora relacionaremos la
perturbacion con la fuerza a través de la ecuaciéon de compresibilidad de un gas:

¥p(t,2) = _Lav (4.5.1)

kV
que indica la perturbacién en presioén existente en el extremo izquierdo de nuestro segmento cilindrico. En
nuestro caso es V = Adz y AV vendra dado por la resta entre el volumen tras la perturbacion y el volumen
en la posicién de equilibrio V.

|

z ! z+dz |
7N 7S
i \ i \
IAI I
\ / \ |
\ / \ /

—> |

—

Asi:
AV =Alz4+dz+9Y(t,z+dz) — (2 + ¢ (t,2))] — Adz =

=A[dz+9Y(t,z+dz) =Y (t,2)] —Adz = A[Y (t,z + dz) — ¢ (¢, 2)]

Podemos expresar lo anterior en funcién de la derivada parcial de 1 con respecto a z:

oY
AV = A%
o (t,z)dz

Sustituyendo en la ecuacion [£.5.1] llegamos a:

e
_EM _ 1oy (t, z) (4.5.2)

vp(t2) = K Adz K 0z

que, recordemos, es la perturbacién en presién en la «tapay izquierda del segmento cilindrico.

No obstante, para poder aplicar la segunda ley de Newton, debemos deducir cuél es la variacién total en
presion en nuestro segmento cilindrico. Dado que la fuerza debe ir de la zona de mayor presién a la de menor
presion, seréa:

Foeta = AP (t,2) — P (t,z + dz)]

pues asi la fuerza ira en la direccion +z si es P (t,z) > P (t,z + dz) e ird en la direccion —z si es P (t,z) <
P (t,z + dz). Llamando Py a la presion de equilibrio, obtenemos que P (t,z) = Py + ¢p (t, z) para todo z del
cilindro. Asi, tenemos:

Focta = A[Po+vp (t,z) — Py —Yp (t,z+dz)] = A[Yp (t,2) — ¥p (t,z + dz))

De nuevo, podemos expresar lo anterior en funcién de la derivada parcial de ¥p con respecto a z. Asi:

oYp

Fnea:_A
‘ 0z

dz
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Sustituyendo ¥p por la expresion dada en la ecuacion [4.5.2 en la pagina anterior] llegamos a:

Foeta = —A2 (_mzp (t, z)> =A% s

02\ K0z T k022

A continuacion, aplicando la segunda ley de Newton, obtenemos:

824

AD?
L (t,2)dz = Fheta = mﬁ (t, 2)

K 022
donde m es la masa de nuestro segmento cilindrico. Como m = pAdz, sustituyendo, llegamos a:
A 0% 0? 0%

E@ (t, Z) dZ = pAdZﬁ (t,Z) = ﬁ (t,Z) =

1 0%

wp 022 (t,z)

con lo que llegamos a una ecuacién de ondas para la perturbacién de los desplazamientos, pero no para la
perturbacion en la presion. La velocidad de propagacion de estas ondas es justo ¢ = 4/ %p. Derivando a ambos

lados en la ecuacién anterior con respecto a z, llegamos a:

O (N _ 10 (0%

0z \0t2 )  kpdz \ 022
Suponiendo que las funciones empleadas son al menos C'®), por el teorema de Schwarz, podemos intercambiar
el orden de derivaciéon. Asi:

O (op\ _ 19 (09

o2\ 0z )  kpoz2 \ 0z

Multiplicando a ambos lados por —%, obtenemos:
AN AN S AR AN AR
k) ot2\0z) kp\ k) 0z2\0z

o (1ovN 1 9 ([ 10Y
ot? k0z)  KkpOz? Kk 0z
Ahora, por la ecuacion [4.5.2 en la pagina anterior] tenemos:

Pyp 1 PyYp
o2 kp 022

Es decir, las perturbaciones en presién también se propagan como una onda y su velocidad de propagacién es
la misma que la de las perturbaciones en la posicién de las «tapas» de los segmentos cilindricos. Q.E.D.

4.5.1. Velocidad del sonido

En la proposicion 43 en la pagina 178, vemos que la velocidad de propagaciéon depende del médulo de
compresibilidad del gas. Existen dos tipos de compresiones en un gas: a temperatura constante (isotermo)
o sin intercambio de calor con el exterior (adiabético). Para que el proceso fuese isotermo, tendria que ser
muy lento y, claramente, esto no es el caso con las ondas de sonido, por ejemplo. Las ondas sonoras cuadran
mucho mas con un proceso adiabatico, ya que los cambios en presion son tan rapidos que no hay cambio en
la temperatura media del aire. En un gas, la compresibilidad adiabatica viene dada por la expresion:

1
~=~P
K
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siendo el coeficiente de dilatacién adiabética del gas. De esta forma, aplicando la ley de los gases ideales,
obtenemos que la velocidad de propagacion de una onda longitudinal en un gas debe satisfacer:

9 1:E:'ynRT

Kkp P pV
donde n es el nimero de moles del gas, T es su temperatura, V es su volumen, p es su densidad y R es la
constante universal de los gases ideales. Tomando n = 7; donde M es la masa molar, y p = 77, llegamos a:

2 YRT
M
Por ejemplo, para el aire a temperatura ambiente, se tiene:
J K
T=300K,~=14R=83 — M=0029 —2
mol - K mol

con lo que obtenemos una velocidad de propagacion de:
¢~ 347 m
S
Recordemos que el rango de frecuencias audible para el ser humano es 20 Hz-20 KHz. Usando la formula
¢ = A\v, obtenemos que el rango de longitudes de onda que somos capaces de oir es 17,5 mm-17 m.
4.5.2. Ondas estacionarias en columnas de gas

Proposicion 44. Sea un tubo de radio despreciable en comparacion con su longitud. Supondremos que todas
las soluciones presentan dependencia armdnica con respecto al tiempo. Ademds:

= 51 el tubo estd cerrado por ambos extremos, la solucion general de la ecuacion de ondas presente en la
proposicion [43 en la pagina 178 puede expresarse como la suma de infinitos modos normales:

vp (t,z) = nio:l Ay, cos (n%z) cos (n%ct)

siendo 1 la longitud del tubo, ¢ la velocidad de propagacion y {A,},~, una serie de constantes que
dependen de las condiciones iniciales. Al igual que en el caso de la cuerda tensa, la frecuencia fundamental
viene dada por:

e
l
y el resto de frecuencias son miltiplos de la fundamental:

w1 =

Wy = NW1

= 51 el tubo estd abierto por ambos lados, la solucion general de la ecuacion de ondas presente en la
proposicion|43 en la pagina 178 coincide con la de una cuerda tensa (ver proposicion|41 en la pagina 175).
Es decir, la solucion general es la suma de infinitos modos normales:

Yp(t,z) = nizo:l Ay, sen (n%z) cos (n?t)

siendo 1 la longitud del tubo, ¢ la velocidad de propagacion y {A,}.—, una serie de constantes que
dependen de las condiciones iniciales. Al igual que en el caso de la cuerda tensa, la frecuencia fundamental
viene dada por:

e
W], = —/

l

y el resto de frecuencias son miltiplos de la fundamental:

Wy, = Nw1
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» Si el tubo estd cerrado por un extremo (supondremos sin pérdida de generalidad que es en z = 0) y
abierto por otro (supondremos sin pérdida de generalidad que es en z = 1), entonces la solucion general
de la ecuacion de ondas presente en la proposicion |43 en la pagina 178 puede expresarse como la suma
de infinitos modos normales:

vp(t,z) = iA” cos <% (2n —1) z) cos (g—lc (2n —1) t)
n=1

Ademds, en este caso la frecuencia fundamental viene dada por:

e

W1:?l

y el resto de frecuencias vienen relacionadas con la fundamental de la siguiente forma:

wp=(2n —1)w;

En todos los casos anteriores la perturbacion en la presion p (t,x) estd desfasada % respecto a la perturbacion
en la posicion 1 (t,z) de cada segmento cilindrico. En otras palabras, donde la perturbacion en presion es
mdzima alli la perturbacion en posicion es minima y viceversa.

Demostracion.

= Si el tubo estd cerrado en ambos extremos, entonces en dichos puntos los segmentos cilindricos no
podran desplazarse; luego la perturbaciéon en la posicién de los segmentos cilindricos en los extremos
del tubo debe ser nula. Formalmente, este problema coincide con el planteado en la cuerda tensa (ver
proposicion [41 en la pagina 173)). De esta forma, la solucion general de 1 (¢, z) sera:

Y (t,z) = ni::l B, sen <n%z> cos <n%t>

Para obtener la expresion de la onda de presion aplicamos la ecuaciéon 4.5.2 en la pagina 179}

Yp (t,z) = 3, (t,z) = i —%Bnng cos (n%z) cos (n%ct) =

=:An

= ni; A, cos (n%z) cos (n%t)

En este caso, se hereda la frecuencia fundamental y su relacion con las otras frecuencias de la solucion

dada en la proposiciéon 41 en la pagina 173|
Notese que entre la onda de perturbacién en presiéon y la onda de perturbacién en posicién hay un
desfase de justo 7, pues cosx estd desfasado § con respecto a senx.

» Siel tubo esté abierto en ambos extremos, entonces la presion del gas en esos puntos seré (por condiciones
de frontera) la que haya fuera del tubo; en otras palabras, la perturbacion en presion en los extremos
del tubo debe ser nula. De esta forma, nos encontramos en una situacion analoga a la cuerda tensa (s6lo
que ahora con la onda de presion, en vez de con la de posiciéon). De esta forma, por la proposicion

la solucién general de la onda de presion vendra dada por:

Yp (t,z) = ni::l A,, sen (n%z) cos (n%t)
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De nuevo, se hereda la frecuencia fundamental y su relaciéon con las otras frecuencias de la soluciéon dada
en la proposicién [41 en la pagina 173]

Para obtener la perturbacion en posicién de los segmentos cilindricos, aplicando la ecuacion
serfa menester integrar:

5] 0
V() =50 (1) @ 0 (2) = [ —x5lds+C =

= i /jﬁ;n oS (n%z) cos (nﬂTct) +C

Dado que los valores de 1 deben situarse en un entorno simétrico del cero (por cémo se ha construido
la funcién v, ver la demostracion de la proposicion [43 en la pagina 178)), obtenemos que la constante de
integraciéon es nula C' = 0.

De esta forma, vemos que justo hay un desfase de § entre ¢ y ¥p.

= Si el tubo esta abierto por un extremo y cerrado por otro, entonces la perturbacion en posicion debe ser
nula en el extremo cerrado, mientras que la perturbaciéon en presiéon debe ser nula en el extremo abierto.
Trabajemos con la perturbacion en posicion 1 (t, z). Vamos a buscar soluciones de la forma:

Y (t,z) = A(z) cos (wt)

donde A : R — R es una funcién de una variable y w es un parametro a determinar. Derivando,

obtenemos: 00 A e (ot
ot 7
a;tg’ (t,z) = —w?A(2) cos (wt)
Zf (t,x) = % (2) cos (wt)
‘;if _ ((1;1 (=) cos (wi)

Sustituyendo en la ecuacion de ondas (ver proposicion [43 en la pagina 178)), llegamos a:

—w?A (z) cos (wt) = chZ—A (z) cos (wt)
S de2?
Suponiendo que cos (wt) no se anula, llegamos a:

d?A w? d?A d?A w?
2 _ 2 _ _
—w’A(z)=c 2 (z)<:>—02A(z)— 2 (2) & 2 (z) + CQA(Z)_O

que es la ecuacion diferencial de un oscilador armoénico simple. Llamando:

N
C

(4.5.3)
la solucién general de la ecuacion diferencial anterior es:
A(z) = acos (kz) + bsen (kz)

donde a,b € R son constantes que dependen de las condiciones iniciales. De esta forma, por ahora,
nuestra solucién tiene la forma:

Y (t,z) = [acos (kz) + bsen (kz)] cos (wt)

Licencia: Creative Commons 183


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 4. OSCILACIONES MECANICAS
Lain-Calvo-Cano-Guerrero 4.5. ONDAS EN UNA COLUMNA DE GAS

Aplicando la ecuacién [4.5.2 en la pagina 179, podemos obtener la onda en presion:

Yp (1,2) =bp (6,2) = — 2 (1,2) =
= —% [—kasen (kz) + bk cos (kz)] cos (wt) =

= % [kasen (kz) — bk cos (kz)] cos (wt)
A continuaciéon imponemos las condiciones mencionadas anteriormente:
P (t,0)=0 VteR < acos(k-0)+bsen(k-0)=0<a=0
Yp(t,1) =0 Vte R < kasen (kl) — bk cos (kl) =0

Como es a = 0 por la primera ecuacién, la segunda ecuacién se reduce a:

bkcos(kl):O@kl:—g—i—mr Vneze

@kl:g@n—l) VnGZ@k:%(Qn—l) Vn ez

Como es cosz = cos (—z), podemos escoger k > 0, de forma que sera n > 0. De esta forma, teniendo en
cuenta la ecuacion [4.5.3 en la pagina anterior] nuestra solucién adquiere la forma:

1
_7b1 7 e

o (2n — 1) cos (ﬂ (2n —1) z> cos <ﬂ (2n — 1)t> =

=:A,

= A, cos (% (2n—1) z) cos (% (2n—1) t)

1/)]3 (t, Z) =

donde sera A,, necesariamente positiva.

Ahora bien, como {cos (% (2n — 1) z) cos (wt)}zozl son linealmente independientes entre si, la solucion
general vendra dada por una combinacién lineal infinita de ellas; o sea, la solucién general de la pertur-
bacién en presién queda:

Yp(t,z) = iAn cos (% (2n —1) z) cos (g—lc (2n —1) t)
n=1

Por ultimo, en este caso, también, la perturbacién en presiéon y la perturbaciéon en posiciéon de los
segmentos cilindricos esta desfasada 7, por el mismo razonamiento hecho anteriormente en los otros dos
apartados.

Q.E.D.

Observacion 37. Los modos fundamentales de las perturbaciones en presion, en el caso de ambos extremos
del tubo cerrados, tienen la siguiente forma:
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Y(x,t) o« sin(kx) Yp(x,t) o cos(kx)

[
XY [XX
XX-#[XXX

Sin embargo, en el caso de un tubo abierto por un extremo y cerrado por el otro, obtenemos:

b(,t)

A
v

/N
\/

7
N
]

A =4L
Ay = A

4.6. Propagaciéon de energia en cuerdas

RxC — R
(t,z) — P(t,x)
con C' denotamos al conjunto de puntos de la cuerda) a menos la (inica) primitiva con constante de integracion
nula de la variacién con respecto al tiempo de la densidad de energia por unidad de longitud dada en el corolario
[24 en Ia péagina 169}

Definicion 30. Llamamos potencia de una onda en un punto a la funcién: (donde

0 0
P(tx) = ~F 3. (t,x) 5/ (t,)

siendo F' la tension de la cuerda.
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Observacion 38. Con la definicion [30 en la pagina anterior] calcular el flujo neto de energia entre dos puntos
1y T2 en un instante ¢ consiste inicamente en hacer la resta de las potencias:

Flujo de energia (t,z1,22) = P (t,x2) — P (t,x1)

Proposicion 45. Consideremos una onda viajera (una perturbacion que puede ser escrita a través de la
ecuacion y (t,z) = f(x Fct), donde f : R — R es una funcion de una variable). La densidad de energia
cinética por unidad de longitud T y la densidad de energia potencial por unidad de longitud V coinciden en
todo punto y todo instante temporal:

V(t,e) =T (t,z) VteRAVzeC
donde con C denotamos el conjunto de puntos de la cuerda. Por tanto, se satisface la relacion:
E(tyx) =2V (t,x) =2T (t,x) VieRAVzx el
donde £ es la densidad de energia mecanica por unidad de longitud. Por wltimo, la potencia viene dada por la

exTPresion:
P(t,z) = £c&

Es decir, el flujo de energia es positivo si la onda se propaga de izquierda a derecha y negativo en caso contrario.

Demostracion. Sabemos que las densidades de energia cinética y potencial vienen dadas por:

1 dy 2
V—zF(ax)

donde p es la densidad de masa por unidad de longitud. Como en nuestro caso es:

y(t,x)=f(zFct)

Considerando que f es una funcién de &, derivando, tenemos:

D) = L wr a) (7) = 7k (5 ) (4.1
9 d
87:yc (t,z) = dg (x F ct) (4.6.2)

Sustituyendo, las densidades de energia potencial y de energia cinética por unidad de longitud quedan:

1 (df?
V—2F<ds)

1 af\° 1 5 /df\’
73 (7eae) — (&)

2:

Por la proposicion |39 en la pagina 168L es ¢

de longitud, tenemos:
1 Ffdf\? 1 [(df\?
7= (ae) =o7 (i) =

%. Sustituyendo en la densidad de energia cinética por unidad
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Luego, efectivamente, se da T = V. Por definicion de densidad de energia mecanica por unidad de longitud,
tenemos:
df

2
5:T+V:2T:2V:F<d§) (4.6.3)

dado que es T = V.
Por dltimo, por la definicion [45 en la pagina anterior] tenemos:

99y
Ox Ot

y sustituyendo por los valores obtenidos en las ecuaciones [4.6.1 en la pagina anterior| y [4.6.2 en la paginal

obtenemos: ,
_ af ary _ df\” _
P () (=) = +er (5) =+

donde el ultimo paso se debe a la ecuacion Q.E.D.

P=

Proposicion 46. Consideremos una onda viajera armdonica:
y(t,z) = Acos (wt — kx)

Tanto la densidad de energia mecdnica € como la potencia P se propagan como una onda (es decir, satisfacen
la misma ecuacion de ondas que y (t,x)). Ademds, la potencia media viene dada por la expresion:

(Py=1c(&) = %,ucA2w2

donde & es la densidad de energia mecdnica por unidad de longitud.

Demostracion. Por la proposicion 45 en la pagina anterior] tenemos:

PSS B2 A A 2
E=2T = 2§,u <8t> =pu <8t [A cos (wt — k:v)]) =

= 1 (—Awsen (wt — kx))? = pA%w? sen? (wt — kz) (4.6.4)

Ahora, comprobemos que £ satisface la ecuacién de ondas dada en la proposicion [39 en la pagina 168 Para
ello, derivamos:

88? = pA%w?2sen (wt — kx) cos (wt — kz) w = pA%w3 sen (2 [wt — kx])
0’E 9 3 2 4
2 nA“w? cos (2 [wt — kz)) 2w = 2uA*w* cos (2 [wt — kx])
o€ 9 9 2 2
e uA“w 2 sen (wt — kx) cos (wt — kx) (—k) = —ukA*w* sen (2 [wt — kx])
x
825 2 92 2 42,2
a2 kA w* cos (2 [wt — kx]) (—2k) = 2uk*A*w?* cos (2 [wt — kx])
Estudiemos el cociente: )
% _ 211 A%w* cos (2 [wt — kx)) _ uﬁ o
% 2uk?A2w? cos (2 [wt — kx]) k2
L e
otz k2 Ox?
-z
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Como, ademas, era c? =

%, obtenemos:
e _roe
ot Ox?
de forma que llegamos a la misma ecuacion de ondas que cumple la funcion y (¢, z) (ver proposicion
pagina 168
A continuacién, multiplicando a ambos lados por la velocidad de propagacién ¢, obtenemos:
0%E FO*  0%(c€) B F 02 (c€)

= C— <:> — —
“oz T °© w02 ot? u o ot?

Por la proposicion 45 en la pagina 186/ es P = ¢€ (pues en nuestro caso la onda se propaga en el sentido
positivo del eje X. Asi:

9’P _Fo’P
o2 pu o2
y, por ende, la potencia también satisface la ecuaciéon de ondas planteada en la proposicion [39 en la pagina 168|

Por ultimo, por la proposicion 45 en la pagina 186| haciendo uso de la ecuacién [4.6.4 en la pagina anterior]
llegamos a:

P = c€ = cpnA%w? sen? (wt — kx)

A continuacion, hagamos el promedio a un periodo de la funcion sen? ¢ siendo & = wt — kx.

(P) = <ucA2w2 sen? (wt — k:ac)> = ucA%w? <sen2 (wt — kx)> =

221 [T 1 2 2
= ucA T sen” £d€ = i,ucA w
0

N[

Q.E.D.
Proposicion 47. Consideremos una onda estacionaria armdnica (un modo normal) en una cuerda tensa:
y (t,z) = Asen (kx) cos (wt)
Se cumple la igualdad:

(£) = quat?

donde con () indicamos el promedio temporal y € representa la densidad de energia mecdnica por unidad de
longitud. La tgualdad sin el promedio temporal no es cierta.

Demostracion. Calculemos las densidades de energia cinética y de energia potencial por unidad de longitud:

T = %M (?;)2 = ;u <§t [Asen (kz) cos (wt)])2 -

= %u (Asen (kz)sen (wt) (—w))* = %MAZwQ sen? (kz)sen? (wt)

V=oF (gi)z = oF (ai [Asen (kz) cos (wt)]) -

= %F (Acos (kz) k cos (wt))? = %FA%Q cos? (kx) cos? (wt)
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Haciendo los promedios temporales (recordando % fOT sen? £d¢ = % = % fOT cos? £d€), se tiene:
1
(T) = ZMA2w2 sen? (kx)

(V) = iFAQk2 cos? (kz)

Por la ecuacion[4.3.1 en la pagina 173[es k? = “;—22 y por la proposicion |39 en la pagina 168|es % =c? o F = puc
Sustituyendo, se tiene:
1 2 1
(V) = ZuczAQW—Q cos® (kx) = Z,uA2w2 cos? (kx)
c

Por ultimo, sumando (7) y (V) obtenemos el promedio temporal de la densidad de energia mecanica por
unidad de longitud (€):

(£) = (T) + (V) = Tud%? sen (ka) + SuA%? cos? (ka) =

1
i A2,,2
Q.E.D.

4.7. Problemas

Ejercicio 17 (Problema 4.7). La cuerda un de un violin tiene una masa por unidad de longitud de 4,0 -
10~*[kg/m], y se afina a una frecuencia de 660[Hz]. Si la longitud de la cuerda es de 0,33[m], calcula la tension
de la cuerda cuando estéa afinada.

Solucién. En un violin, los dos extremos de la cuerda permanecen fijos, por lo tanto, en sus diferentes modos
fundamentales, la longitud de onda de las vibraciones en la cuerda vendra dada por la relacion:

2L
A=— VneN
n
A su vez, conocemos que la relacion entre la velocidad de propagacion de la onda y la frecuencia de la misma:
v=Af

Debido a que la cuerda es un medio continuo y eléstico, la velocidad de propagacién en la cuerda vendra
determinada por la densidad lineal de masa y la tensién a la que se encuentre sometida, siendo esta expresion:

F
v=4/—
I
A partir de estas tres expresiones podemos deducir una relacion entre los datos ofrecidos en el enunciado

v la tension a la que se encuentra sometida la cuerda:

7 n
Sustituyendo en esta expresion los datos ofrecidos por el enunciado, obtendremos que la tension de la cuerda
sera:

F=(4,0-107%) {2(0’33)]2 (660)2 ~ @[N}

n

Suponiendo que la cuerda se encuentra vibrando en su armoénico fundamental, tendremos un valor de n = 1,
haciendo que la tension de la cuerda sea:
F =~ 75,90[N]

QEF.
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Capitulo 5

Relatividad especial

5.1. Introduccién

La Mecénica Clasica se basa en la dindmica de Newton, que vio la luz con el «Philosophise Naturalis
Principia Mathematica» en el afio 1687. Desde su publicacion hasta finales del siglo XIX, la Mecéanica Clasica
fue capaz de explicar con éxito todos los problemas planteados. En todas las situaciones en las que parecia que
la mecénica clasica fallaba, poco después se descubria que habia un factor (que complicaba la teoria) que no
se habia tenido en cuenta y, tras tenerlo en cuenta, la mecanica clasica se cumplia. De esta forma, los fisicos
adquirieron tanta confianza en la mecanica de Newton que todo el resto de teorias de la fisica se desarrollaron
mediante similes mecanicos.

Fruto de estas teorias, surgieron las ecuaciones de Maxwell a finales del siglo XIX, asi como el concepto
de «campoy» de Faraday. Como sabemos, existe una soluciéon ondulatoria de las ecuaciones de Maxwell, cuya

velocidad de propagaciéon en el vacio es:
1

VEOHO

Por otra parte, también en el siglo XIX, Foucault llev6 a cabo una medicién de la velocidad de la luz y cons-
taté que su resultado coincidia bastante bien con la velocidad de propagacién de las ondas electromagnéticas.
De este hecho se dedujo que la luz era una onda electromagnética.

Pero aceptar que la luz era una onda electromagnética planteaba otros problemas para la fisica de la época:
En el siglo XIX se pensaba que toda onda necesitaba un medio para propagarse. Por ello, necesariamente debia
existir una sustancia que impregnase todo el universo conocido para que fuese posible la propagaciéon de la
luz. A esta sustancia se la llamo «étery.

Siguiendo el simil con las ondas mecéanicas, se dedujo que como ¢ era muy alta, el éter deberia tener un
modulo de Young muy alto y una densidad muy baja. Esto, planteaba, a su vez, més complicaciones por lo
siguiente: Si el éter impregnaba todo el universo, por muy baja que fuese su densidad volumétrica de masa,
éste tendria que interaccionar gravitatoriamente con la materia y, a través de dicha interaccién, tendriamos
que haber sido capaces de detectar indirectamente su presencia; pero nunca se habia tenido constancia de este
hecho. Es decir, pareciera que es p = 0.

Ademas de todo lo anterior, la existencia del éter significaba que éste seria un sistema de referencia
absoluto, pues en él la velocidad de la luz seria siempre ¢, mientras que en el resto de sistemas de referencia
dicha velocidad variaria. A finales del siglo XIX y principios del XX se empezaron a disefiar unos experimentos
para poder estudiar la existencia del éter.

En este contexto historico es donde aparecio la Teoria de la Relatividad Especial de Einstein (publicada en
1905), que se centra en sistemas en los que no interviene la gravedad. Diez anos después, Einstein publicaria
la Relatividad General (1915), que ya tendria en cuenta efectos gravitatorios.

C =
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5.1.1. Transformacién de Galileo unidimensional

En fisica clasica, suponemos que el espacio y el tiempo estan separados, que son independientes. Es decir,
suponemos que el tiempo es absoluto y que, simplemente, fluye. Consideremos dos sistemas de referencia, uno
quieto y otro que se desplaza en el eje X respecto al primero con velocidad v. Suponemos que en t = 0, el
origen de ambos sistemas de referencia coincide O = O'.

Y/

Y &« ~ Ut
s

vt

O Ol
X

Podemos ver esta situacion de la siguiente manera. Tenemos un observador estéitico que esta parado en
el andén de una estacién y otro observador que estid en un tren que se mueve con velocidad v en el sentido
positivo del eje X. Supongamos que existe una particula que esta en una posicion z’ segin O' y z segun O.
Trivialmente, a través del dibujo, obtenemos la siguiente transformaciéon de coordenadas entre O y O':

=z —vt

r_
y =y
2=z
t'=t

Ademas, derivando obtenemos la relacién entre velocidades:

¥ =1—-v
g
y =y
=z

A continuacion, imaginemos dos rayos de luz viajando en direcciones opuestas tales que el observador O
ve a ambos moverse con una velocidad c.

AN AN\ v
o

oy
| =c—w 7 =ctv

L VAVAN
UVAVA NS |

S SN0

2\ 4

)

R\
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Sin embargo, el observador O’ veria a los rayos moverse con diferente velocidad: veria un rayo con velocidad
v+ ¢ y otro con velocidad v — ¢. De esta forma, si la transformacion de Galileo es cierta, las leyes de Maxwell
unicamente se cumplen para el observador O, pero no para O’. En otras palabras, el observador O serfa un
sistema de referencia privilegiado (el del éter).

5.1.1.1. Invarianza galileana de las leyes de Newton

Las leyes de Newton estan intimamente unidas a la transformacion de Galileo, porque las leyes de Newton
son invariantes respecto a transformaciones de Galileo. Vamos a ver esto con algo mas de detalle:

Supongamos que tenemos un sistema de referencia S, donde sabemos que se cumple la segunda ley de
Newton. Ahora consideremos un sistema S’ que se mueve a velocidad constante v con respecto a S; queremos
ver si también se satisface F' = ma para el sistema S’. Claramente, S y S’ mediran la misma masa m = m/.
Vamos con la aceleracion:

=/

P =r—Ut=T7

Es decir, la segunda ley de Newton no cambia bajo transformaciones de Galileo; dicho de forma mas técnica, la
segunda ley de Newton es invariante bajo la transformacién de Galileo. Esto implica que ningtin experimento
clasico es capaz de discernir entre un sistema de referencia que se encuentre quieto y un sistema de referencia
en movimiento a velocidad constante.

Por tanto, esto les planteaba a los fisicos de finales del siglo XIX el siguiente problema: echar por tierra la
transformacion de Galileo significaba también echar por tierra las leyes de Newton. Por eso, a muchos fisicos
les parecia més razonable que existiera el éter y que las ecuaciones de Maxwell inicamente fueran validas en
un sistema de referencia, el del éter.

5.1.1.2. Experimento de Michelson-Morley

Este experimento tuvo lugar en 1887 en Estados Unidos. El objetivo de este experimento era comprobar
la existencia del éter. La premisa era que existia el éter y que era un sistema de referencia privilegiado; es
decir, que él esté en reposo absoluto y todo lo deméas se mueve con respecto al éter. La idea para su deteccién
es que en ciertos procesos deberia existir un «viento aparente de éter».
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Por ejemplo, si la Tierra se encuentra justo en el punto de la érbita en el que la trayectoria de la Tierra
es paralela al flujo del éter, al disparar un rayo de luz en direcciones opuestas, deberian observarse diferencias
en la velocidad de propagacién. La situacién es andloga a una barca que intenta cruzar de una orilla a otra
de un rio:

W

> Vagua

2

Para la realizacion de este experimento, se hizo uso del interferometro de Michelson. Este consiste en un
una ldmina semitransparente posicionada a 45° con respecto a la luz procedente de una fuente. Detrés de la
lamina, en la direccién de reflexion y en la direccién de transmision, hay un espejo. Detras del lado restante
del espejo, se encuentra un detector. Es decir, se da el siguiente esquema:
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Espejo

Espejo

/’

ldmina semitransparente

detector

Si el éter no existiese, entonces la trayectoria que seguiria la luz seria justo la descrita en la ilustracion
anterior. Sin embargo, si existe un cierto «viento del éter», cuando los rayos de luz se desplacen en vertical
(segun el dibujo) se veran desplazados lateralmente por el viento del éter y llegaran al detector en otro lugar.

Espejo

”Viento del éter”

o

P . detector
lamina semitransparente

En resumen, como la fuente de luz utilizada no seria un léser sino que lanzaria varios rayos paralelos, si
existiese el éter, esperariamos ver un cierto patréon de interferencias.

sin éter con éter
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Si los dos haces fueran paralelos (no existe el viento del éter) entonces esperamos ver un patréon de
interferencias homogéneo (todo blanco, todo negro, todo gris). Sin embargo, si los haces no son paralelos,
esperamos ver «franjasy» constructivas y destructivas. El nimero de franjas nos dira precisamente el dngulo de
inclinacion. Es més, si ahora giramos el interferometro un dngulo de 90° esperamos observar el mismo patrén
de interferencia, intercambiando franjas constructivas y destructivas.

El resultado del experimento fue que no se apreciaba el viento del éter. Es decir, la luz parece llevar igual
velocidad en las direcciones perpendiculares del interferémetro. Por tanto, da la sensacién de que no existe
el llamado viento del éter. A consecuencia de esto, se propusieron varias teorias que intentaban explicar el
resultado, pero ninguna logré hacerlo de forma satisfactoria. Este experimento, por tanto, parece hacernos ver
que no existe un sistema de referencia absoluto. Ademas, este experimento parece indicar que la velocidad de
la luz ¢ es independiente del movimiento de la fuente y del observador.

Este experimento se sigui6é repitiendo a lo largo de 30 afios con la esperanza de encontrar el éter; todo fue
en vano, claro.

5.2. Postulados de la Relatividad

A la vista de los resultados del experimento de Michelson-Morley, una de las siguientes situaciones debia
ser cierta:

= Las ecuaciones de Maxwell no son validas en todos los sistemas de referencia.

= Las ecuaciones de Maxwell deben tener la misma forma en todos los sistemas inerciales. Entonces, la
transformaciéon de Galileo no seria correcta.

En 1904, Lorentz encuentra matemaéaticamente una transformacion que deja invariante las ecuaciones de Max-
well. También en 1904, Poincaré sugiere que si no hay sistemas de referencia privilegiados, entonces las leyes
fundamentales de la fisica deberian ser las mismas en todo sistema de referencia; es decir, deberian ser inva-
riantes. Esto es lo que se conoce como principio de la Relatividad.

En 1905, Albert Einstein publica dos articulos en los que expone su Teoria de la Relatividad Especial, en
los que llega a los mismos resultados que Lorentz y Poincaré, al parecer, de forma independiente. En estos
articulos Einstein estable los siguientes postulados:

Postulado 4 (Principio de la relatividad). Las leyes de la fisica son invariantes bajo sistemas de referencia
que se mueven con velocidad relativa constante.

Postulado 5 (Principio de constancia de la velocidad de la luz). La velocidad de la luz ¢ en el vacio es la
misma para todos los sistemas de referencia inerciales.

5.3. Dilatacion de tiempos

En relatividad, no vamos a a hablar de puntos en el espacio, sino de sucesos que tienen lugar en una regiéon
en el espacio y en un intervalo de tiempo. Dicho de otra forma, los sucesos son espacio-temporales. A partir
de ahora, siempre vamos a estar trabajando con dos observadores S y S’ con una velocidad relativa entre ellos
.

Definicion 31. Llamaremos coordenadas de un suceso segin visto por un observador O a un vector
(z,y,2,t) € R* que refleja las coordenadas espaciales y temporales correspondientes a un evento.

Definiciéon 32. Diremos que un observador O mide el tiempo propio entre dos sucesos (x1,y1,21,%1),
(x2,Y2, 22, t2) si para dicho observador O es x1 = x2,y1 = y2,21 = 2z2. Denotaremos el tiempo propio como
At ==ty — 1.
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Proposicion 48. El tiempo transcurrido entre dos sucesos medidos por cualquier observador S es siempre
mayor o igual al tiempo medido por el observador que mide el tiempo propio S’. Ademds, el tiempo medido
por ambos observadores estd relacionado por la expresion:

At = #Ato

_ 2
C2

siendo v la velocidad relativa entre los observadores S y S'.

Demostracion. En nuestras circunstancias actuales, no podemos estar seguros ni siquiera de como medimos
el tiempo. Por ello, nos construimos un reloj «imaginario» que se base en la velocidad de la luz ¢, que no
depende del observador por el postulado [5 en la pagina anterior] Dicho instrumento recibe el nombre de «reloj
de luz» y funciona de la siguiente forma.

Reloj de luz

espejo

Y 7

2 tiC7

emisor /detector luz

La fuente de luz produce un pulso de luz (suena un «tic») que se propaga a velocidad ¢ para cualquier
observador inercial. Después, el pulso de luz llega a un espejo, donde se ve reflejado y se vuelve a dirigir hacia
abajo, acabando en un fotodiodo (produciéndose un «tac»). De esta forma, el observador sabe que en ese
tiempo, la luz ha recorrido una distancia 2h, siendo h la distancia entre el emisor/receptor y el espejo.

Colocamos este reloj en un vagon, donde se encuentra el observador S’, que va a medir el tiempo propio,
ya que para él tanto el tic como el tac tienen lugar en la misma posicién espacial.
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g/ hI L:%-At/ = % ,
> X
) OREEERO

X

Como hemos dicho antes, para el observador S’, la distancia recorrida por cada pulso de luz del reloj sera
2h. Por el postulado [5 en la pagina 195] la luz ha recorrido esta distancia con velocidad ¢. En consecuencia,
sera:

2h
Aty = At = = (5.3.1)

A continuacién, veamos como ve la situacion el observador S (el que esta quieto en el andén). Cuando
se emite el pulso de luz, para el observador S, el vagén se encuentra en una determinada posiciéon y cuando
el pulso de luz llega al techo, el vagén se ha desplazado en horizontal una cierta cantidad. Del mismo modo,
cuando el pulso de luz llega al fotoreceptor, el vagon también se ha desplazado cierta distancia. Graficamente,
tenemos:

2 tiC” ”taC”

AN AN v AN /l} AN U
— — —

(o) (o) (o) (o) = OO

Desde el punto de vista del observador .S, la luz recorre los dos catetos de un tridangulo isésceles de vértices
A, B, C. Llamaremos At al tiempo medido por S.

2

2
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A
4

La altura del tridngulo anterior es claramente h por la construcciéon del reloj de luz, mientras que la base
serd la distancia recorrida por el tren en un tiempo 4t. Por otra parte, por el postulado |5 en la pagina 195|, la
hipotenusa sera la distancia recorrida por la luz en Tt En consecuencia, aplicando el teorema de Pitagoras,

llegamos a:

AtN? o, A2 (A, (A
<C2) =h +<v2> S 1 =h +UT<:>

& A (AN = 4h? + 02 (A1) & (& —0?) (At)? =4h? &

4h? 2h 2h 1
o (A1) = o _ _ _
(At)" = 2 _ 2 At = 2_ .2 1./2_.2
& v c v ¢ Ve v

2h 1 2n 1

¢ [e— ¢ [[_»
c? c?

Por la ecuacion [5.3.1 en la pagina anterior] tenemos:

1
At = ——Aty
_ v
c2
. ‘o , . 1 . .
con lo que llegamos al enunciado. Ademaés, el término ~ es creciente en v, y su minimo valor se alcanza
1_ v

para v = 0, que es 1. Por tanto, siempre es At > Aty.
Q.E.D.

Corolario 27. Consideremos el tiempo transcurrido entre dos sucesos. S’ mide el tiempo propio, mientras
que S es otro observador cualquiera que se mueve a velocidad relativa v < ¢ con respecto a S’. Entonces:

At = Aty

De hecho, el error absoluto cometido en esta aprozimacion es siempre menor que 5—-="—2—3
(-:2)"
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- . 2 .
Demostracion. El resultado se obtiene al hacer un desarrollo de Taylor en %7 a orden cero de la expresion

dada en la proposicién 48 en la pagina 196| en torno a Z—z = 0. Asi, tenemos:

Z&to 02

At = | —— = Aty cuando — —0
c

Ademas, obtenemos una acotacion del error cometido dada por el resto de Lagrange. Sabemos que es:

()-|(ig)

para algtn & € <0, Z—j) Hallemos explicitamente la derivada anterior:

dA) 1 Ao 1 Mg

1
iz) 2a-8) 0 Pa-w)

Asi, tenemos:
1 Aty 02

U2
’ 1 2a-g:e
Atg

Como la funcién + es una funcién creciente en &, podemos acotar lo anterior por:
5

con lo que llegamos al enunciado. Q.E.D.

Observacion 39. El corolario [27 en la pagina anterior| nos dice que para velocidades v < 5, el error relativo

cometido al usar la transformacion de Galileo es siempre aproximadamente menor del 0,5 %. Veamoslo; como

. 2 . . 2 . . e )
la funcion 1%32—2 es una funcion creciente en 7z, el error cometido para una velocidad inferior a {G serd

2 2
2
(1-2)
necesariamente inferior al cometido para v = 5. Por tanto, evaluemos tinicamente este caso limite. El error
relativo es:

11 1 11 1
5( _L)gmo:zoo(@)% ~ 500 — 0005
100 100

De hecho, la grafica de la expresion dada en la proposicion [48 en Ta pagina 196] en escala logaritmica es:

Licencia: Creative Commons 199


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 5. RELATIVIDAD ESPECIAL
Lain-Calvo-Cano-Guerrero 5.3. DILATACION DE TIEMPOS

At
Aty

100 +
] — Relatividad Especial
—Mecénica Cléasica

10.0 4

1.00 4 v

C

0.0100 0.100 1.00

Como podemos observar, los efectos relativistas resultan completamente despreciables para velocidades
inferiores a 1G5, pero altamente apreciables para velocidades cercanas a la de la luz.

Ejemplo 24. Tenemos un cohete que se mueve a una velocidad v = 300 . con respecto de la Tierra.
Llamaremos S’ al observador que viaja con el cohete. S’ enciende un flash en intervalos de 1 hora. ;Cual es
el At medido por el observador S en la superficie de la Tierra?

En nuestro caso, el observador S’ mide el tiempo propio, pues para él el cohete no se desplaza entre cada
vez que enciende y apaga sus luces. Conocemos At’ = 1 hora y tenemos:

1)_3-102

_ —6
2_3-108_10

De esta forma, por la proposicion [48 en la pagina 196] el tiempo medido por el observador S en la Tierra es:

At N
V1 —-10-12
Un experimento similar a este ejercicio se ha llevado a cabo varias veces a lo largo del siglo XX. En una de

estas ocasiones, se us6 un reloj atoémico en la Tierra, otro en un aviéon volando hacia el oeste y otro en un
avion volando hacia el este. Los resultados obtenidos fueron los siguientes:

1
At = (1 + 210_12> horas = 1 hora + 1,8 ns

’ \ Esperado \ Experimetal ‘

Este —40 ns —59 ns
Oeste 275 ns 273 ns

donde la diferencia entre los valores correspondientes a «Este» y a «Oeste» se debe a los efectos gravita-
torios de la Relatividad General, que quedan fuera del alcance de este curso.
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5.4. Contraccion de longitudes

Definicién 33. Llamaremos longitud propia de un objeto a la longitud medida por un observador que esté
en reposo junto al objeto. Denominaremos [y a la longitud propia.

Proposicion 49. Sea un objeto de longitud propia ly y llamemos S’ al observador que mide dicha longitud
propia. La longitud medida por cualquier otro observador S, que se desplaza a wvelocidad constante v con
respecto a S’, es siempre menor que la medida por S’ y, ademds, ambas longitudes vienen relacionadas por la
exTPresion:

V2
l: 1_67210

Demostracion. Consideremos la siguiente situacion:

S/

S

4

Vamos a medir la longitud del tren de la figura segin lo ve S (desde el andén) y S” (en el tren). En nuestro
caso, claramente S’ mide la longitud propia del tren, pues para él el tren se encuentra en reposo.

Por otra parte, el observador S ve como pasa el tren por delante de él. Para él, la cabecera y la cola del
tren pasan por delante de él en la misma posicion espacial (justo delante de él), luego el observador S mide
el tiempo propio transcurrido entre dichos dos sucesos (que la cabecera y que la cola pasen delante de él).

De esta forma, el observador S medira un tiempo propio Atg con el que calculara una longitud | = vAty,
mientra que el observador S’ medira un tiempo At’ con el que calculara la longitud propia lo = vAt'. Por la
proposicion 48 en la pagina 196, sabemos que la relaciéon entre Aty y At’ satisface la expresion:

1
At = ———— Aty
v2
T2
Sustituyendo, tenemos que:
1
lp=v Aty
1- 4

Por otra parte, podemos expresar Atg en funcién de la longitud medida por S: Aty = % Asi, sustituyendo,
llegamos a:
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con lo que llegamos al enunciando. Por otra parte, como /1 — Z—; es una funcién decreciente en v, la longitud
medida por S sera siempre menor o igual que la longitud propia [p. Q.E.D.

5.5. Transformacion de Lorentz unidimensional

5.5.1. Transformacién directa

Proposicion 50 (Transformacion de Lorentz). Sean S y S’ dos observadores tales que el observador S’ se
desplaza con una velocidad relativa v en el eje X con respecto de S. Sean (x,y, z,t) las coordenadas de un suceso
seqin O y sean (2',y', 2/, t') las coordenadas del mismo suceso visto por O'. Ambos vectores de coordenadas
vienen relacionados por:

1

¥ = ——(z—0t)

02

V-~ &

v =y

2=z
, 1 VT
——
1-% ¢

Demostracion. Tenemos que dos observadores S y S’ observan un suceso P’. El origen del observador S se
encuentra en O, mientras que el origen del observador S’ se sittia en O’.

/
Y Yoz

vt -

x/

—

N
7

O'P’

>

O O’ ,X

1. Como la velocidad relativa entre ambos observadores tinicamente tiene componente X es v, = v, =0y,
por consiguiente, es y =4’ y z = 2.

2. Consideremos la longitud O’ P’. Para el observador S:
OP =x—ut

Desde S’, tenemos:
O'P =1
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Ahora, notemos que x’ es una longitud propia para S’, ya que 2’ no depende de ninguna velocidad, es
decir, podemos considerar que en este instante S’ se encuentra en reposo con respecto a P’. De esta
forma, podemos aplicar la proposicién [49 en la pagina 201} obteniendo:

v? , 1
r—vt=4\1— <2 &1 = —— (v — vt) (5.5.1)

c? 2
CQ

3. Consideramos que en t = 0 es t = ¢’ = 0. Conforme el tiempo progresa ¢t > 0, S’ se aleja con respecto a
S con velocidad v a lo largo de la direccion positiva del eje X. Supongamos que en t = 0 se emite un
pulso de luz.

El observador S ve un frente de ondas esférico de radio ct. Por el postulado5 en la pagina 195, S’ también
verd un frente de ondas esféricas con radio ct’. Es decir, los puntos del frente de ondas describen, para
ambos observadores, esferas. Para el observador S dicho frente de ondas vendra dado por la ecuacion:

2? +y? + 2% = At
Mientras que el frente de ondas del observador S’ satisface:
NENRYENIE - Hp

Nos fijamos en el punto de corte de ambos frentes de ondas con la parte positiva del eje OX. Dichos
puntos son:
r=ct 2 =ct

Ahora bien, por la ecuacion conocemos una relaciéon entre x y x’. De esta forma, debe ser:

1 1 t
':(x_vt)@t':(”'_”)
/1 v2 _v2 \¢ ¢
c? c?

=x
xt v ct

, 1 1 VT
B 02 | _ct c? - 2 (t B c7>
Vi-a \~~ —a

ct' ==z

=t
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De esta forma, hemos llegado al enunciado:

1
7= 2(m—vt)

-z

Y=y

2 =z

1 VT
,— —_——
t= 1)2< CQ)

T2

Q.ED.

Observacion 40 (Simultaneidad). En fisica clasica, dos sucesos simultaneos para un observador S, también lo
seran para otro observador S’. Sin embargo, en fisica relativista, lo anterior no es cierto. Consideramos dos
sucesos con coordenadas (x1,y1,21,t1) ¥ (22, Y2, 22,t2) para el observador S tales que t; = t3. Aplicando la
transformacion de Lorentz dada en la proposicion [50 en la pagina 202 obtenemos los tiempos medidos por el

observador S’:

f=— 1 (1= =)
1 — 02 1 C2I1
T2
th = ! t
9 = B 2~ 522
-
, , 1 v v
lp—ty = - (tl —x1 —ta + —29@)
_ v c
(/‘2
Como es t1 = t9, obtenemos:
t—ty = S [3 (22 — 331)]
02 L2
=

Como, en general sera xo # z1, tenemos que es t) # t,. Luego, la simultaneidad no se preserva.

De hecho, en la férmula:
S S
- 02 ( B ?235)

1-&

el término \/%2 puede interpretarse como un cambio de escala y -3 puede verse como un término de fase.
-
(&

Ejemplo 25. Emitimos un pulso de desde el centro de un cohete.
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El observador S” (el que va montado en el cohete) ve la longitud propia del cohete. Como S’ ve Ay B
en reposo, el tiempo que tardaran ambos rayos de luz en llegar a los extremos del cohete coincide; en otras
palabras, es t/; = t’;. Sin embargo, para el observador S (que se encuentra fuera del cohete), tanto A como B
llevan una cierta velocidad v.

A B A B

. () .
I 1 I\/ 1

( : :
\ / 1 I ’
A B A B

En consecuencia, para S el frente de ondas alcanzara el punto A antes que el punto B. Es decir, est4 < tp.
Por ende, la simultaneidad es un efecto relativo que depende del observador.

Proposicion 51. La transformacion de Lorentz dada en la proposicion [51] es una aplicacion lineal.

Demostracion. Denotaremos a la transformacion de Lorentz con:

L: R* — R*
( 1
2 = 2(av—vt)
-5
(r,y,2,t) —> y=y
(> el Z/:Z
, 1 VT
1-9 ¢

Para ver si L es una aplicacion lineal, debemos comprobar que:
?
L (A(z1,y1,21,t1) + p (22,2, 22, t2)) = AL (w1, y1, 21, t1)) + L (22, y2, 22, t2))
Para ello, partiremos del lado izquierdo e intentaremos llegar al derecho:

L (A (z1,y1, 21, t1) + p (22, Y2, 22, t2)) =

1
=7 [)\1‘1 + pxro — v (Nt + ,wfz)] s AYL + By2, Azl + p2a,
~ 4

v (A1 + pr2)

1
[)\t1+ut2—2 =
v2 c
-2
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1
= | [Az1 — Mty + pxe — pota] , Ady1 + pya, Az1 + pza,
1-— 22
1 VI VX
[)\tl - )\T + pta — NT} =
12 c c
C?
1 VX1
= )\ [5131 — Utﬂ ,)\yl, /\21, /\ [tl B }
_v? 1 v ¢
c? c?
1 VI
+ M[x2—vt2]aﬂy2aM327 M |: 2 ) ] -
v2 v C
T2 =
1 1 VX
= A ———= 1 —vta],y1, 21, ——— [tl - 721}
1-% 1-% ¢
c? c?

1 VL9
| 12 — vta] , Y2, 22, ——— [tz - 72] =
122 /1 _ 2 c
c? c?
= AL (1,1, 21, t1)) + pL (22, y2, 22, t2))
Luego, efectivamente, la transformacion de Lorentz es una aplicacion lineal. Q.E.D.

5.5.2. Transformacién inversa

Corolario 28 (Transformacion de Lorentz inversa). Sean S y S’ dos observadores tales que el observador
S’ se desplaza con una velocidad relativa v en el eje X con respecto de S. Sean (x,y,z,t) las coordenadas

de un suceso segin O y sean (x',y',2',t") las coordenadas del mismo suceso visto por O'. Ambos vectores de
coordenadas vienen relacionados por:

_ / /
x = v2(x+vt)

2

y=1

z=2z

1 / /

t= — (t+*2$)
\ 2

Demostracion. Partimos de las expresiones dadas en la proposicion [50 en la pagina 202}

1
.13/:72(.%—025)

-5

/

y =y

2=z
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v 1 PRCL
A < _72)
c2

Ahora, tinicamente hay que despejar z en funcién de z’ y ¢ en funcién de ¢'. Vamos con la primera ecuacion:

/ 1 v? v?
== (r—vt) &\l - gt =r—vter=\/1- 52+t (5.5.2)
1 _ v c c
C2
De la tltima, obtenemos:
1 VT VT
/r_ - o I A e
t- N (1-5) -t ==
02

Sustituyendo x por el valor obtenido en la ecuacién llegamos a:

2
\/1——1& —t—v2<\/1—v2x’—|—vt> o
C C

2
& 1——t—t— —U o
C

_ci
\/1 t+\/ LA O
22 c?

2
= va! 1 va!
-y c 2 c

Ahora, sustituyendo el valor obtenido de ¢ en la ecuacién obtenemos:

v2 v , v
c 2 c
-2

C

(I—Z—j)x'+2—§x’+vt’_ o 4ot/

v2 v2
T2 T2

Q.E.D.

Observacion 41. Para obtener la transformacion de Lorentz inversa (ver corolario 28 en la pagina anterior)
a partir de la directa (ver proposicion [50 en la pagina 202)) tnicamente hay que cambiar «primas» por «no
primas» y v por —uv.

5.5.3. Transformacién de velocidades unidimensional

Proposicion 52 (Transformacion de velocidades). Sean dos observadores S y S’ tales que el observador S’
se desplaza a velocidad constante u con respecto a S en el sentido positivo del eje X. El observador S mide
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v vl v

la velocidad de una particula U = (vg,vy,v.) y el observador S' mide la velocidad de la misma particula
v = ( 25 Uy Z). Ambas magnitudes estdn relacionadas por la expresion:

o Up — U
* 1 Uy
_u?
v = < v
- U Y
Y 1- =2 Uz
_u?
v, = < v
- z
? 1 2 Uz
\ C
Demostracion. Tenemos la siguiente situacion:
AN AN u
—
v
o—>

W

S/

S

Vv

—

. . — . . . ) =/
El observador S mide una velocidad ¥ = %, mientras que el observador S’ mide una velocidad ¥ = 9~

- dt
Tomando d7 = 7 — 71, dt = to — ¢, A’ = 7' — 7'y dt’ = t§, — ¢}, como la transformacion de Lorentz es
lineal por la proposicion [50 en la pagina 202] sera:

L((dr,dt)) = L((72 — 71,2 —t1)) = L (w2 — 21,92 — y1, 22 — 21, t2 — 11)) =
= L(($27y27z27t2)) - L((:Bl’ylazlvtl)) = (:L',Qayévzé?té) - ("Ellayllvziﬂf/l) =

= (7R ty) — (M, t)) = (R =7/ ty —th) = (dF',dt’)

De esta forma, aplicando la transformacion de Lorentz (ver proposicion [50 en la pagina 202), tenemos que:

1
d’ = —— (dx — udt)
1 v
’U2
dy' = dy
dZ =dz
1 Uu
/
At = ——— (dt - C—zdx)

_u?
U2

De esta forma, simplemente dividiendo, obtenemos:

—L (dz — udt)
,da’ 1 ’;3 dr — udt é ‘é—f —u%
K9 = — = = _——=s— =
1 1
Toay — (dt - c%d:z:) dt — Hdz + % — c%%
v2
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Vg —u
1 Uz
2 4
4y dy & Vi-wa
= = I 1~ 7d dz\ —
T T L (a md) g (B a)
)
'LL2
T2
1 Uz v
2
v = dz’ _ dz i — - %2% —
- - 1 1 = /d d. -
W @ pan g (B %)
)
’LL2
T2
1 C%vx vz

Como es dt’ # dt, cambian todas las componentes de la velocidad: en particular, es v; # vy yv, #v,. QE.D.

Corolario 29. Sean dos observadores S y S’ tales que el observador S’ se desplaza a velocidad constante
u con respecto a S en el sentido positivo del eje X. El observador S mide la velocidad de una particula
U = (Ug,vy,v:) y el observador S’ mide la velocidad de la misma particula v/ = (vgﬁ,v;,v;). Siesu < c,
recuperamos la transformacion de Galileo:

!~

Vyp = Uy
/e
’U:;IN’U:;/
v, XU,

Demostracion. FEl resultado se obtiene trivialmente al sustituir u = 0 en las expresionies de la proposicién
len la pagina 207, Q.E.D.

Corolario 30 (Transformacion de velocidades inversa). Sean dos observadores S y S’ tales que el observador
S’ se desplaza a velocidad constante u con respecto a S en el sentido positivo del eje X. El observador S
mide la velocidad de una particula U = (vg, vy, v;) y el observador S" mide la velocidad de la misma particula
v’ = (v, v}, v.). Ambas magnitudes estdn relacionadas por la expresion:

T VY Yz
( /
U, T U
Vg = T
1+67Ux
u2
=
v, =
Yy U Y
1+ Zv;
2
U
1 =z,
Vy = >
U,
1+ Zv;

Demostracion. Por la proposicion [52 en la pagina 207] se cumplen las ecuaciones:

, Vy — U
UI:]_ u
2
u
1-%
/ C
Vy = 57— Yy

Yoo l- G,
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De la primera, despejemos v,:

/o Vg — U / 1 U o ! u o
Ux_17u<:>vx — SUg) =Up —US Uy — 5V 0 = Vg — U
—?Uz C
/
U U U, + U
/ / / /
<:>vx+u:vx—|——2vxvx<:>vx+u:vx(1+—2vz><:>vx: T
c c 1+ Zv;
Vamos con la segunda ecuacién:
2
U
/ 1-= ! 1 u
Vy = T Uy & Uy = Uy —— 1—0—2%

1—07U$ v _L2
c2

Sustituyendo el valor de v, obtenido en la ecuacién obtenemos:

/
, 1 U v, +u

= — 1——7 —=
Y=y 1_u2< 021—1—6%1)’1)
2

C

, 1 ) uv!, + u? , 1 At wd —wl, —u?
= — = =
Y w2 2+ uvl, 1 _ w2 2+ uvl,
e e
2
2 .2 2 1_u
_ 1 ct—u , 1 11—

= _— =
Vel tu, Ve lt &,
V c? V c?
\/ _w? \/ _w?
c? c?
_'U/ = U/

yl—}—c%vg 1—}—6%2};3”

Actuando analogamente con la tercera ecuacion, se llega al resultado.

(5.5.3)

Q.E.D.

Observacion 42. Para obtener la transformacion de velocidades inversa (ver corolario [30 en la pagina anterior)

a partir de la directa (ver proposicion [52 en la pagina 207|) tnicamente hay que cambiar «primas» por «no

primas» y u por —u.

Ejemplo 26. Tenemos un cohete que se mueve a velocidad v = 0,8¢ con respecto a la Tierra. Lanzamos
proyectiles hacia delante con v = 0,6¢ (velocidad relativa al cohete). ;A qué velocidad se ven los proyectiles

desde la Tierra?
Segin la transformacion clésica, obtendriamos:

v=2+u=14c

Pero esto violaria el segundo postulado de la relatividad especial. Mediante la transformacién de velocidades

inversa (ver corolario |30 en la pagina anterior|), obtenemos:

v'+u  06c+08 06c+08 14 140 70 35

v

= 1+ %o T4 0’260,66 14048 1,4802 1480_ 74 37

C

Licencia: Creative Commons

= —c= —c=~0,946¢

QETF.

210


https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

CAPITULO 5. RELATIVIDAD ESPECIAL
Lain-Calvo-Cano-Guerrero 5.6. EL GRUPO DE LORENTZ

Ejemplo 27. El cohete del ejemplo [26 en la pagina anterior| lanza fotones con v/ = c. jCual es la velocidad
de dichos fotones vista desde la Tierra?

v+u  c+08  18¢

vV = =C

C1+4%0 1+ 508 18
Como vemos, efectivamente, se cumple el postulado [5 en la pagina 195 es decir, ¢ es invariante bajo la
transformacion de Lorentz.

Q.EF.

5.6. El grupo de Lorentz

A continuacion, vamos a desarrollar la transformaciéon de Lorentz desde un punto més general. Para ello,
vamos a olvidar momentédneamente todo el desarrollo hecho hasta ahora y vamos a deducir la forma de las
transformaciones de Lorentz desde el punto de vista del Algebra.

Proposicion 53. El postulado |5 en la pagina 195 implica que, dado un suceso de coordenadas (x,y, z,t) para
un observador S que representa un «punto espacio-temporaly de un frente de ondas esférico de luz, entonces
la cantidad:

2?2 +y? + 2% — AP

no depende del observador S.

Demostracion. Sean dos observadores Sy S’ tales que el observador S’ se desplaza a una velocidad constante
¥ con respecto a S. En t = ¢/ = 0, supondremos que se emite una onda esférica de luz. Por el postulado
len Ta pagina 195 para ambos observadores, el frente de ondas de la luz es esférico, ya que se propaga a
velocidad ¢ en todas direcciones. Para el observador S dicho frente de ondas viene descrito por la ecuacion:
x2 + 9% + 22 = ?t? y para S’ viene descrito por z' 2 + 1/ 2 + 2/ 2 = ¢?t' 2. De esta forma, debe ser:

Ay + 22—t =0
x’2+y’2+z’2—czt'220

De esta forma, la cantidad 22 4y2+ 22 —c%t? debe ser nula para cualquier observador inercial y, en consecuencia,
no depende del observador. Q.E.D.

La proposicion [53| motiva la construccion de una norma (en nuestro caso, sera una pseudonorma) que debe
mantenerse invariante para cualquier observador. En otras palabras, si tenemos un suceso de coordenadas
(x,y, z, ct) para un observador S y coordenadas (2,1, 2’, ct') para un observador S’, entonces, esperamos que
la pseudonorma de ambos vectores sea la misma. Ademés, dicha pseudonorma tiene que tener la propiedad
de que sea nula para todo (z,y, z, ct) perteneciente a un frente de ondas esférico de un rayo de luz. Hemos
introducido el factor ¢ multiplicando a la t para que todos los elementos de los vectores tengan las mismas
unidades. Esto nos facilitaréa las cuentas y la definicién de los conceptos mas adelante. Notese que introducirlo
no afecta absolutamente en nada, mas que a la definicién que tendremos que dar a la pseudonorma, ya que ¢
es una constante que no depende del observador por el postulado |5 en la pagina 195|

Como es bien sabido en Algebra, construir una norma es equivalente a construir un producto escalar (en
nuestro caso, serd un pseudoproducto escalar). De esta forma, definimos:

Definiciéon 34. Llamaremos pseudoproducto escalar de Minkowski al pseudoproducto escalar que, en
base canénica, viene dado por la matriz:

1 00 O
010 O
A= 001 O
0 00 —1
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Observacion 43. De esta forma, la pseudonorma de un suceso de coordenadas (z,y, z, ct) para un observador
S serfa:

1 0 0 O x
(x,y,z,ct), (x,y,z,ct)) = (m Yy 2 ct) 8 (1) (1) 8 Z =22 4+ y? + 22 — AP
0 0 0 -1 ct

que coincide justo con la cantidad dada en la proposicién [53 en la pagina anterior]

Proposicion 54. El pseudoproducto escalar de Minkowski es, efectivamente, un pseudoproducto escalar.

Demostracion. Para poder ser un pseudoproducto escalar deben cumplirse dos cosas: la aplicacién que lo
define debe ser bilineal y ademas, debe ser simétrica.

En nuestro caso (la definicion |34 en la pagina anterior]), la aplicacion es claramente bilineal (ya que nos
dan su representacion matricial) y dicha matriz es claramente simétrica. Por ende, el pseudoproducto escalar
de Minkowski es un pseudoproducto escalar. Q.E.D.

Definicién 35. Llamaremos espacio de Minkowski a R* dotado del pseudoproducto escalar descrito en la
definicién |34 en la pagina anterior]

Con todo esto, ya tenemos construido el aparato matematico necesario para dar la definiciéon mas general
posible de una transformacion de Lorentz.

Definicion 36. Llamaremos transformacion de Lorentz a toda isometria del espacio de Minkowski.
En otras palabras, una transformacion de Lorentz es toda aplicacion lineal de R* — R* que preserva la
pseudonorma que se deduce del pseudoproducto escalar de Minkowski (ver definicion [34 en la pagina anteriory).

Teorema 10. El conjunto de todas las transformaciones de Lorentz tiene estructura de grupo respecto a la
composicion de aplicaciones.

Demostracion. Lo primero que debemos demostrar es que la composicion de dos transformaciones de Lorentz
Ly y Lo es también una transformacion de Lorentz. Escojamos una base B cualquiera de R* y llamemos Ay,
a la matriz coordenada de L; en base By A, a la matriz coordenada de Lo en base B. Por ultimo, llamemos
A a la matriz que representa el pseudoproducto escalar de Minkowski (ver definicion [34 en la pagina anterior])
en la base B. Dado que L; y L9 son transformaciones de Lorentz, sabemos que se verifica:

AL ANAL, =N, AT AAL, =A

(donde el superindice T indica traspuesta) puesto que Lj y Lo preservan el pseudoproducto escalar de Min-
kowski (ver definicion [34 en la pagina anterior)). De esta forma, estudiemos si L := Ly o L; es también una
transformacion de Lorentz. Llamaremos Ay, = Ay, A, ala matriz coordenada de L en base B y consideremos:

(A, Ar) " A(Ap,Apy) = AT AT NAp, A, = AL AAL, = A
=A

Luego, L es una transformaciéon de Lorentz.

A continuacién, debemos comprobar que la composicion de transformaciones de Lorentz es asociativa, pero
esta propiedad se hereda de la composicién de aplicaciones lineales.

Ademas, claramente la identidad id es una transformacién de Lorentz, luego el elemento neutro de la
composicion de aplicaciones es una transformacion de Lorentz.

Por tanto, tnicamente queda verificar que existe la inversa de cualquier aplicaciéon de Lorentz y que dicha
inversa es otra aplicacion de Lorentz. Primero probemos la existencia. Para ello, sea L una transformacion de
Lorentz y sea Ay, su representacion coordenada en una base cualquiera B de R*, estudiemos:

ATAAL = A= det (AJAAL) = det A &
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& det AT det Adet A = det A

Como es det A # 0 (véase la definicion [34 en la pagina 211)), tenemos:

det AT det Ap =1

Como se da det AT = det Az, llegamos a:
(det Ap)> =1 = det A, # 0

luego A es una matriz invertible y, por consiguiente, L es una aplicacion lineal invertible. Luego, la inversa
de una aplicacion de Lorentz siempre existe. A continuacién, veamos que dicha inversa es, necesariamente,
otra aplicaciéon de Lorentz. Para ello, consideramos:

-\T -1 -N\T 4T -1
A=A& (ALAL ) A(ALAL ) =A& (AL ) ATNAL AT = A&
=A
—_N\T 1
& (AL ) AA" =A

donde el paso marcado se debe a que L es una aplicacion de Lorentz. Por consiguiente, L~! también sera una
aplicacion de Lorentz.

Recapitulando, hemos probado que la composicién de dos aplicaciones de Lorentz cualesquiera es una
aplicaciéon de Lorentz, que el elemento neutro de la composiciéon de aplicaciones también es una aplicacién
de Lorentz, que la composiciéon de aplicaciones de Lorentz es asociativa, que siempre existe la inversa de una

aplicaciéon de Lorentz y que dicha inversa es otra aplicacion de Lorentz. Por ende, el conjunto de todas las
aplicaciones de Lorentz cumple todos los requisitos para tener estructura de grupo. Q.E.D.

Definicién 37. Llamaremos grupo de Lorentz al grupo descrito en el teorema [I0 en la pagina anterior]

5.6.1. Tipos de transformaciones de Lorentz

El conjunto de las transformaciones de Lorentz tiene cuatro componentes disconexas. El resto de transfor-
maciones pueden obtenerse como composiciéon de dos de las anteriores.

= Transformaciones octdcronas propias: constituyen el conjunto de las transformaciones de Lorentz que
tienen determinante igual a uno y que, ademaés, satisfacen que en base candnica la componente (4,4) de
su matriz coordenada es positiva. Se pueden obtener como exponenciales de otras matrices.

= Transformaciones octécronas impropias: estan formadas por aquellas transformaciones de Lorentz
con determinante igual a menos uno y que satisfacen que en base canoénica la componente (4,4) de su
matriz coordenada es positiva. Especialmente interesante de esta categoria resulta la paridad espacial,
que representa una inversion respecto al origen de las coordenadas espaciales:

-1 0 0 0
0 -1 0 O
P= 0 0 -1 0
0 0 0 1

» Transformaciones no-octécronas impropias: constituyen el conjunto de las transformaciones de Lo-
rentz que tienen determinante igual a menos uno y cuya componente (4,4) de su matriz coordenada en
base candnica es negativa. Especialmente interesante de esta categoria resulta la paridad temporal,
que representa una inversion en la direccién del tiempo:

0 0

o O O =
o = O
o O O

1
0
0
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» Transformaciones no-octécronas propias: son el conjunto de transformaciones de Lorentz cuyo de-
terminante es igual a uno y que satisfacen que la componente (4,4) de su matriz coordenada en base
canodnica es negativa. Especialmente interesante de esta categoria resulta la paridad espacio-temporal,
que constituye una inversiéon simultanea en las direcciones espaciales y temporales:

-1 0 0 0
0 -1 0 0
PT = 0 0 -1 0
0o 0 0 -1

Se puede probar que cualquier transformaciéon de Lorentz puede escribirse como el producto de la matriz
coordenada de una transformacion de Lorentz octdcrona propia y una de las matrices P, T o PT.

Es interesante notar que el grupo de Lorentz incluye como subgrupo al grupo de rotaciones espaciales de
R3. Estas transformaciones giran los ejes espaciales y dejan fijo el tiempo. Un ejemplo de matriz de este tipo
seria;

0 0
cosa  seno

L, =
—seno  cosa

0 0

o O O
— O O O

Igualmente, existen transformaciones que «rotan» en torno al eje temporal. Estas reciben el nombre de boots.
Un ejemplo sencillo corresponde a la matriz:

cosha 0 0 —senhao
0 10 0
By = 0 01 0
—senha 0 0 cosha

De hecho, la transformacién presentada en la proposicion [50 en Ta pagina 202] se corresponde con un boost.

5.6.2. Cuadrivectores

Definiciéon 38. Sean S y S’ dos observadores inerciales tales que el observador S’ se desplaza a velocidad
constante con respecto a S. Llamaremos cuadrivector a cualquier vector de R* cuyas coordenadas vistas por
S q=(q1,92,93,q4) tomen valores correspondientes a magnitudes fisicas medibles por S'y S y que, ademas,
cumplan que si q son los valores medidos por S, entonces ¢ = L (q) son los valores medidos por S’ (donde
L es la transformacion de Lorentz entre S y S’); es decir, q y q' deben estar relacionadas a través de la
transformacién de Lorentz que conecta S con 5.

Notacion 5. En general, denotaremos los cuadrivectores en negrita q para distinguirlos de los trivectores ¢y
de los escalares gq.

Corolario 31. Las coordenadas de un suceso (multiplicando el tiempo por c¢) para un observador S: r =
(7, ct) = (z,y, 2, ct) son un cuadrivector.

Demostracion. La demostracion es trivial a partir de la definicion de suceso (ver definicion [31 en la pagina 195])
y la de cuadrivector (ver definicion [38). Q.E.D.

Definicion 39. Llamaremos cuadriposicion al cuadrivector que describe un suceso:

r:= (7, ct) = (z,y, z, ct)
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A continuacioén, queremos definir algiin concepto relacionado con la velocidad, pero que sea un cuadrivector.
Si recordamos la transformacion de velocidades dada en la proposicion [52 en Ta pagina 207], veremos facilmente
que la transformacion de velocidades no es una transformacion de Lorentz. En consecuencia, el vector (v, c)
(que seria la opcion més sencilla) no es un cautrivector. Por tanto, vamos a tener que recurrir a una definicion
distinta:

Definicion 40. Llamaremos cuadrivelocidad v al caudrivector:

e dr _(dr ar
Todty \dty’ dto

Observacion 44. La cuadrivelocidad es, efectivamente, un caudrivector. Veamos por qué. Por una parte, como
las transformaciones de Lorentz son lineales, dr «cambia» de un observador a otro del mismo modo que lo
hace r; en otras palabras, dr es un cuadrivector. Ademas, como el tiempo propio tg no depende del observador,
dtg tampoco lo hara. En definitiva, v es el cociente entre un cuadrivector y un escalar que no depende del
observador. Por consiguiente, v también es un cuadrivector.

donde tg es el tiempo propio.

Corolario 32. La cuadrivelocidad puede expresarse como:

donde v = |7].

Demostracion. Partimos de la definicion [0k
dr dt
v=|—,c—
dto’ dto

Mediante la proposicién [48 en la pagina 196 podemos relacionar dt con dtg:

1
dt = ——=dip

_ 2

c2

Asi, por la regla de la cadena, tenemos:

o (A7t drdeN defar N At L
 \dtdty’ dtdty/)  dtg \dt’ ) dtg 7 ’

Q.ED.

Notacion 6. En lo sucesivo, con frecuencia se usara:

5.6.3. Cono de luz
Definiciéon 41 (vectores tipo espacio, tiempo y luz).

» Diremos que un vector v de R* es tipo espacio si su pseudonorma segin el producto escalar de
Minkowski (ver definicién [34 en la pagina 211)) es positiva.
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= Diremos que un vector v de R* es tipo tiempo si su pseudonorma segin el producto escalar de Min-
kowski (ver definicion [34 en la pagina 211)) es negativa.

» Diremos que un vector v de R?* es tipo luz si su pseudonorma segin el producto escalar de Minkowski
(ver definicion [34 en la pagina 211]) es nula.

Para dar una interpretacion fisica a cada tipo de vector, tenemos que recurrir al cono de luz. Con el fin
de que podamos hacer la representaciéon en tres dimensiones, eliminaremos una de la dimensiones espaciales,
es decir, supondremos que tenemos dos coordenadas espaciales x e y y una temporal ct. La figura del cono de
luz es la siguiente:

tipo luz

I
I
I
tipo tiempo

tipo espacio

Con el fin de entender la figura, supongamos que somos un observador S que se encuentra en el vértice
del cono. Los ejes representados son X,Y en el plano horizontal y ct en la direccién vertical; la ecuacion del
cono de la figura es 2 + y? = *t.

Un vector tipo luz tiene pseudonorma nula y, por tanto, para todo vector tipo luz se da z? + y? — %t
0 & 22+ y?> = *t?. Es decir, todo vector de luz se encuentra contenido en el cono. Por otra parte, la
pseudonorma de un vector tipo tiempo satisface z2 4+ y> — ¢*t? < 0 & 22 4+ y? < ?t? y, por ende, todo
vector tipo tiempo se encuentra en el interior del cono. Por ultimo, la pseudonorma de un vector tipo espacio
satisface 22 + 3% — ?t? > 0 © 22 + y? > ?*t? y, en consecuencia, todo vector tipo espacio esta situado en el
espacio exterior al cono.

El cono de luz representa, precisamente, todas las «trayectorias» de todos los rayos de luz que nos han
llegado desde el pasado y todos los rayos de luz que emitimos hacia el futuro.

Ademas, los vectores tipo tiempo representan trayectorias en las que no se supera la velocidad de la luz.

; ‘ ; ; —dr _ (dFf dt) _ 1 (g7
Para ver esto, consideremos una particula cuya cuadrivelocidad sea v = I = ( 3t C dt0> = T (dr, cdt) y

2:

estudiemos:

(v,v) = ((:110)2 {(dm)Q + (dy)2 — (dt)Q] <0

ya que dr = (dx, dy, cdt) es un vector tipo tiempo. Por un razonamiento analogo, los vectores tipo espacio
representan trayectorias en las que la velocidad nunca es inferior a la de la luz.
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Como la informacién no puede viajar a mayor velocidad que la de la luz, el interior del cono contiene todos
los sucesos que han podido afectar a nuestro pasado y todos los sucesos a los que podemos afectar en nuestro
futuro; es decir, nuestro pasado se encuentra debajo del plano XY (y en el interior del cono) y todos nuestros
posibles futuros se encuentran encima del plano XY (y en el interior del cono). Por tanto, hay una amplia
zona del espacio-tiempo (el exterior del cono) de la que estamos causalmente desconectados (pues ningin rayo
de luz puede viajar entre esas zonas y nosotros o al revés).

Un aspecto muy importante de esta figura es que, como el pseudoproducto escalar de Minkowski es
invariante Lorentz, los vectores tipo tiempo, son de tipo tiempo para cualquier observador, los vectores tipo
luz, lo son para cualquier observador y los vectores tipo espacio lo son, también, para cualquier observador.
Esto significa que todos los observadores coinciden en qué conjunto de sucesos son el futuro y el pasado de
todos los observadores, aunque las coordenadas de cada suceso si que dependan del observador. Es por esto
que la parte del interior del cono de luz que se corresponde con el futuro de un observador recibe el nombre de
futuro absoluto, mientras que la parte del interior del cono que se corresponde con el pasado de un observador
recibe el nombre de pasado absoluto.

5.7. Momento lineal relativista y energia

5.7.1. Por qué la definicién clasica de momento lineal falla
Recordemos que la definicion clasica de momento lineal era:
p=mv

Entonces, parece logico considerar el vector de R* m (¥, ¢), pero como (%, c) no es un cuadrivector, entonces
m (¥, ¢) tampoco podra serlo.

Ademas, veamos un ejemplo para convencernos de que la definicién clasica de momento lineal nos plantea
varios problemas (ademéas de que no cambie de sistema de referencia mediante transformaciones de Lorentz).

Ejemplo 28. Consideremos la colision entre dos particulas. En fisica clasica, el momento lineal deberia
conservarse. Veamos que con la definiciéon clasica, el momento lineal no se conserva. Imaginemos la siguiente
situacion:

El observador A se encuentra en reposo con respecto a S y A lanza un proyectil en vertical. El observador
B va montado en un tren (el tren constituye el observador S’), es decir, el observador B est4 en reposo con
respecto a S’, y quiere lanzar una pelota para que colisione con el proyectil lanzado por el observador A. Visto
desde S, tenemos:

A u
A —>
| B r,\
AN -
/
N 7/
AN 7/
N e
v
|
S/ >
\
I 4
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Y visto desde S”:

N

S/ // N

En resumen:

= El observador A esta en reposo con respecto a S, lanza un proyectil de masa m en vertical con velocidad
vo ¥y ve a B avanzando a la derecha con velocidad u.

s El observador B esté en reposo con respecto a S’ lanza un proyectil de masa m en vertical hacia abajo
con velocidad vg y ve A avanzando hacia la izquierda con velocidad .

Supondremos que el choque entre ambos cuerpos es completamente elastico. A continuacion, vamos a estudiar
si se conserva el momento lineal con respecto a cada uno de los sistemas de referencia:

= La particula A vista desde S:
Las velocidades iniciales son:
Vas =0 et
Ax N PAH;;:I&I = muy
VAy = V0 ’

Como el choque es completamente elastico, la velocidad final es:

VA, =0
Az = Pgnyal = —Mg
VAy = ~0 ’
De esta forma, tenemos:
APy, = —mug — muy = —2muyp

» La particula B vista desde S’
Las velocidades iniciales son:

P
Vg, =0 }
/ —

UBy = ~Y0

Como el choque es completamente elastico, las velocidades finales son:

o
Vg, =0 }
1
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= La particula B vista desde S:
Usando la transformacion de Lorentz para velocidades (ver proposicion [52 en la pagina 207)), obtenemos
que las velocidades iniciales son:

!
v /UB,;E + u O + u u
B p— p— p—
A c%va,x 1+ C%O
!
VB.y —0 Vo

UB,y: = = ——
y(1+ Hup,) 7+ 7

1
-
Vi

Las velocidades finales quedan:

donde es v =

v};’m—i-u _ 0+u

VB gy = = =u
Tl G, 1440
U/B,y Vo Vo 1 u2
UB,y = = = —_— = ’UO — —2
(14 50p,) Y(A+B0) ¢
De esta forma, la variaciéon en momento lineal queda:
2
v v v U
AP, = m=2 4+ m=2 = om2 = 2mupy/1 — —
Y v gl ¢
Por consiguiente es:
APy, # AP,

En otras palabras, el momento lineal cldsico no se conserva.

Esto nos lleva a buscar una definicion de momento lineal relativista que si se conserve en las colisiones y
que, si es posible, cambie de sistema de referencia a través de las transformaciones de Lorentz. Dicha definicién
existe y es la que presentamos a continuacién:

Definicién 42. Llamamos cuadrimomento o cuadrivector energia-momento de una particula de masa
m al cuadrivector:

=mv = mE = md—F mﬁ N (mt, me) = (v (v) md,~ (v) me)
p= N dto o dto’ dt() - 1_ v?2 ’ -\ Y
2

C

donde v es la cuatrivelocidad introducida en la definicion [40 en la pagina 215|y tg es el tiempo propio (ver
definicion |32 en la pagina 195]).

Fijémonos en que p es, efectivamente, un cuadrivector ya que v lo es y m es una constante que no depende
del observador.

El cuadrimomento también recibe el nombre de cuadrivector energia-momento. La idea es que, la cuarta
componente del cuadrimomento multiplicada por c¢ tiene unidades de energfa: [7 (v) ch] = kg?—; = ki‘;““ ‘m =
N-m = J. Como c es una constante que no depende del observador (véase el postulado |5 en la pagina 195)), la

cuarta componente del momento seré siempre proporcional a la energia. Esto motiva la siguiente definicion:

Definiciéon 43. Sea una particula de masa m. Definimos su energia como la cuarta componente de su
cuadrimomento multiplicada por c. Es decir:

E=v@Ww)md=——c

donde v es la velocidad de la particula.
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Definicién 44. Llamaremos momento lineal relativista o trimomento a las tres primeras componentes
del cuadrimomento (ver definicion 42 en la pagina anterior]):

- dr dr dt m

pi=m—=m——=my (V)1 = ———
dto dt dt \/j
C2

Observacion 45. Notese que el di¥ depende del observador, mientras que el tiempo propio es el medido por el
que estd montado en la particula. Como siempre, si v < ¢, entonces p'~ mu.

0l

Observacion 46. Notese que segin la expresion dada en la proposicion no es posible alcanzar nunca la
velocidad de la luz, ya que la expresion del trimomento diverge para v = c. Esto puede verse graficamente con
la siguiente figura:

p
mc

3.00 -
—Relatividad Especial
—Mecanica Clasica

2.50

2.00

1.50

1.00

0.500

PO SRR TN SN [N TN TN TN TN NN TN ST SN N AN TN TN TN SN [N SN Y S W |

v
c

0.200 0.400 0.600 0.800 1.00

De esta forma, la conservacion del cuadrimomento va a suponer la conservaciéon del trimomento y la energia
todo en la misma ecuacién. Es decir, en fisica relativista, la conservacién del momento y la conservaciéon de la
energia ya no van por separado como lo hacian en fisica clasica. En relatividad, no puede conservarse uno si
no se conserva el otro, porque la verdadera magnitud conservada es el caudrimomento.

Veamos que esta nueva definicion de momento lineal relativista se conserva en el ejemplo
ma 217

Ejemplo 29.

» Particula A vista desde S:

Velocidades iniciales:
Vo, =0 i
Ax = P,hnéflal _ v
VAy = 0 )
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Como el choque es completamente elastico, las velocidades finales quedan:

Vo =0 m

T = Pgnyal - _ 0
VAy = —0 ’

De esta forma, la variacién total de momento lineal es:

2
NP .

= Particula B vista desde S:
Velocidades iniciales:

UBz = U }
2
— a1 — Y2
UBy = —U0 P

donde este ultimo dato lo hemos obtenido a partir de la transformacion de Lorentz de velocidades (ver

proposicion [52 en la pagina 207)), algo que ya hicimos en el ejemplo |28 en la pagina 217|

L L\ 2 L\ 2 U
,U%uclal _ \/(’U%H;Ial) 4 <v£1§1al> — \/’U,2 + U% <1 R
) ) C

—-m u2

Plnlclal _ vor/1 —

by \/1 B u2+v3<172‘—22)

c2

c2

Como el choque es perfectamente eléstico, llegamos a las siguientes velocidades finales:

UBx = U
Y
UB,y = Vo 2

2 2 u
pfinal — \/ (v%r‘;l) + (v%ngl> = \/ u? + v3 <1 - =
b b c

Operando, obtenemos:

292 2 2 u?
) u2+vg_ucgo . u—{—vo(l—c—g)
N c2 N c2
De esta forma, podemos reescribir la ecuacién [5.7.1] como:
2
L -m U
ppical = vo\[1— — =
b 2 IS
_u) (1%
c? c
—-m
= v(z) ’UO
1-2
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final m u? m
Pgy = v\l — &5 = —F—=w
BRGNS
—z)\l-z 2
Asi, llegamos a:
2
APBJJ = 7mv0 = —APAJ/
v
T2

Por ende, el momento lineal relativista se conserva.

Proposiciéon 55 (boost del cuadrimomento). Un observador S mide un trimomento p = (pg,Dy,P-) Y una
energia E. Por otra parte, un observador S, que se desplaza a velocidad constante u a lo largo del eje X
positivo con respecto a S, mide un trimomento p’ = (p;,p;,p’z) y una energia E'. Los valores medidos por S

y los medidos por S’ estdn relacionados por las expresiones:

rp/ _ o Uc%
c2
r_
py - py
p,/z =Dz
E/ — E - up:v
2
1o
Igualmente, se cumple:
El
. =
2
-
Py =Dy
bz = p{z
g B +uw
2
1-&

Demostracion. Vamos a probar el resultando basdndonos en el hecho de que el caudrimomento es un cuatri-
vector. Como el cuadrimomento es un cuadrivector, la aplicaciéon que nos da el cambio de coordenadas entre S
y S’ es una transformaciéon de Lorentz, en concreto la transformacion de Lorentz a usar serd la misma que la
dada en la proposicion [60 en la pagina 202] dado que estamos ante un boost, al igual que en dicha proposicion.
Por tanto, recordemos las ecuaciones dadas en dicha proposicion:

X

y =y
2=z
, 1 uUx ,
t = (t —2><:>ct:
u? &
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Teniendo en cuenta que el cuatrimomento es p = (px, Dy, Pz, %), en nuestro caso p, jugard el papel de z, py
jugara el papel de y, p, jugara el papel de z y % jugaré el papel de ct. Asi, obtenemos:
/ Dz — %% Dz — uc%

px: -
_u? _u?
c? c?

Py =Dy

p{z:pz
E_ 1 (B uws\ g E-ups
C 02 C C 02
Vo @ T2

Por ltimo, para obtener la transformacion inversa no tenemos mas que recordar que, por el teorema[I0 en]
las transformaciones de Lorentz forman un grupo y, por tanto, la inversa de una transformacion
de Lorentz es otra transformacion de Lorentz, en concreto, la que cambia las coordenadas entre S’ y S. Por

tanto, inicamente es menester cambiar primas por no primas y u por —u en las expresiones de la transformaciéon
directa. Q.E.D.

Antes de pasar al apartado correspondiente a energias, vamos a hacer una breve mencion al papel de la
fuerza en relatividad especial. El concepto de fuerza no resulta aqui tan til como lo hace en fisica clasica.
Ademaés, existen varias definiciones, todas con sus ventajas e inconvenientes. Aqui vamos a presentar la que
nos va a permitir derivar la definicién de energia cinética relativista.

Definicién 45. Llamamos trifuerza I’ que actta sobre una particula de masa m a:

7. ¥ _dly@mo)
Cdt dt

donde ' es el trimomento (ver definicion 44 en la pagina 220|) y ¢ es el tiempo medido por el observador que

mide p.

Una de las ventajas que tiene la definicién anterior, ademéas de permitir el desarrollo del concepto de
energia relativista, es que preserva, en cierta medida, la Segunda Ley de Newton, aunque el momento que
aparezca sea el momento relativista. Ademas, para velocidades v < ¢, la definiciéon anterior tiende a la clasica.
Por ultimo, esta definiciéon nos va a permitir heredar el teorema de conservacién del momento lineal de la
fisica clésica.

También existe un cuadrivector asociado a la fuerza, que recibe el nombre de cuadrifuerza (y que, por ser
un cuadrivector, presenta todas las ventajas en lo que se refiere a cambios entre sistemas de referencia, es
decir, sigue la transformacion de Lorentz), pero que no vamos a definir aqui porque no nos va a ser de utilidad
este curso.

5.8. Enmergia cinética relativista

Una de las ventajas de la definicién de fuerza escogida en la definicién [45] es que nos va a permitir definir
la energia cinética del mismo modo del que lo haciamos en fisica clasica (a través del teorema de la energia
cinética).

Definicién 46. Sea una particula de masa m que recorre una trayectoria y, siendo p un camino. Llamaremos
ganancia en energia cinética al trabajo realizado por la trifuerza a lo largo del camino u. Podemos expresar
dicho trabajo como la integral de la 1-forma asociada a la fuerza a lo largo del camino pu.

AT::WM:/F
n
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Definicion 47. Llamaremos energia cinética de una particula de masa m y velocidad v al trabajo necesario
para acelerar dicha particula desde el reposo hasta su velocidad actual.

Proposicion 56. La energia cinética relativista de una particula de masa m y velocidad v viene dada por la
expresion:

1
T=(w-1)m?=|—— —1]| mc

_ 2
02

Demostracion. Partimos de la definicion [47} Por tanto, debemos calcular el trabajo que debe actuar sobre la
particula para acelerarla desde el reposo hasta su velocidad actual v.

Para ello, supondremos que la particula recorre una trayectoria p desconocida para nosotros pero que es
tal que la velocidad al comienzo de dicha trayectoria era nula. De esta forma, aplicaremos la definicion

[[a pagina anterior}
T=W,= / F
”w

Parametrizamos el camino anterior mediante la funcion fi(t) con la que parametrizamos la posicion de la
particula en funcién del tiempo. Llamamos q al instante correspondiente al origen del camino y ¢ al instante
correspondiente al extremo del camino. Asi:

r= " F - % oa

0

donde i—‘z es justo el vector velocidad de la particula a lo largo del camino. De esta forma, llamando o (t) :=

% (t), podemos reescribir lo anterior como:

T:/tfﬁ(ﬁ(t)) L5 () dt

0

Por la definicion de trifuerza (ver definicion 45 en la pagina anterior|), tenemos:

_ d md*ltz mu
F i (1) = w (1= 20D

donde hemos aplicado % (t) = ¥ (t). Por consiguiente, la energia cinética queda:

- /tof d(z’fﬁ) (1) - 5 () dt

Ahora, vamos a hacer partes en la expresion anterior. Tomaremos:

d (ymv)

db =
dt

() dt = d (ym7) ()

a=7(t)

De esta forma, es:
b= (ym3) (t)
dv
da=—(t)dt
o=

En consecuencia, por el teorema de integraciéon por partes:
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v=|9(ts)|=v 17<tf) . N
= [’7 (V) mVQ] V=|17((tof))||:l) - /ﬁ(to) Y (‘UD mv - dv

donde es |U(tp)| = 0, porque la particula parte del reposo. Por ende:

[5(ts)]
Tzv(v)mqﬂ—/ | ! v (v)mrvdy =

=|v(to)|=0
Y v
v (v) mv? —m 2d = (v) mv —I—mc/ 2
0\ J1-4 0 2\/1—g2
vV=v
2 2 v? 2 1
= v (v) mv* + me 1—— = (v) mv* + mc —-1) =
A, 7 (v)
1.2, 2
v°+c
2 ¢ 2 7 (©)* 0% 4 & 2 -t 2
= v (v) mv* + —mc”=m —mc”=m —me” =
7 (v) 7 (v) 7 (v)
v2+(1—§—§)c2 v2+025v2 ,
122 122 2
=m (62) mc? =m (02) — mc? ¢ fy((v)) —me® = me*y (v) —me? =
v (v v (v v (v
— (v () - ) me

Q.E.D.

Observacion 47. A primera vista, la energia cinética relativista parece bastante diferente de la clésica:

1
T = ~mwv?
2
No obstante, si es v < ¢, haciendo un desarrollo de Taylor de primer orden centrando en 0 cuando v? — 0,

obtenemos el resultado clasico. Vedmoslo. Por la proposiciéon 56 en la pagina anterior] es:

T (v) = 1_1}2—1 me?
T(v=0)=
e () i ()4
bﬁ%kﬂzlm

Asi, obtenemos:

1
T (v) = imv2 cuando v — 0

De esta forma, recuperamos el resultado clasico.

Observacion 48. Notese que segin la expresion dada en la proposicion [56 en la pagina anterior] no es posible
alcanzar nunca la velocidad de la luz, ya que la expresién de la energia cinética diverge para v = c¢. Esto puede

verse graficamente con la siguiente figura:
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Notese que teniendo en cuenta la definicién de energia dada en la definicién [43 en la pagina 219y la
expresion obtenida en la proposiciéon [56 en la pagina 224] se da:

E =T+ mc
Esto motiva la siguiente definicién:

Definicién 48. Llamamos energia en reposo Ejy de una particula de masa m a:

Ey := mc?

Observacion 49. La definicion es posiblemente, una de las ecuaciones mas famosas de la relatividad y
establece una equivalencia entre masa y energia.

Proposicion 57. La energia total de una particula de masa m y velocidad v satisface la ecuacion:
E =T+ Ej

donde T es la energia cinética de la particula y Ey es su masa en reposo.

Demostracion. Partimos de la expresion de la energia cinética (ver proposicion [56 en la pagina 224)) y de la
definicion de energia en reposo (ver definicion [48):

T+E=(nHw-1Dm+m=rw) —1+1)m¢=y@w)mc® =E

donde el altimo paso se debe a la definiciéon [43 en la pagina 219 Q.E.D.

Proposicion 58. Sea p el modulo del trimomento de una particula, sea Ey su masa en reposo y E su energia.
Se satisface la relacion:
E? =p*c® + E]
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Demostracion. Partimos de la definicién de trimomento (ver definicion 44 en la pagina 220)):

P=~@)mi=p=rw)mvep?=yw?>m*?e p’c = w)?m???

Por otra parte, por la definicién 48 en la pagina anterior| tenemos:

Ey=mc? & E2 =m?c!
Sumando ambas ecuaciones, llegamos a:
PP+ E2 = (v)2 m2v?c® + m?c?? = m2c? (’y (v)2 v+ c2> =

2 v2) 2
1 v +<1——2>c

= m?2c? (202+02> = m?2c? 26 =

1 — v 1— v

c2

c2
2., .2 .2 2
v+t —v c 2
= m2c21_7ﬁ = m202j =m2cty (v)? = (v (v) me*)” = E?
c? c?
donde el altimo paso se debe a la definicién 3 en Ta pagina 219] Q.E.D.

Observacion 50. El enunciado de la proposicion [58 en Ta pagina anterior] normalmente se interpreta geométri-
camente a través del llamado tridngulo relativista, ya que si nos fijamos en la expresion:

2 _ 2.2 2
E* =p°c” + Ej

vemos que es justo la expresion que daria el teorema de Pitadgoras para un triangulo de catetos pc y Ey y con
hipotenusa E. Graficamente:

En particular, para velocidades mucho menores que la de la luz v < ¢ = v ~ 1 A E =~ mc?, el triangulo
queda:

V<L = Yy~ 1 = E~mc

2

Iplc

e

mc2
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Por el contrario, para el caso v é c = v > 1, tenemos:

v = y>1

o]
g [ |Iple
o~

/

Otra ecuacién interesante que relaciona la energia con el trimomento y la velocidad es la siguiente:
Proposicion 59. Sea una particula de velocidad U, trimomento p y energia E. Se cumple la relacion:

_ pe
- F

[ RS

Demostracion. Partimos de lado derecho de la ecuacion y llegaremos al izquierdo. Por la definicién de trimo-
mento (ver definicion [44 en la pagina 220)), tenemos:

2

pe vy (v)mie vy (v)mc T

E E E c

Por la definicion de energia (ver definicion |43 en la pagina 219)), tenemos:

=E
——
pc ’y(v)m6217_ Ev v
E c Ec ¢
con lo que llegamos al enunciado. Q.E.D.

5.8.1. Particulas sin masa

Notese que en las expresiones dadas en las proposiciones [58 en la pagina 226|y no aparece la masa
de forma explicita. Esto hace que sea natural preguntarse si existe alguna otra definicién de trimomento que
permita que se sigan cumpliendo las expresiones dadas en las proposiciones [58 en la pagina 226[y para
particulas sin masa. Resulta que dicha definicién existe.

Proposicion 60. Existe una definicion de trimomento p para particulas sin masa tal que, respetando la
definicion (48 en la pagina 220, se siguen cumpliendo las expresiones dadas en las proposiciones

pagina 220 y[59 Dicha definicion es:

=i
Cc
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siendo v el vector unitario de la velocidad de la particula sin masa. Ademds, toda particula sin masa, compatible
con las proposiciones y definicion mencionadas, debe cumplir que el mddulo de su velocidad sea siempre igual
a la velocidad de la luz v = c. Por tltimo, el mddulo del trimomento y la energia satisfacen la relacion:

E =pc

Demostracion. Como debemos respetar la definicion 48 en la pagina 226|y las particulas que consideramos no
tienen masa m = 0, debe ser:

E’Ozmc2:O

Sustituyendo el valor de la energia en reposo en la expresion dada en la proposicion [58 en la pagina 226]
obtenemos:

E
F?=p’?ecE=pcep= " (5.8.1)

luego el médulo del trimomento debe ser la energia partida por la velocidad de la luz.

A continuacion, considerando la proposiciéon [59 en la pagina anterior| en su forma vectorial, obtenemos
que ¥ debe ir en la direccion de p. De esto y de la ecuacion deducimos que la definicién de trimomento
buscada es:

E

p="0
C

Ademas, considerando la expresion dada en la proposicion [59 en Ta pagina anterior] en modulo, obtenemos:

v pe
E
Por la ecuacion [5.8.1] es E = pc y, por ende:
E le
_——= — = Vv =2°0C
E

Por lo tanto, el médulo de la velocidad de una particula sin masa ha de ser siempre la velocidad de la
luz. Q.E.D.

5.9. Problemas

Ejercicio 18 (Problema 5.1). Para un observador O, una varilla en reposo tiene longitud L y forma un angulo
a con el eje X. ;Cudl es la longitud y la orientacién relativa para el observador O', que viaja respecto a O
con velocidad v segun el eje X7

Datos: v = 0,8¢, L = 1|m|, av = 45°.

Solucién. El sistema descrito en el enunciado puede visualizarse con mayor facilidad a partir de la imagen
siguiente:

Puesto que la varilla se encuentra en reposo en relaciéon al observador O, este mediré la longitud propa de
la varilla; para este observador, la varilla mide una longitud L y se encuentra rotada un angulo «, asi pues:

L, = Lcosu

Debido a efectos relativistas, la componente horizontal de la varilla medida por el observador O’ es la que

sigue:
L 2
L == :chosa\/l—v—2
vy c
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07

Figura 5.1: Sistema problema

Puesto que el observador O’ se desplaza de forma completamente horizontal con respecto a O, tendremos
que las componentes horizontales de la varilla no se veran transformadas, es decir L, = L;. Podremos ahora
deducir el angulo o’ segtin la cual la varilla esta orientada segtin el observador O, siendo esta:

L L
o = arctan | =% | = arctan | =%
L/y L,

, Ccos a v2
o' = arctan 1— —
sen o c

A partir de este dato, podremos deducir la longitud de la varilla medida por el observador O¢, esta sera:

Ly

L' =
cos o/

Empleando los valores que nos ofrece el enunciado tendremos los siguientes resultados:

2
o/ = arctan cos(45) 1-— (0,8¢) ~ 30,95°
sen(45) c?
1- 4
, _ 1-cos(45) — 0,82[m|

™ ¢0s(30,95)
Q.EF.

Ejercicio 19 (Problema 5.2). El radio de nuestra galaxia es, aproximadamente, de 30000 anos-luz. ;Con qué
velocidad deberia viajar un cohete para trasladarse desde el el centro hasta el extremo de la galaxia en 30
anos (medido por un observador en el cohete)? ;Cuanto dura el viaje para un observador fijo en el centro de
la galaxia? ;Y para otro en reposo en el punto de destino?

Solucién. R = 30000 anos luz y ¢’ = 30 anos.

Debemos notar que el observador S’ que estd montado en el cohete mide el tiempo propio, ya que, para
él, el cohete no se mueve a lo largo de t'.

Por otra parte, el observador S que esté situado en el centro de la galaxia mide la longitud propia de la
galaxia.

En ecuaciones, tenemos:
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(%)2 _\/W
1+(%)2_ 1 410002

Ve w=1)=(50z) e=1 =3

1
\/5%14-5(.%'—1) cuando z — 1

De esta forma, tenemos:

. 1000* Y _
4T 5 \1 510002 -

110002 — 1 — 10002 1 1 1 1 11
2 1 + 10002 21 + 10002 210002 2106
10 1 1 anos luz
—1-———— =1-5—=1-5-10""= Bt

> To7 5 L 5-10 0,9999995 —

Notemos que tanto el observador que esta en el centro de la galaxia como el que esté en el extremo se ven en
reposo el uno al otro (suponemos que la galaxia no gira). Por tanto, la respuesta para ambos observadores va
a ser la misma: es cuestion de aplicar la siguiente férmula:
1
/
t = ——t

_u?

c2
Sustituyendo por los valores numeéricos, llegamos a:

0 30 30 30

3
t~ = = =
1\2 1 52 108—52
\/1_(1_5W) \/1-(1-10157+1gi4) \/W_wM \/1014
/[ 1014 -/ 1 .11
=30\~ =30-10"/ =5 =30-10", | —c—— =
108 — 52 108 — 52 1087 - 2%
107 1 1 1
=30, ——= =3-10%, | ——-
4 52 52
105V 1 - 5 1= 16z
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1 %$_1%_ 1 SERP
14 B 2¢%;O+xf

1 52 1 52
t~3-10"(1—-=(1—-" —1))=3-10*(1+2"_ ) =
(1-5 (1= 15 —1)) =310 (14 55
+

10 5 5%
):3-m4<y+up>z3mmmmmmamﬁ

QEF.

Ejercicio 20 (Problema 5.3). Un cohete, cuya longitud en reposo es de 60[m], se aleja de la Tierra. Desde
ésta se envia una senal de luz que se refleja en dos espejos situados en los extremos del cohete. La primera
reflexion llega a la Tierra 200[s] después de enviar la senal, y la segunda 1,47[us| mas tarde. Encuentra a qué
distancia de la Tierra se encontraba el cohete en el momento de lanzar el destello. ;Con qué velocidad viaja
el cohete?

Solucién. Sea t; = 200[s] y t2 = 1,47-107%[s] y L la longitud del cohete medida por un observador situado en
la tierra. Puesto que la senal de luz debe ir hasta el cohete y volver, el tiempo que tarda la senal en alcanzar
el extremo del cohete méas cercano a la tierra es igual a t1/2, por lo tanto:

131 200
D{EB,cohete} = 65 =3- 1087 =3 1010[m]

La sefial tarda un tiempo t3/2 en llegar a un extremo del cohete desde el otro, sin embargo, al estar el
cohete en movimiento con una cierta velocidad v, el espacio recorrido por la senal en este tiempo sera igual a
la suma de la longitud del cohete (vista por un observador en la tierra) con el espacio recorrido por el cohete

en este tiempo, es decir:
to to
c-=L+v>-
2 2

2 [t
_ (2
YT <62 >

Sabemos por Lorentz que la relacion entre la longitud del cohete medida desde la tierra L y la longitud del
cohete en reposo Loy = 60[m] es la siguiente:

Asi pues, la velocidad v del cohete seré:

L 2

L
gl c?

Sustituyendo este valor en la expresion para la velocidad del cohete:

Despejando v:

tg ’U2

5(0 — U) = LO 1-— 072

2 Lg 2 tQ ? 2 2
LO 672’11 = 5 (C + v 2C’U)
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@ (5) £ 13
(54 1

= 5 =

2| (%) + g
Asi pues, tendremos dos posibles soluciones, siendo una de ellas, que el cohete se desplaza a la velocidad de
la luz y la otra con velocidad:

IO
& (57 + 12

(3-10%)2 (147106)" _ (g0)2

2
(3-108)2 <%> + (60)2

=C

Q.EF.

Ejercicio 21 (Problema 5.5). Un astronauta, que viaja en un cohete de longitud en reposo L’ a una velocidad
v respecto a la Tierra, envia hacia la misma dos destellos luminosos simultaneos, uno desde cada extremo del
cohete. Ambos destellos se envian cuando para el astronauta ha transcurrido un tiempo ¢, desde su partida.
LEn qué instantes de tiempo recibe el observador terrestre, medidos con su propio reloj y a partir de la salida
del cohete, estos dos destellos?

Soluciéon. Comencemos definiendo la posicién del cohete més cercana a la tierra como x; mientras que la
posicién del extremo mas alejado sera xo.

Sea t(p 1) el tiempo que ha transcurrido desde la partida del cohete medido por un observador en la tierra,
por ello, tendremos que:

Tl = 'Ut{O,l}

Por teoria, sabemos que la relacion entre el tiempo de dos observadores es la que sigue:

,  vr!

Suponiendo el origen de coordenadas del cohete en el extremo méas cercano a la tierra, tendremos que z’ = 0,
por lo que:

T ="v t/—i——v.o = vyt
1 =071 2 = V7
Siendo que el observador terrestre registra una longitud L para el cohete, tendremos que:

To =21+ L
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Puesto que es el observador en el cohete el que mide la longitud propia del mismo, la longitud del cohete
medida por el observador terrestre seré la siguiente:

L/
Kl

L

Con esto, tendremos la posiciéon del extremo del cohete més alejado de la tierra:

/

Ty = vyt + —
8
La luz tardara un tiempo ¢; = % en realizar el trayecto desde el extremo més cercano del cohete a la
tierra, mientras que tardara un tiempo t; = #2 en hacerlo desde el extremo alejado.
/
v v

t1 = *’}/to to = 7’}/1;0 + —
c c ~ve

El observador en el cohete envi6 los destellos cuando su reloj marcoé un tiempo ¢, sabemos que para el
observador en la tierra este tiempo es igual a:

/ v-0 /
t=2 to‘f‘cT =,

Asi, el tiempo total 17 que un observador en tierra tarda en recibir el destello emitido por el extremo més
cercano sera:

v
Ty =t +9t, =t (1+ )

mientras que el tiempo T5 que tarda en recibir el destello emitido por el extremo mas alejado sera:

v L
T2:752+7t0=t;7<1++2>
c oy

Q.EF.

Ejercicio 22 (Problema 5.9). (Junio 2017) Un tren de longitud en reposo L se mueve con velocidad %c hacia
la derecha, y otro tren de longitud en reposo 3L se mueve con velocidad %c hacia la izquierda. Calcule qué
velocidad @ (mo6dulo y sentido) deberia llevar un observador externo (que se mueve en paralelo a los trenes)
para que las dos cabezas y las dos colas de los trenes queden enfrentadas simultaneamente. ; Qué velocidad
relativa lleva cada tren respecto al tercer observador? ;Cuanto dirfa un observador en el primer tren que mide
el segundo tren?

Solucién. Laa =L, Lpp =3L, va0 = 5¢ vpo = —3¢.

;Cuanto diria un observador en el primer tren que mide el segundo tren?: Hallemos la velocidad
relativa entre A y B:

UB,0 — VA,0 —3c—%c I -1 7-25 7-5 35
UB,A = 1 : = 354 = 512 :37750:_70:_7:_*0

Aplicando contraccion de longitudes, obtenemos:

Lpa=1\/1-

2 35 2
BALpp=1/1- () 3L ~ 0,97297297L
C
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Calcule qué velocidad debe llevar un observador externo C' para que vea las dos cabezas y las
dos colas enfrentadas simultaneamente: Buscamos un tercer observador C' que vea ambos trenes de la
misma longitud. Vamos a usar la siguiente notacion: v4 g es la velocidad con la que el observador B ve al A.
Matemaéticamente, debe cumplirse:

Lac =
Lpc=
2 2
v v
A0\ ;2 B.C \ ;2
Lac=Lgc< |1- 2 Lija=11- 2 Ly p <

Definimos:
__vAC __uBcC _Laa
uA7C = c s UB7C = c s = ——

De esta forma, la ecuaciéon anterior queda:
2 2 2
(1 — UA,C)Z =1- uB,C
Por otra parte, por la transformacion de Lorentz para velocidades, obtenemos:

VA0 — V0,0 _ UA0 —UCO
VAC = [ woovao T UACT T UC,0UA,O
02 ) )

_ UB,O —VC,0 _ Up,0o —UucC,o
UB,C - 1 _ vC,0VB,0 A U'B,C - 1 - UC OUB.O

62 ) )

De esta forma, obtenemos:

2 2

UA0 — UC,0 UB,0 — UC,0

(- (pao=teo Y] oy (#mo=reo )’
1 —ucouao 1 —ucouBo

2 2 2 2
a1 Uy o —2uA0uco Tuco | _ UBo ~ 2up,ouc,o +ug o
1= 2ucoua0 + Ut ot o 1= 2ugoupo +ugoup o
2 2 2 2
o 1-— QUC,OUA,O + UG oUA 0~ UA 0 + QUA,OUC,O — UG o B

1 —2ucouso + uéouio

2 2 2 2
_ 1 —2ucoupo + UG oUB.0 — UB.0 + 2upouc,o — e o

-

2 2
1 =2ucoupo +ugoupo

2 2 2 2 2 2 2 2
oL Hugouy o —uao —uco 1tugoupo—upo—uco

= &
1 —2ucouao + uQQOui’O 1 —2ucoupo + “20,0“23,0
2 2 2 2
() (1t0) _(1-20) - vh)
=3 =
1 2 1 2
(1 —ucoua0) (1 —ucouBo)
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Obtenemos las soluciones triviales uc,0 = +1 < vc,o = £c. Al descartarlas, podemos dividir por (1 — u% O),

obteniendo:

l2

2 2 2 2
L —u% 0 B I —ugpo ol = U300 (1 — uc,ouAp) o

(1 - ucouan)’ (1 —ucoupo)’ 1 —up g 1 —ucoupo

1 —u? 1—
A,O0 UC,0UA,0O
= =

1-— UQB,O 1 —ucouB,o

1 —u?
4,0
—s = 1 -ucouso &

l1—wu

()’
+31 |
\oa-(-2)
Uu = =
PPN P
+3 (_3) 1_(_%)2 5
1 1—16 1 9
ty\fimE - Eyy R -1 L /S
B 1_16 B 9, 1 /9 1
Ti 1_?-% T\ B -2 Ts5\Vi6 5
5 5
1 1 +1-4 1-4 _r-3 _ 15
= i113_14:5i§_1:5 3416:5i1_4 :{5—_13—_416_5—_519_2519
Fsi—5 Fi—4  Fp F3-16 S =o3=1 L

Notese que el altimo resultado es absurdo, ya que es mayor que 1 (y, de esta forma seria vc,o mayor que c).

En consecuencia, debe ser:
15
vo,0 = 1—90 ~ 0,789474c

A continuacion, volvemos a:

1-72" 1-n%e 1-53 -1 19 HT
= %c = %c ~ 0,028571c
UB,C = UB7Ovc_oqig72 = _%fs_ %30 == %—i_l%g == 579_;75 - = % €= _%C =
e copts A
13219 66-2-19 11-3-4-19 11-3 33

95-28°7 "19.5-14-2° 19-5-7-4°¢ 5.7 ¢ T3p¢ 0042857
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QETF.

Ejercicio 23 (Problema 5.15). En cierto sistema de referencia se observa que una particula posee una energia
total de 5|GeV] y un momento de 3|GeV /c|. ;Cual es su masa en reposo? ;Cudl es la energia de la particula en
un sistema en el que su momento es 4|GeV /c|? {Cual es la velocidad relativa de los dos sistemas de referencia?

Solucién. Recordemos la relacion entre la energia total de una particula con su momento:

E? = p22 + m2!

A partir de esta expresion, podemos despejar el valor de m como:

E? — p2¢2

m =
c2

sustituyendo los valores aportados por el enunciado, tendremos que el valor de la masa en reposo es de:

m = (5)2 B (3/6)262 — 4[GeV/c2]

c2

Siendo que esta masa permanece constante para todos los observadores, la energia E’ de esa misma particula
con un momento p’, sera:

E' =/p22 +mct = V(4/¢)2¢2 + (4/c2)2ch = 44/2|GeV]

La relacion entre las energias medidas por dos sistemas de referencia moviéndose con una velocidad relativa
v es la que sigue:
/
E' =~(E —vp)

de modo que sustituyendo por los valores anteriormente calculados, deberemos despejar el valor de v:

4x/§:#(5—3%>

_ v
2
v 2

2 1 v v
alv? 150 7
32¢2 16¢ 32

o By’ 4@ ()

2 (33)

B V2 15+16v2

() 004

v1 =~ 0,918¢ vy &~ —0,186¢

Debido a que las velocidades relativas deben ser positivas, debemos descartar la velocidad wve, por lo que la
velocidad relativa entre los dos sistemas de referencia seré de:

v = 0,918¢

QETF.
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Ejercicio 24 (Problema 5.18). (Septiembre 2017) Un pion sin carga (energia en reposo 135 MeV) se mueve
a velocidad v = 0,98¢ y se desintegra en dos fotones, que emergen con el mismo angulo a cada lado de la
direccién inicial de movimiento. Encuentre ese angulo y la energia de cada foton.

Solucién. v = g—gc y Eg =135 MeV
Lo primero, notemos que podemos hallar la masa del pion mediante la expresion:

Ey=mc? &m=—= (5.9.1)

Llamemos 6 al angulo de desviacion de los fotones con respecto al eje X . Asi, por conservaciéon del momento
lineal tenemos en el eje X (la direccion del pion):

1 E
p=mu = —m——mu = 2p cost) = 2~ cosf <
1-% ¢
1 E E E
& 0y =277 cosf < 0 B:2JCOSQ<:>
V2 C c v2 C
Vit e A V-
E
& 7029 = I, cosf (5.9.2)
24/1-% €
Por conservacion de la energia, tenemos:
2 1
E =ymc® = mc” =2E, &
1 v
02
& — ¢ =2E, < =E,

Por ultimo, sustituimos en la ecuacion obteniendo:

E E
0 QE: 0 20050@0056:B¢)0:aretan<2)
2,/1-%° 24/1-% ¢ ¢
Sustituyendo por los valores numéricos, llegamos a:
135

2y/1- (%)’

4
f = arctan <9> ~ 0,775297 rad ~ 44,4213°

E, = ~ 339,200 MeV

(SN

QEF.

Ejercicio 25 (Problema 5.19). (Junio 2018) Dos cuerpos idénticos de masa m se aproximan el uno al otro con
velocidades de igual modulo v (comparable a ¢) respecto a un observador O. Tras un choque perfectamente
inelastico queda una tnica particula. Determine la masa del nuevo cuerpo, segiin el observador O. Repita de
nuevo el problema segtin un observador O’ que se encuentra en reposo respecto a uno de los cuerpos iniciales.

Solucion.
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Para el observador O: Notese que, segiin el enunciado, las particulas quedan quietas tras el choque. Por
conservacion de la energia tenemos:

2yme? = Mc? & 2ym = M

M= 2m

Para el observador O’ = 1: Primero, tenemos que hallar la velocidad con la que el observador O’ ve a la
particula que no esta en reposo:

V2,0 — V1,0

—v—v —2v
U2,1 = U1,0V2,0 2 2
1— === 1+ 1+ %
Por conservaciéon del momento lineal, obtenemos:
m m 1
0+ v = —=MV &
1—- 90 v3 4 1— vz
c2 T2 c2
m M
= v 1 = V<
Ug,l 1— vz
]. - CT c2
2 2
m M
& v, Ve
21 7 _v:
1 - Cié 02
2,2 2 2,2 2,2
mev V m-u 1 m-v
2,1 2,1 2,1
—(1-— )| =MV*& = |3 Tt M| Ve
_ Y% c — 2t G A
2 2 2
m2v2
m2v2 . 2 m2v2 V2 " A
21~ _ 2,1 2 2 _ C"=U31 .
<:>02_U2 =\ z 2 + M V@CT_m%%l . A+ M2
2,1 2,1 T+ M
2,1
Por otra parte, por conservaciéon de la energia:
Ey+ FEy=FEf & me?® + ngCQ = Wmc2 &
m M
& md + 5 2= l s
1 Y21 1— vz
\1— 2L \/ o
M
Sm| 1+ = = —
V2.1 1— vz
— 2 -
Sustituyendo, tenemos:
1 M M M M
m | 1+ 2 o A 2 o > M At M2
v. o A+M2—-A M
V11— = \/1 A+ M2 \/ A+ M? ArME  VA+M?
2
1
em? |1+ =A+M* =
’L)2
_ Y
C2
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2
1
e M =m?|1+ A=
’U2
1 _ 2,1
c2
2 1 m2v3
2 21
=m 1 —|" - '1)2 SR =
2.1 _ Y c* — U5,
— 2t % ,
2 202 m2v3
=m* 1+ P T2 T2 2721 =
\J1 - P2 =V Uy
C2
2m? m?
2 2
=mot —+ 52 (¢ — i)
1— 21 2,1
C2
2m? 1
—om? 4 —2m? 1+ i
1 — UCZTI 1— U2 1
1 1
=2m? |1+ > =om? |1+ = 29m? —|——22 =
dv 5 2 2 __4vic .
<1+%) ‘H’ ) (c2+v2)
2
1 1
=2m? |1+ =o2m? 1+ _
(2 402)%—do22 \/c4+v4+202v2;4v2c2
W (62+’U2)
1 1 2 2
=o2m? |1+ =om2 |14+ —— | =2m? 1+ﬂ —
ct4vt—202¢2 (c2—v2)2 c2 — 2
(2+v2)? (21022
5 G =i+t AmPc? M 2mce 2m 2m
= 4Zm = = = =
2 —v? 2 —v? Ve — 2 \/Cz,vz \/ 02
rza -2
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