
Mecánica Clásica II

Andrés Laín Sanclemente, Miguel Calvo Arnal1, Alejandro Cano Jones2,
Juan Guerrero Marcos2 y otros3

Versión 1.0.0

1Ilustre ilustrador.
2Autores de la parte de problemas y correctores oficiales.
3Los demás autores han hecho contribuciones menores y aparecen mencionados tras el índice.



Índice general

1. Sistemas de partículas 3
1.1. Descripción del Sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Momento lineal y momento del centro de masas . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1. Variación del momento lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2. Sistemas de partículas aisladas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3. Sistema de referencia centro de masas . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3. Momento Angular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1. Variación del momento angular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4. Energía de un sistema de partículas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.1. Variación de la energía cinética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5. Ecuaciones de Lagrange para un sistema de partículas . . . . . . . . . . . . . . . . . . . . . . 35
1.6. Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2. Sólido rígido 49
2.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2. Leyes básicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3. Rotación en torno a un eje . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.1. Momento angular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.2. Energía cinética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.3. Componentes perpendiculares de ~J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4. Tensor de inercia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.1. Endomorfismo de inercia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.2. Forma cuadrática de inercia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.3. ¿Qué demonios es el tensor de inercia? . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.4.4. Ejes principales de inercia y propiedades . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.4.5. Cuerpos simétricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.4.6. Teorema de Steiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.5. Movimiento de un punto fijo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.6. Velocidad angular instantánea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.7. Ecuaciones de Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.8. Ángulos de Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.8.1. Definición y explicación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.8.2. Propiedades derivadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.8.3. Movimiento libre de sólidos rígidos simétricos . . . . . . . . . . . . . . . . . . . . . . . 105

2.9. Mecánica lagrangiana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.9.1. Nutación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.10. Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

1



Laín-Calvo-Cano-Guerrero ÍNDICE GENERAL

3. Pequeñas oscilaciones y modos normales de oscilación 128
3.1. Coordenadas ortogonales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.2. Modos normales de oscilación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.3. Osciladores débilmente acoplados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.4. Propiedades para la base de autovectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.5. Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4. Oscilaciones mecánicas 161
4.1. Oscilaciones de partículas en una cuerda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.2. Ecuaciones de Lagrange en una cuerda tensa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3. Modos normales en una cuerda tensa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.4. Ondas longitudinales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.5. Ondas en una columna de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.5.1. Velocidad del sonido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.5.2. Ondas estacionarias en columnas de gas . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.6. Propagación de energía en cuerdas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.7. Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5. Relatividad especial 190
5.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.1.1. Transformación de Galileo unidimensional . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.1.1.1. Invarianza galileana de las leyes de Newton . . . . . . . . . . . . . . . . . . . 192
5.1.1.2. Experimento de Michelson-Morley . . . . . . . . . . . . . . . . . . . . . . . . 192

5.2. Postulados de la Relatividad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3. Dilatación de tiempos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.4. Contracción de longitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.5. Transformación de Lorentz unidimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.5.1. Transformación directa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.5.2. Transformación inversa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.5.3. Transformación de velocidades unidimensional . . . . . . . . . . . . . . . . . . . . . . . 207

5.6. El grupo de Lorentz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.6.1. Tipos de transformaciones de Lorentz . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.6.2. Cuadrivectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.6.3. Cono de luz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.7. Momento lineal relativista y energía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.7.1. Por qué la definición clásica de momento lineal falla . . . . . . . . . . . . . . . . . . . 217

5.8. Energía cinética relativista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.8.1. Partículas sin masa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

5.9. Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Esta obra está bajo una licencia Creative Commons “Reconocimiento-
NoCommercial-CompartirIgual 3.0 España”.

Agradecimientos 1. Un especial agradecimiento a Rossen Dimitrov Gueorguiev por la elaboración de varios
modelos 3D utilizados para varios vídeos en el capítulo 2, a saber: la peonza, el paralelepípedo asimétrico
(usado en el estudio de la estabilidad de las rotaciones) y la esfera con un cilindro incrustado (usado en el
estudio de la nutación).

Agradecimientos 2 (Agradecimientos varios). Gracias a Raúl Almuzara Diarte, Andrés Martín Megino, Mireia
Martínez Aznar y Manuel Romeo Monterde por corrección de erratas.

Licencia: Creative Commons 2

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero

Capítulo 1

Sistemas de partículas

1.1. Descripción del Sistema

Postulado 1. Consideramos que cualquier cuerpo material está formado por un conjunto de partículas lo
suficientemente pequeñas como para suponer que son puntuales, pero no tan pequeñas como para tener que
trabajar con física cuántica.

Postulado 2. Sea un sistema de N partículas. Las partículas que integran dicho sistema pueden interactuar
entre ellas y pueden estar sometidas a fuerzas externas.

Notación 1. Cuando tengamos un sistema de N partículas, a cada partícula le asignaremos un subíndice (un
número natural) desde i = 1 hasta i = N . A la fuerza interna que actúa sobre la partícula i-ésima debido a
la partícula j-ésima la vamos a denotar con ~Fij ; es decir, primero escribiremos el índice de la partícula que
recibe la acción y después el índice de la partícula que la genera. Por otra parte, a la fuerza externa que actúa
sobre la partícula i-ésima la vamos a denotar con un solo índice: ~Fi.

Postulado 3. Una partícula no puede hacer fuerza sobre sí misma, luego ~Fii = ~0 ∀i = 1, . . . , N .

Teorema 1 (Equivalencia entre cuerpos con volumen y sistemas de infinitas partículas). Sea un cuerpo con
volumen, cuyos puntos forman el conjunto V ⊂ Rm, siendo V medible Lebesgue y sea ρ : V −→ R la función
densidad volumétrica asociada al cuerpo tal que ρ es continua en casi todo punto de V y está acotada en
módulo en V por una constante R ∈ [0,∞). Además, sea f : V −→ Rn (con n ∈ N) continua en casi todo
punto de V y también acotada en norma por una constante F ∈ [0,∞). Entonces, existen dos sucesiones
{mN ;i}(2N)n

i=1 y {~rN ;i}(2N)n

i=1 (que dependen de N ∈ N) tales que:∫∫∫
V
ρ (~r) f (~r) dV = ĺım

N→∞

(2N)n∑
i=1

mN ;if (~rN ;i)

con mN ;i ∈ R y ~rN ;i ∈ V ∀i = 1, . . . , (2N)n ∧ ∀N ∈ N.

Observación 1. La demostración del teorema 1 no está al alcance del estudiante de física de segundo de
carrera, pues para su comprensión hacen falta conceptos de teoría de la medida y, sobre todo, de la integral
de Lebesgue.

No obstante, el resultado anterior es fundamental en física; ya que implica que un cuerpo (sólido, líquido
o gas) puede interpretarse como un sistema de infinitas partículas. Es decir, nos va a permitir extender todas
las leyes que conocemos para un sistema de partículas a cualquier cuerpo con un volumen.

Demostración. Usaremos la notación: ∫
V
ρf :=

∫∫∫
V
ρ (~r) f (~r) dV (1.1.1)
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más acorde con la teoría de la integración de Lebesgue. Como, ρ y f son continuas en casi todo punto, ρ y
f son integrables Lebesgue. Dado que el producto de funciones integrables es integrable, la integral anterior
está bien definida.

Esta demostración va a ser larga, por lo que vamos a elaborar un esquema de los pasos a seguir:

1. Como ρ y f son continuas, podremos restringir la integral de la ecuación 1.1.1 en la página anterior a
un conjunto W ⊆ V en el que f y ρ sean continuas.

2. Probaremos que g := ρf está acotada en módulo por una constante G. Por tanto, cada una de las
componentes de g también está acotada por G.

3. Definiremos una sucesión de conjuntos medibles
{
{TN,i}Ni=−(N−1)

}∞
N=1

. Para un N fijo, los conjuntos
TN,i son disjuntos entre sí y además:

[−G,G] =
N⋃

i=−(N−1)

TN,i

4. Particionaremos el recorrido de g en «hipercubos» KN ;i1,...,in medibles, disjuntos entre sí y cuya unión
es [−G,G]n.

5. Crearemos una sucesión de conjuntos EN ;i1,...,in medibles que son disjuntos entre sí y cuya unión es W .

6. Construiremos una sucesión de funciones {gN}∞N=1 a partir de los EN ;i1,...,in que converge a g cuando
N →∞. Además, ||gN || ≤ G ∀N ∈ N.

7. Usaremos el teorema de la convergencia dominada para demostrar:∫
W
g = ĺım

N→∞

∫
W
gN

8. Con el fin de aligerar la notación cambiaremos los múltiples índices i1, . . . , in por un único índice i.

9. Expresaremos
∫
W g como:

∫
W
g = ĺım

N→∞

N∑
j=1

x̂j

∫
W

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

siendo x̂j el vector unitario j-ésimo de la base canónica de Rn.

10. Demostraremos que se pueden obtener sucesiones de funciones simples medibles
{
ρ+
N

}∞
N=1

,
{
ρ−N
}∞
N=1

,{
f j,+N

}∞
N=1

y
{
f j,−N

}∞
N=1

∀j = 1, . . . , n tales que:

∫
W

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

=

∫
W
ρ+
Nf

j,+
N −

∫
W
ρ−Nf

j,+
N −

∫
W
ρ+
Nf

j,−
N +

∫
W
ρ−Nf

j,−
N

donde ρ+
Nf

j,+, ρ−Nf
j,+
N , ρ+

Nf
j,−
N , ρ−Nf

j,−
N también son funciones simples. Con esto, hemos conseguido ex-

presar
∫
W ρf como la suma de integrales de funciones simples.

11. Existe una sucesión de números reales
{
{mN ;i}(2N)n

i=1

}∞
N=1

tales que:

∫
W

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

=

(2N)n∑
i=1

mN ;if
j (~rN ;i)
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12. Llegamos al enunciado volviendo a unir todos los términos mediante la expresión dada en el punto 9 en
la página anterior.

Dicho todo esto, podemos comenzar:

1. Nótese que ρf será continua en donde f y ρ sean ambas continuas; ya que la composición de funciones
continuas es continua. Llamemos C1 al conjunto en el que ρ no es continua y C2 al conjunto en el que f
no es continua. Por hipótesis es me (C1) = me (C2) = 0, ya que ρ y f son continuas en casi todo punto
de V . Por último, denominemos W al conjunto W := V \C1\C2. Como tanto ρ como f son continuas en
W , ρf será continua en W . Bien, ahora reescribamos la ecuación 1.1.1 en la página 3:∫

V
ρf =

∫
C1

ρf︸ ︷︷ ︸
=0

+

∫
C2

ρf︸ ︷︷ ︸
=0

+

∫
V \C1\C2

ρf =

∫
W
ρf

donde los términos marcados se anulan, pues la integral de cualquier función a lo largo de un conjunto
de medida nula es nula.

2. Definimos g := ρf . Como, por hipótesis, ρ está acotada en módulo por R en V y f está acotada en
norma por F en V , g estará acotada por:

||g|| = ||ρf || = |ρ| ||f || ≤ RF =: G

en W . Antes de proceder, notemos que:∣∣gj (~r)
∣∣ ≤ ||g (~r)|| ≤ G ∀~r ∈W ∧ ∀j = 1, . . . , n

donde con gj nos referimos a la componente j-ésima de g. Así, sabemos que la componente j-ésima de
g (~r) variará como mucho de −G a G.

3. Definimos los conjuntos:

TN,i :=

[
(i− 1)G

N
,
iG

N

)
∀i = − (N − 1) , . . . , N − 1 ∧ ∀N ∈ N

TN,N :=

[
(N − 1)G

N
,
N

N
G

]
=

[
N − 1

N
G,G

]
∀N ∈ N

De esta forma, hemos definido una sucesión de conjuntos:
{
{TN,i}Ni=−(N−1)

}∞
N=1

. Nótese que estos
conjuntos son medibles pues son intervalos de R y todo intervalo de R es medible.
Probemos que para un N fijo, estos conjuntos son disjuntos entre sí. Sea x ∈ TN,i y veamos que x /∈ TN,j
∀j 6= i.

Si i ∈ {− (N − 1) , . . . , N − 1}, entonces, por definición de TN,i se cumple:

i− 1

N
G ≤ x < iG

N

Si es j > i, entonces es j ≥ i+ 1 y, en consecuencia:

j − 1

N
G ≥ i+ 1− 1

N
G =

iG

N
> x

Luego x /∈ TN,j si j > i. Por otra parte, si es j < i, entonces es j ≤ i− 1 y, por consiguiente:

jG

N
≤ i− 1

N
G ≤ x

Luego x /∈ TN,j si j < i. Por ende, x /∈ TN,j ∀j 6= i.
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Si i = N , entonces por definición de TN,N se da:

N − 1

N
G ≤ x ≤ G

Necesariamente es j ≤ N − 1, pues no puede ser j > N . De esta forma:

jG

N
≤ N − 1

N
G ≤ x

Luego x /∈ TN,j ∀j 6= i.

Por tanto, los conjuntos TN,i son disjuntos entre sí. Además, probemos ahora que es:

[−G,G] =
N⋃

i=−(N−1)

TN,i (1.1.2)

Probaremos esto por doble contenido.

⊃: Sea x ∈ TN,i para algún i ∈ {− (N − 1) , . . . , N}.
• Si es i < N , entonces por definición de TN,i tenemos:

i− 1

N
G ≤ x < iG

N

Como es i ≥ − (N − 1) e i < N , obtenemos:

−G ≤ −N
N

G =
−N + 1− 1

N
G =

− (N − 1)− 1

N
G ≤ i− 1

N
G ≤ x < iG

N
<
N

N
G = G

Por tanto x ∈ [−G,G].
• Si es i = N , entonces por definición de TN,N tenemos:

N − 1

N
G ≤ x ≤ G

Como N−1
N ≥ 0, obtenemos:

−G < 0 ≤ N − 1

N
G ≤ x ≤ G

Luego x ∈ [−G,G].

⊂: Sea x ∈ [−G,G]. Vamos a demostrar por reducción al absurdo que x debe pertenecer a algún
TN,i. Por tanto, supongamos que x /∈ TN,i ∀i = − (N − 1) , . . . , N . Vamos a probar que, bajo este
supuesto y sabiendo que es x ≥ −G, debe ser necesariamente x > G, lo que es absurdo. Vamos a
probar esto último por una especie de «inducción» sobre i.

• Como x /∈ TN,i∀i = − (N − 1) , . . . , N , en particular, x /∈ TN,−(N−1). Luego, por definición de
TN,−(N−1), tenemos:

x <
− (N − 1)− 1

N
G = −N

N
G = −G ∨ x ≥ − (N − 1)

N
G

Como es x ≥ −G, debe ser:

x ≥ − (N − 1)

N
G
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• Suponiendo que es x ≥ i
NG, veamos que es x ≥ i+1

N G siempre que sea i < N . Como x /∈ TN,i+1,
tenemos que es:

x <
i+ 1− 1

N
G =

i

N
G ∨ x ≥ i+ 1

N
G

Como es x ≥ i
NG, debe ser x ≥ i+1

N G.
• Por último, sea i = N . Utilizando el argumento visto hasta la fecha hemos probado que

necesariamente es x ≥ N−1
N G. Veamos que tiene que ser x > G. Como x /∈ TN,N , por definición

de TN,N , se da:

x <
N − 1

N
G ∨ x >

N

N
G = G

Como es x ≥ N−1
N G, debe ser x > G.

Con esto llegamos a absurdo pues era −G ≤ x ≤ G. Así, x debe pertenecer a algún TN,i.

En consecuencia, se cumple la ecuación 1.1.2 en la página anterior.

4. Definimos los conjuntos KN ;i1,...,in como:

KN ;i1,...,in := TN,i1 × · · · × TN,in ∀i1, . . . , in = − (N − 1) , . . . , N ∧ ∀N ∈ N

donde n es la dimensión del espacio de llegada de f : Rn. Para que el lector pueda hacerse una idea de
lo que acabamos de hacer, es como si hubiéramos partido [−G,G]n en «hipercubos» cerrados por unas
hipercaras y abiertos por otras.
Los conjuntos KN ;i1,...,in son medibles, pues se han obtenido como producto cartesiano de conjuntos
medibles (los TN ;i son medibles por el punto 3 en la página 4).
Ahora queremos demostrar que los conjuntos KN ;i1,...,inson disjuntos entre sí. Sea y ∈ KN ;i1,...,in , en-
tonces, por definición de KN ;i1,...,in , será yj ∈ TN,ij ∀j = 1, . . . , n, donde con el superíndice j indicamos
la componente j-ésima de y. Como TN,ij es el único conjunto TN,i que contiene a yj por el punto 3
en la página 4 (y este argumento es válido para todo j = 1, . . . , n), el único conjunto que se puede
expresar como producto cartesiano de los TN,i que contiene a j es, precisamente KN ;i1,...,in (el conjunto
de partida). De esta forma, los conjuntos KN ;i1,...,in heredan la propiedad de ser disjuntos de los TN,i.
Por último, nos queda ver que, efectivamente:

[−G,G]n =
N⋃

i1=−(N−1)

· · ·
N⋃

in=−(N−1)

KN ;i1,...,in (1.1.3)

Probaremos esto por doble contenido:

⊂: Sea y ∈ [−G,G]n. Entonces será yj ∈ [−G,G] ∀j = 1, . . . , n donde con yj denotamos la
componente j-ésima del vector y. Por el punto 3 en la página 4, sabemos que existe un (único)
ij ∈ {− (N − 1) , . . . , N} tal que yj ∈ TN,ij ∀j = 1, . . . , n. De esta forma, será:

y ∈ TN,i1 × TN,i2 × · · · × TN,in = KN ;i1,...,in

Así y ∈ KN ;i1,...,in .

⊃: Sea y ∈ KN ;i1,...,in . Por la definición de KN ;i1,...,in , tenemos que yj ∈ TN,ij ∀j = 1, . . . , n. Por el
punto 3 en la página 4, sabemos que yj ∈ [−G,G] ∀j = 1, . . . , n. Por ello, y ∈ [−G,G]n.

Así, efectivamente, se cumple la ecuación 1.1.3.
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5. Definimos los conjuntos:
EN ;i1,...,in := {~r ∈W t.q. g (~r) ∈ KN ;i1,...,in}

Como g es integrable Lebesgue por el punto 1 en la página 4, en particular será medible. Como g es
medible, la antiimagen de cualquier conjunto medible es medible. Ya que los KN ;i1,...,in son medibles por
el punto 4 en la página 4, los EN ;i1,...,intambién lo serán.
A continuación, veamos que los EN ;i1,...,in son disjuntos entre sí. Para ello, usaremos reducción al absurdo.
Supongamos que existe un ~r ∈ W tal que ~r ∈ EN ;i1,...,in ∧ ~r ∈ EN ;j1,...,jn con EN ;i1,...,in 6= EN ;j1,...,jn .
Entonces, g (~r) cumpliría g (~r) ∈ KN ;i1,...in ∧ g (~r) ∈ KN ;j1,...,jn con KN ;i1,...in 6= KN ;j1,...,jn y esto es
absurdo, pues, por el punto 4 en la página 4, los KN ;i1,...,inson disjuntos entre sí.
Por último, debemos demostrar que:

W =

N⋃
i1=−(N−1)

· · ·
N⋃

in=−(N−1)

EN ;i1,...,in

Probaremos esto por doble contenido.

⊂: Sea ~r ∈W . Entonces, g (~r) ∈ Im (g). Por el punto 2 en la página 4, sabemos que g está acotada
en norma por G. Luego, se da Im (g) ⊆ [−G,G]n. Como, por el punto 4 en la página 4 es:

[−G,G]n =

N⋃
i1=−(N−1)

· · ·
N⋃

in=−(N−1)

KN ;i1,...,in

necesariamente existen i1, . . . , in ∈ {− (N − 1) , . . . , N} tales que g (~r) ∈ KN ;i1,...,in . Por definición
de EN ;i1,...,in , se da ~r ∈ EN ;i1,...,in .
⊃: Sea ~r ∈ EN ;i1,...,in . Por definición de EN ;i1,...,in , es ~r ∈W .

6. Para cada uno de los conjuntos definidos en el punto 5 en la página 4, escogeremos un representante que
llamaremos ~rN ;i1,...,in de la siguiente forma:

~rN ;i1,...,in =

{
cualquier ~r ∈W si EN ;i1,...,in = ∅

cualquier ~r ∈ EN ;i1,...,in si EN ;i1,...,in 6= ∅
∀N ∈ N

Ahora, definimos la sucesión de funciones gN ∀N ∈ N como:

gN :=
N∑

i1=−(N−1)

· · ·
N∑

in=−(N−1)

g (~rN ;i1,...,in)χEN ;i1,...,in
(~r) (1.1.4)

donde χEN ;i1,...,in
es la función característica asociada a EN ;i1,...,in que viene dada por:

χEN ;i1,...,in
(~r) =

{
1 si ~r ∈ EN ;i1,...,in

0 si ~r /∈ EN ;i1,...,in
∀i1, . . . , in = − (N − 1) , . . . , N

Veamos que la sucesión {gN}∞N=1 converge a g. Sea ~r ∈ W . Por el punto 5 en la página 4, sabemos
que existe uno y sólo un EN ;i1,...,in tal que ~r ∈ EN ;i1,...,in . De esta forma, todos los sumandos de la
expresión 1.1.4 serán nulos salvo el que contiene a χEN ;i1,...,in

. Es decir, será:

gN (~r) = g (~rN ;i1,...,in)χEN ;i1,...,in
(~r)︸ ︷︷ ︸

=1

= g (~rN ;i1,...,in)

Como tanto ~r como ~rN ;i1,...,in pertenecen a EN ;i1,...,in , se dará g (~r) ∈ KN ;i1,...,in y gN (~r) = g (~rN ;i1,...,in) ∈
KN ;i1,...,in . Por tanto, gj (~r) ∈ TN,ij y gjN (~r) = gj (~rN ;i1,...,in) ∈ TN,ij para algún ij ∈ {− (N − 1) , . . . , N}
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donde con el superíndice j indicamos la componente j-ésima de las funciones g y gN . Por la definición
de los TN,i, tenemos que:∣∣∣gjN (~r)− gj (~r)

∣∣∣ ≤ i

N
G− i− 1

N
G =

i

N
G− i

N
G+

1

N
G =

G

N

Cuando N →∞,
∣∣∣gjN (~r)− gj (~r)

∣∣∣→ 0, luego gjN (~r) −−−−→
N→∞

gj (~r). Como el argumento anterior es válido

para todo j = 1, . . . , n, gN (~r) converge a g (~r) componente a componente y, por tanto, converge. Es
decir, se da:

ĺım
N→∞

gN (~r) = g (~r) ∀~r ∈W

Por último, probemos que es ||gN (~r)|| ≤ G ∀~r ∈ W ∧ ∀N ∈ N. Sea ~r ∈ W . Siguiendo el mismo
argumento que antes, obtenemos que:

gN (~r) = g (~rN ;i1,...,in)

Por tanto:
||gN (~r)|| = ||g (~rN ;i1,...,in)|| ≤ G ∀~r ∈W ∧ ∀N ∈ N

pues g está acotada en norma por G como vimos en el punto 2 en la página 4.

7. Planteamos la integral
∫
W g, que está bien definida por el punto 1 en la página 4. Utilizando la sucesión

construida en el punto 6 en la página 4, obtenemos:∫
W
g =

∫
W

ĺım
N→∞

gN

pues gN −−−−→
N→∞

g. Como, además, por el punto 6 en la página 4, se da ||gN || ≤ G dondeG es una constante
y, en consecuencia, integrable Lebesgue, podemos aplicar el teorema de la convergencia dominada para
sacar el límite fuera de la integral. Así: ∫

W
g = ĺım

N→∞

∫
W
gN

8. Nuestro objetivo es realizar una correspondencia biyectiva entre A := {− (N − 1) , . . . , N}n y B :=
{1, . . . , (2N)n}. Lo primero, notemos que ambos conjuntos tienen el mismo número de elementos, pues:

|A| = (N − (− (N − 1)) + 1)n = (N +N − 1 + 1)n = (2N)n

|B| = (2N)n − 1 + 1 = (2N)n

Luego una correspondencia biyectiva es posible. Definimos la aplicación:

h : A −→ B
(i1, . . . , in) −→ i = h (i1, . . . , in)

donde:

i := (2N)n−1 (i1 +N − 1) + · · ·+ (2N)2 (in−2 +N − 1) + 2N (in−1 +N − 1) + (in +N) =

= 1 +
n∑
j=1

(2N)n−j (ij +N − 1)
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Por la definición dada para i, dados (i1, . . . , in) está claro que obtenemos un único posible valor de i.
Veamos que el recíproco también es cierto. Vamos a definir una aplicación l : B −→ A y a verificar que
l ◦ h = id.

l (i) := (i1, . . . , in) =(⌊
i− 1

(2N)n−1

⌋
−N + 1,

⌊
i− 1− (2N)n−1 (i1 +N − 1)

(2N)n−2

⌋
−N + 1, . . . ,


i− 1−

j−1∑
k=1

(2N)n−k (ik +N − 1)

(2N)n−j

−N + 1, . . . ,


i− 1−

n−1∑
k=1

(2N)n−k (ik +N − 1)

(2N)0︸ ︷︷ ︸
=1

−N + 1


donde con bc indicamos «función suelo». Nótese que para el cálculo de ij es necesario haber obtenido
ij−1 con anterioridad. Probemos componente a componente que, efectivamente, l ◦ h = id:

ij =


i− 1−

j−1∑
k=1

(2N)n−k (ik +N − 1)

(2N)n−j

−N + 1 =

=


1 +

n∑
k=1

(2N)n−k (ik +N − 1)− 1−
j−1∑
k=1

(2N)n−k (ik +N − 1)

(2N)n−j

−N + 1 =

=


n∑
k=j

(2N)n−k (ik +N − 1)

(2N)n−j

−N + 1 =


(2N)n−j (ij +N − 1) +

n∑
k=j+1

(2N)n−k (ik +N − 1)

(2N)n−j

−N + 1 =

=

ij +N − 1 +

n∑
k=j+1

(2N)n−k (ik +N − 1)

(2N)n−j

−N + 1

Por otra parte, como es ik ≤ N ∀k = 1, . . . , n, obtenemos:

n∑
k=j+1

(2N)n−k (ik +N − 1) ≤
n∑

k=j+1

(2N)n−k (2N − 1) = (2N − 1)

n∑
k=j+1

(2N)n−k =
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= (2N − 1)

n−j−1∑
l=0

(2N)l = (2N − 1)
1− (2N)n−j

1− 2N
= −1 + (2N)n−j < (2N)n−j

Por tanto:

ij =

ij +N − 1︸ ︷︷ ︸
∈N∪{0}

+

n∑
k=j+1

(2N)n−k (ik +N − 1)

(2N)n−j︸ ︷︷ ︸
<1

−N + 1 =

= bij +N − 1c −N + 1 = ij +N − 1−N + 1 = ij

Como este argumento es válido para todo j = 1, . . . , n, debe ser l ◦ h = id. Con esto, hemos demostrado
que h es suprayectiva. Necesitamos probar, también, que h es inyectiva. Para ello, tenemos que ver
que a n-tuplas distintas (i1, . . . , in) 6= (j1, . . . , jn) les corresponden imágenes a través de h distintas:
i = h (i1, . . . , in) 6= h (j1, . . . , jn) = j. Para ello, haremos inducción sobre n.

n = 1: Sean i1, j1 ∈ A. En este caso es:

i = h (i1) = i1 +N − 1

j = h (j1) = j1 +N − 1

Trivialmente se da i = j ⇔ i1 = j1.
Supongamos que la hipótesis se cumple para n− 1 y veamos que también se satisface para n. Sean
(i1, . . . , in) , (j1, . . . , jn) ∈ A e i = h (i1, . . . , in) , j = h (j1, . . . , jn). Estudiemos los siguientes casos:

• Si es i1 = j1, entonces, consideramos las n − 1-tuplas (i2, . . . , in) y (j2, . . . , jn). Por hipótesis
de inducción será i = j ⇔ (i2, . . . , in)⇔ (j2, . . . , jn) ya que es i1 = j1. Es decir, será i = j ⇔
(i1, . . . , in) = (j1, . . . , jn).

• Si, sin embargo, es i1 6= j1, también consideramos las n − 1-tuplas (i2, . . . , in) y (j2, . . . , jn).
Llamemos i′ := h (i2, . . . , in) y j := h (j2, . . . , jn). Tenemos que ver que es i 6= j. Para ello,
estudiemos:

i = h (i1, . . . , in) = (2N)n−1 (i1 +N − 1) +

n∑
k=2

(2N)n−k (ik +N − 1) + 1︸ ︷︷ ︸
=:i′

=

= (2N)n−1 (i1 +N − 1) + i′

j = h (j1, . . . , jn) = (2N)n−1 (j1 +N − 1) +
n∑
k=2

(2N)n−k (jk +N − 1) + 1︸ ︷︷ ︸
=:j′

=

= (2N)n−1 (j1 +N − 1) + j′

Por hipótesis de inducción, será i′ = j′ ⇔ (i2, . . . , in) = (j2, . . . , in).
◦ Si es i′ = j′, entonces:

i− j = (2N)n−1 (i1 +N − 1) + i′ − j′︸ ︷︷ ︸
=0

− (2N)n−1 (j1 +N − 1) =

= (2N)n−1 (i1 − j1)

Y, claramente es:

i = j ⇔ i− j = 0
(2N)n−1>0⇐=====⇒ i1 = j1

Como habíamos supuesto i1 6= j1, necesariamente será i 6= j.
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◦ Si es i′ 6= j′, entonces:
i− j = (2N)n−1 (i1 − j1) + i′ − j′ (1.1.5)

Por otra parte: ∣∣∣(2N)n−1 (i1 − j1)
∣∣∣ = (2N)n−1 |i1 − j1|

Como es i1 6= j1, será |i1 − j1| ≥ 1 y, por consiguiente:∣∣∣(2N)n−1 (i1 − j1)
∣∣∣ ≥ (2N)n−1 (1.1.6)

A continuación, estudiemos:

∣∣i′ − j′∣∣ =

∣∣∣∣∣
n∑
k=2

(2N)n−k (ik +N − 1) + 1−
n∑
k=2

(2N)n−k (jk +N − 1)− 1

∣∣∣∣∣ =

=

∣∣∣∣∣
n∑
k=2

(2N)n−k (ik − jk)
∣∣∣∣∣

Por la desigualdad triangular es:

∣∣i′ − j′∣∣ ≤ n∑
k=2

(2N)n−k |ik − jk|

Dado que ik, jk ∈ {− (N − 1) , . . . , N} se da |ik − jk| ≤ 2N − 1 y, por consiguiente:

∣∣i′ − j′∣∣ ≤ n∑
k=2

(2N)n−k (2N − 1) = (2N − 1)
n∑
k=2

(2N)n−k =

= (2N − 1)
n−2∑
l=0

(2N)l = (2N − 1)
(2N)n−1 − 1

2N − 1
= (2N)n−1 − 1 < (2N)n−1 (1.1.7)

Combinando las ecuaciones 1.1.5, 1.1.6 y 1.1.7, obtenemos que es imposible que sea i = j,
pues

∣∣∣(2N)n−1 (i1 − j1)
∣∣∣ > |i′ − j′|.

9. Este es un cambio a un sólo índice usado frecuentemente en informática que permite pasar de varios
índices a uno sólo. De esta forma, a partir de ahora denotaremos los conjuntos dados en el punto 5 en
la página 4 como EN ;i con i = 1, . . . , (2N)n, la sucesión {~rN ;i1,...,in}∞N=1 recibirá la notación {~rN ;i}∞N=1
con i = 1, . . . , (2N)n y la sucesión de funciones dada en el punto 6 en la página 4 será referida como:

gN (~r) =

(2N)n∑
i=1

g (~rN ;i)χEN ;i
(~r)

10. Por el punto 2 en la página 4, sabemos que es g (~r) = ρ (~r) f (~r) ∀~r ∈ W . Por tanto, podemos expresar
la sucesión dada en el punto 6 en la página 4 como:

gN (~r) =

(2N)n∑
i=1

ρ (~rN ;i) f (~rN ;i)χEN ;i
(~r)

Por otra parte, sabemos que es:

f (~rN ;i) =
n∑
j=1

f j (~rN ;i) x̂j
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Sustituyendo en la ecuación anterior, obtenemos:

gN (~r) =

(2N)n∑
i=1

ρ (~rN ;i)

 n∑
j=1

f j (~rN ;i) x̂j

χEN ;i
(~r) =

=
n∑
j=1

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

(~r) x̂j

Sustituyendo en la expresión dada por el punto 7 en la página 4, llegamos a:∫
W
g = ĺım

N→∞

∫
W

n∑
j=1

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

x̂j

Como la integral es lineal, se da:∫
W
g = ĺım

N→∞

n∑
j=1

x̂j

∫
W

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

11. Descomponemos ρ (~rN ;i) y f j (~rN ;i) en su componente positiva y negativa, es decir:

ρ (~rN ;i) = ρ+ (~rN ;i)− ρ− (~rN ;i)

f j (~rN ;i) = f j,+ (~rN ;i)− f j,+ (~rN ;i)

donde lo anterior lo hacemos ∀i = 1, . . . , (2N)n y ∀N ∈ N, siendo ρ+, ρ−, f j,+, f j,− ≥ 0. Bien, ahora
construimos sucesiones de funciones simples:

ρ+
N :=

(2N)n∑
i=1

ρ+ (~rN ;i)χEN ;i
, ρ−N :=

(2N)n∑
i=1

ρ− (~rN ;i)χEN ;i

f j,+N :=

(2N)n∑
i=1

f j,+ (~rN ;i)χEN ;i
, f j,−N :=

(2N)n∑
i=1

f j,− (~rN ;i)χEN ;i

∀N ∈ N. Nótese que lo anterior son funciones simples pues es ρ+, ρ−, f j,+, f j,− ≥ 0. Además, son
medibles, porque los EN ;i son medibles según visto en el punto 5 en la página 4.
A continuación, estudiemos:

ρ+
Nf

j,+
N =

(2N)n∑
i=1

ρ+ (~rN ;i)χEN ;i

(2N)n∑
k=1

f j,+ (~rN ;k)χEN ;k

 =

=

(2N)n∑
i=1

(2N)n∑
k=1

ρ+ (~rN ;i) f
j,+ (~rN ;k)χEN ;i

χEN ;k︸ ︷︷ ︸
=δi,kχEN ;i

=

=

(2N)n∑
i=1

ρ+ (~rN ;i) f
j,+ (~rN ;i)χEN ;i

donde el último paso se debe a que los términos del doble sumatorio son no nulos únicamente cuando
i = k. Cuando es i = k se da χEN ;k

= χEN ;i
⇒ χEN ;i

χEN ;k
=
(
χEN ;i

)2
= χEN ;i

pues los únicos valores
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que toma χEN ;i
son 1 y 0 y ambos cumplen 12 = 1 y 02 = 0. Nótese que la función obtenida, es a su

vez, una función simple. Actuando de forma análoga para el resto de combinaciones, llegamos a:

ρ−Nf
j,+
N =

(2N)n∑
i=1

ρ− (~rN ;i) f
j,+ (~rN ;i)χEN ;i

ρ+
Nf

j,−
N =

(2N)n∑
i=1

ρ+ (~rN ;i) f
j,− (~rN ;i)χEN ;i

ρ−Nf
j,−
N =

(2N)n∑
i=1

ρ− (~rN ;i) f
j,− (~rN ;i)χEN ;i

que también son funciones simples.
Por último, consideremos:

ρ+
Nf

j,+
N − ρ−Nf

j,+
N − ρ+

Nf
j,−
N + ρ−Nf

j,−
N =

=

(2N)n∑
i=1

ρ+ (~rN ;i) f
j,+ (~rN ;i)χEN ;i

−
(2N)n∑
i=1

ρ− (~rN ;i) f
j,+ (~rN ;i)χEN ;i

+

−
(2N)n∑
i=1

ρ+ (~rN ;i) f
j,− (~rN ;i)χEN ;i

+

(2N)n∑
i=1

ρ− (~rN ;i) f
j,− (~rN ;i)χEN ;i

=

=

(2N)n∑
i=1

[
ρ+ (~rN ;i) f

j,+ (~rN ;i)− ρ− (~rN ;i) f
j,+ (~rN ;i) +

−ρ+ (~rN ;i) f
j,− (~rN ;i) + ρ− (~rN ;i) f

j,− (~rN ;i)
]
χEN ;i

=

=

(2N)n∑
i=1

[
ρ+ (~rN ;i)− ρ− (~rN ;i)

] [
f j,+ (~rN ;i)− f j,− (~rN ;i)

]
χEN ;i

=

=

(2N)n∑
i=1

(ρ+ − ρ−
)︸ ︷︷ ︸

=ρ

(~rN ;i)


(f j,+ − f j,−)︸ ︷︷ ︸

=fj

(~rN ;i)

χEN ;i
=

=

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

Haciendo la integral en W a ambos lados y aplicando que la integral es lineal, se obtiene:

∫
W

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

=

∫
W

(
ρ+
Nf

j,+
N − ρ−Nf

j,+
N − ρ+

Nf
j,−
N + ρ−Nf

j,−
N

)
=

=

∫
W
ρ+
Nf

j,+ −
∫
W
ρ−Nf

j,+
N −

∫
W
ρ+
Nf

j,−
N +

∫
W
ρ−Nf

j,−
N

12. Aplicando la definición de integral de una función simple, obtenemos que:

∫
W
ρ+
Nf

j,+
N =

(2N)n∑
i=1

ρ+ (~rN ;i) f
j,+ (~rN ;i) me (EN ;i)
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∫
W
ρ−Nf

j,+
N =

(2N)n∑
i=1

ρ− (~rN ;i) f
j,+ (~rN ;i) me (EN ;i)

∫
W
ρ+
Nf

j,−
N =

(2N)n∑
i=1

ρ+ (~rN ;i) f
j,− (~rN ;i) me (EN ;i)

∫
W
ρ−Nf

j,−
N =

(2N)n∑
i=1

ρ− (~rN ;i) f
j,− (~rN ;i) me (EN ;i)

Por el punto 10 en la página 4, tenemos:∫
W

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

=

=

(2N)n∑
i=1

ρ+ (~rN ;i) f
j,+ (~rN ;i) me (EN ;i)−

(2N)n∑
i=1

ρ− (~rN ;i) f
j,+ (~rN ;i) me (EN ;i) +

−
(2N)n∑
i=1

ρ+ (~rN ;i) f
j,− (~rN ;i) me (EN ;i) +

(2N)n∑
i=1

ρ− (~rN ;i) f
j,− (~rN ;i) me (EN ;i) =

=

(2N)n∑
i=1

[
ρ+ (~rN ;i) f

j,+ (~rN ;i)− ρ− (~rN ;i) f
j,+ (~rN ;i) +

−ρ+ (~rN ;i) f
j,− (~rN ;i) + ρ− (~rN ;i) f

j,− (~rN ;i)
]

me (EN ;i) =

=

(2N)n∑
i=1

[
ρ+ (~rN ;i)− ρ− (~rN ;i)

] [
f j,+ (~rN ;i)− f j,− (~rN ;i)

]
me (EN ;i) =

=

(2N)n∑
i=1

(ρ+ − ρ−
)︸ ︷︷ ︸

=ρ

(~rN ;i)


(f j,+ − f j,−)︸ ︷︷ ︸

=fj

(~rN ;i)

me (EN ;i) =

=

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i) me (EN ;i)

Llamando:
mN ;i := ρ (~rN ;i) me (EN ;i) ∀i = 1, . . . , (2N)n ∧ ∀N ∈ N

obtenemos: ∫
W

(2N)n∑
i=1

ρ (~rN ;i) f
j (~rN ;i)χEN ;i

=

(2N)n∑
i=1

mN ;if
j (~rN ;i)

13. Sustituyendo lo hallado en el punto 11 en la página 4 en la expresión del punto 9 en la página 4, llegamos
a: ∫

W
g = ĺım

N→∞

n∑
j=1

x̂j

(2N)n∑
i=1

mN ;if
j (~rN ;i) =

= ĺım
N→∞

(2N)n∑
i=1

mN ;i

 n∑
j=1

f j (~rN ;i) x̂j


︸ ︷︷ ︸

=f(~rN ;i)

= ĺım
N→∞

(2N)n∑
i=1

mN ;if (~rN ;i)
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Q.E.D.

Otro concepto que vamos a usar es el centro de masas (C.D.M).

Definición 1. Sea S un sistema de N partículas y sean {~ri}Ni=1 las posiciones de dichas partículas según un
observador O. Llamamos posición del centro de masas ~R a la media ponderada (a través de las masas) de
las posiciones de cada una de las partículas:

~R :=
1

M

N∑
i=1

mi~ri

siendo M =
N∑
i=1

mi la masa total.

Corolario 1. Sea V ⊆ R3 una distribución volumétrica continua de masa dada mediante una función densidad
ρ : V −→ R. La posición de su centro de masas ~R viene dada por:

~R =
1

M

∫∫∫
V
ρ (~r)~r dV

donde M =

∫∫∫
V
ρ (~r) dV .

Demostración. Partimos de lo que queremos demostrar:

1

M

∫∫∫
V
ρ (~r)~r dV =

∫∫∫
V
ρ (~r)~r dV∫∫∫

V ρ (~r) dV

Tomando f = id para el numerador y f = 1 para el denominador, por el teorema 1 en la página 3 (siendo en
nuestro caso n = 3), sabemos que existen sucesiones {mN,i}(2N)3

i=1 y {~rN,i}(2N)3

i=1 tales que podemos escribir lo
anterior como:

1

M

∫∫∫
V
ρ (~r)~r dV =

ĺım
N→∞

(2N)3∑
i=1

mN,i~rN,i

ĺım
N→∞

(2N)3∑
i=1

mN,i

Como es
∫∫∫

V ρ (~r) dV 6= 0, el denominador de la expresión anterior será distinto de cero. Así, el cociente de
los límites es el límite del cociente:

1

M

∫∫∫
V
ρ (~r)~r dV = ĺım

N→∞

(2N)3∑
i=1

mN,i~rN,i

(2N)3∑
i=1

mN,i

= ĺım
N→∞

~R

Y lo anterior es justo la expresión dada en la definición 1 para el centro de masas de un sistema de (2N)3

partículas. Q.E.D.
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1.2. Momento lineal y momento del centro de masas

Definición 2. Sea S un sistema de N partículas. Llamamos momento lineal de la partícula i-ésima ~pi al
producto de la masa de la partícula i-ésima por su vector velocidad.

~pi := mi~̇ri

Definición 3. Sea S un sistema deN partículas. Llamamosmomento lineal total a la suma de los momentos
lineales de cada una de las partículas que forman S:

~P :=

N∑
i=1

~pi

Corolario 2. Sea S un sistema de N partículas. Podemos expresar el momento lineal total del sistema como:

~P =

N∑
i=1

mi~̇ri

Demostración. El resultado se obtiene trivialmente al aplicar la definición 2 en la definición 3. Q.E.D.

Proposición 1. Sea S un sistema de N partículas tal que la masa de sus partículas no varía en el tiempo.
El momento lineal total del sistema puede calcularse como el producto de la masa total del sistema por la
velocidad del centro de masas.

~P = M ~̇R

Demostración. Partimos de la expresión M ~̇R. Por la definición 1 en la página anterior, tenemos que:

M ~̇R = M
d

dt

(
1

M

N∑
i=1

mi~ri

)

Como las masas no varían con el tiempo, obtenemos:

M ~̇R = M
1

M

N∑
i=1

mi
d~ri
dt

=
N∑
i=1

mi~̇ri

Y, por la definición 3, tenemos:
M ~̇R = ~P

Q.E.D.

Observación 2. La proposición 1 nos dice que el momento lineal de todo un sistema de partículas S es el
momento lineal que tendría una única partícula de masa M que se mueve tal y como se desplaza el centro
de masas del sistema. Por tanto, si no nos interesa cómo cambia la posición relativa de las partículas del
sistema S, podemos tratar dicho sistema de partículas como si fuese una única partícula. Esto lo hacemos, por
ejemplo, cuando estudiamos movimientos planetarios, pues suponemos que un planeta es un único cuerpo.
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1.2.1. Variación del momento lineal

Teorema 2 (2ª ley de Newton para un sistema de partículas). Sea S un sistema de N partículas tal que la
masa de sus partículas no varía en el tiempo. La variación con respecto al tiempo del momento lineal total ~̇P
del sistema S es igual a la suma de todas las fuerzas externas que actúan sobre cada una de las partículas.
Además, ~̇P coincide con la variación del momento lineal de una única masa puntual M sometida a una
aceleración ~̈R, siendo ~̈R la aceleración del centro de masas.

~̇P = M ~̈R =
N∑
i=1

~Fi

Demostración. Derivando con respecto al tiempo a ambos lados de la definición 3 en la página anterior,
obtenemos:

~̇P =
d

dt

(
N∑
i=1

mi~̇ri

)
Ahora, como la derivada es lineal:

~̇P =
N∑
i=1

d

dt

(
mi~̇ri

)
Como la masa de cada partícula no cambia con el tiempo:

~̇P =
N∑
i=1

mi~̈ri (1.2.1)

Por otra parte, por la segunda ley de Newton, el término mi~̈ri es la fuerza resultante (neta) sobre la
partícula i-ésima y puede obtenerse como:

mi~̈ri =
N∑
j=1

~Fij + ~Fi (1.2.2)

donde el primer sumando es la fuerza resultante sobre la partícula i-ésima debida a las fuerzas internas y el
segundo sumando es la fuerza resultante sobre la partícula i-ésima debido a las fuerzas externas. Sustituyendo
la ecuación 1.2.2 en la ecuación 1.2.1, obtenemos:

~̇P =
N∑
i=1

 N∑
j=1

~Fij + ~Fi

 =
N∑
i=1

N∑
j=1

~Fij +
N∑
i=1

~Fi

Por la tercera ley de Newton, las fuerzas internas se irán igualando a pares ~Fij = −~Fji ∀i, j = 1, . . . , N . Esto

va a hacer que el primer sumatorio de la expresión de ~̇P se anule, pues para cada par i, j tenemos dos fuerzas
que son iguales y de sentido contrario. Veámoslo:

~̇P =

N∑
i=1

N∑
j=i+1

(
~Fij + ~Fji

)
+

N∑
i=1

~Fi

Por la tercera ley de Newton, es ~Fji = −~Fij ∀i, j = 1, . . . , N . En consecuencia:

~̇P =
N∑
i=1

N∑
j=i+1

(
~Fij − ~Fij

)
+

N∑
i=1

~Fi =
N∑
i=1

~Fi
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Por último, derivando dos veces la definición 1 en la página 16, llegamos a:

~̈R =
1

M

N∑
i=1

mi~̈ri ⇔
N∑
i=1

mi~̈ri = M ~̈R

Sustituyendo en la ecuación 1.2.1 en la página anterior, obtenemos:

~̇P = M ~̈R

Q.E.D.

Observación 3. El teorema 2 en la página anterior constituye la segunda ley de Newton para un sistema de
partículas. Éste nos dice que sólo las fuerzas externas pueden variar el momento lineal total; es decir, las
fuerzas internas jamás podrán generar una aceleración del centro de masas.

Por otra parte, el teorema citado nos indica que podemos aplicar la segunda ley de Newton al centro de
masas; es decir, podemos considerar el sistema como una partícula puntual.

1.2.2. Sistemas de partículas aisladas

Definición 4. Diremos que un sistema de N partículas está aislado si no hay resultante de fuerza externas,
en otras palabras, si las partículas únicamente están sometidas a fuerzas internas.

Corolario 3 (Conservación del momento lineal para un sistema de partículas). El momento lineal total ~P de
un sistema de partículas de masa constante aislado permanece constante.

~P =
−→
cte

Demostración. Llamemos N al número de partículas de nuestro sistema aislado. Por el teorema 2 en la página
anterior, tenemos:

~̇P =
N∑
i=1

~Fi

Como, por hipótesis, nuestro sistema de partículas está aislado, es
N∑
i=1

~Fi = ~0 y, en consecuencia:

~̇P = ~0⇔ d~P

dt
= ~0⇔ ~P =

−→
cte

Q.E.D.

1.2.3. Sistema de referencia centro de masas

En distintos escenarios, puede interesarnos describir un sistema de partículas desde un observador situado
en el centro de masas de dicho sistema, para lo cual hablaremos de la posición relativa respecto al centro de
masas.
Notación 2. Sea S un sistema de N partículas. Denotaremos con superíndice ∗ a aquellas magnitudes medidas
desde el sistema de referencia centro de masas del sistema S. En particular, denotaremos con ~r ∗i a la posición
de la partícula i-ésima con respecto al centro de masas de S.

Proposición 2. Sean R un sistema de referencia inercial cualquiera y S un sistema de N partículas. Si
llamamos ~ri a la posición de la partícula i-ésima según R y ~R a la posición del centro de masas del sistema
S según R, entonces la posición de la partícula i-ésima vista desde el centro de masas viene dada por:

~r ∗i = ~ri − ~R
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Demostración. Claramente, tenemos:

~ri = ~R+ ~r ∗i ⇔ ~r ∗i = ~ri − ~R

Q.E.D.

Proposición 3. Sea S un sistema de N partículas. El momento lineal total del sistema visto desde el centro
de masas es nulo.

~P ∗ = ~0

Demostración. Por la definición 3 en la página 17, tenemos:

~P ∗ =
N∑
i=1

mi~r
∗
i

Por la proposición 2 en la página anterior, podemos expresar lo anterior como:

~P ∗ =
N∑
i=1

mi

(
~̇ri − ~̇R

)
=

N∑
i=1

mi~̇ri −
N∑
i=1

mi
~̇R =

N∑
i=1

mi~̇ri −M ~̇R = ~P −M ~̇R

Aplicando la proposición 1 en la página 17, llegamos a:

~P ∗ = ~P − ~P = ~0

Q.E.D.

Observación 4. La proposición 3 es un resultado lógico. Si hemos dicho que el sistema de partículas se mueve
como una única partícula situada en el centro de masas, desde el centro de masas no deberíamos ver ningún
momento lineal.

Ejemplo 1 (Sistemas de masa variable). Nos referimos a sistemas cuya masa va variando con el tiempo, por
ejemplo, un cohete. Si un cohete suelta un dm en un instante dt; entonces, por conservación del momento
lineal, el cohete se moverá en sentido opuesto al sentido en el cual hemos lanzado el dm.

Vamos a suponer un cohete que está inicialmente en reposo (reposo no significa que esté quieto, únicamente
que no actúa sobre él aceleración alguna). Supongamos que el cohete expulsa masa con velocidad relativa ~u.
De momento, no nos preocupamos por el ritmo con el que se eyecta la masa. Para simplificar, supondremos
que no hay fuerzas externas (despreciamos la gravedad). Si la masa inicial del cohete es M0 y su velocidad
inicial es v0, ¿cuál es la velocidad que se alcanza cuando la masa del cohete ha descendido hasta un valor M?
Es decir, queremos hallar la velocidad del cohete en función de la masa que nos queda.

Inicialmente, tenemos que nuestro cohete tiene una cierta velocidad v y una cierta masaM . Posteriormente,
se habrá eyectado un dm de masa que tendrá velocidad − (u− v) visto desde un observador inercial y el cohete
tendrá velocidad v + dv.

~v + d~v~v −(~u− ~v)
M M − dm

dm
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Así, por el corolario 3 en la página 19:

@~Fext ⇒ ~P =
−→cte⇒ Pantes = Pdespués ⇔

⇔Mv = dm (v − u) + (M − dm) (v + dv)⇔
⇔Mv = vdm− udm+Mv − vdm+Mdv − dmdv ⇔ −udm+Mdv − dmdv = 0

Despreciamos diferenciales de segundo orden dmdv ≈ 0, obteniendo:

Mdv = udm

Por otra parte, la masa que expulsa el cohete dm es la masa que pierde el cohete dM . Por consiguiente
dM = −dm, de forma que:

Mdv = −udM

Y la ecuación diferencial anterior es susceptible de resolverse por integración directa:

Mdv = −udM ⇔ dv

u
= −dM

M
⇔
∫ v

v0

dν

u
= −

∫ M

M0

dµ

µ
⇔
[ν
u

]v
v0

= − [lnµ]MM0
⇔

⇔ v − v0

u
= − ln

M

M0
⇔ v = −u ln

M

M0
+ v0

Si lo que queremos obtener es la masa en función de la velocidad, obtenemos:

−v − v0

u
= ln

M

M0
⇔ M

M0
= e−

v−v0
u ⇔M = M0e−

v−v0
u = M0e−

∆v
u

Nótese que los resultados anteriores no son función de
dm

dt
.

Q.E.F.

1.3. Momento Angular

Definición 5. Sean S un sistema de N partículas y O ∈ R3 un punto cualquiera del espacio. Llamamos
momento angular ~Ji de la partícula i-ésima con respecto al punto O al producto vectorial de la posición
de la partícula i-ésima ~ri según O y su momento lineal ~pi, también según O.

~Ji := ~ri × ~pi

Observación 5. Recordemos que a la hora de trabajar con el momento angular es importante dónde se en-
cuentra nuestro origen de coordenadas. Es más, el momento angular no es una propiedad de un sistema de
partículas, sino que es una propiedad del conjunto formado por un observador concreto y un sistema de
partículas.

Corolario 4. Sea S un sistema de N partículas. Podemos expresar el momento angular de la partícula i-ésima
respecto al punto O como:

~Ji = m~ri × ~̇ri
donde ~ri y ~̇ri vienen dadas según O.
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Demostración. Partimos de la definición 5 en la página anterior:

~Ji := ~ri × ~pi

Por la definición 2 en la página 17, tenemos:

~Ji = ~ri ×
(
mi~̇ri

)
= mi~ri × ~̇ri

Q.E.D.

Definición 6. Sean S un sistema de N partículas y O ∈ R3 un punto cualquiera del espacio. Llamamos
momento angular total ~J del sistema S respecto al punto O a la suma de los momentos angulares respecto
de O de cada una de las partículas de S.

~J :=

N∑
i=1

~Ji

Corolario 5. Sea S un sistema de N partículas. Podemos expresar el momento angular total de S respecto
de O como:

~J =
N∑
i=1

mi~ri × ~̇ri

Demostración. El resultado se sigue trivialmente al aplicar el corolario 4 en la página anterior en la definición 6.
Q.E.D.

Proposición 4. Sea S un sistema de N partículas tal que la masa de sus partículas no varía en el tiempo.
El momento angular total de S respecto a un punto O ∈ R3 es susceptible de expresarse como la suma del
momento angular total de S respecto a su centro de masas y el momento angular que tendría una partícula de

masa M =

N∑
i=1

mi situada en el centro de masas ~R y que se moviera con la velocidad del centro de masas ~̇R

respecto al punto O. Es decir:
~J = ~J∗ + ~JC.D.M.

siendo:

~J∗ =
N∑
i=1

~r ∗i ×mi~̇r
∗
i

~JC.D.M. = M ~R× ~̇R

Licencia: Creative Commons 22

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 1. SISTEMAS DE PARTÍCULAS

1.3. MOMENTO ANGULAR

X

Y

~R

~ri

~r∗i
CDM

i

Demostración. Partimos de:
~ri = ~r ∗i + ~R⇒ ~̇ri = ~̇r ∗i + ~̇R

pues la derivada es lineal. Sustituyendo en el corolario 5 en la página anterior, obtenemos:

~J =
N∑
i=1

mi

(
~r ∗i + ~R

)
×
(
~̇r ∗i + ~̇R

)
=

N∑
i=1

mi

[
~r ∗i × ~̇r ∗i + ~r ∗i × ~̇R+ ~R× ~̇r ∗i + ~R× ~̇R

]
=

=
N∑
i=1

mi~r
∗
i × ~̇r ∗i +

N∑
i=1

mi~r
∗
i × ~̇R+

N∑
i=1

~R×mi~̇r
∗
i +

N∑
i=1

mi
~R× ~̇R

Como el producto vectorial es distributivo respecto a la suma y ~R y ~̇R no dependen de i, podemos reescribir
lo anterior como:

~J =
N∑
i=1

mi~r
∗
i × ~̇r ∗i +

(
N∑
i=1

mi~r
∗
i

)
× ~̇R+ ~R×

(
N∑
i=1

mi~̇r
∗
i

)
+

(
N∑
i=1

mi

)
~R× ~̇R (1.3.1)

Por otra parte, por la definición 1 en la página 16, tenemos:

~R∗ =
1

M

N∑
i=1

mi~r
∗
i ⇔

N∑
i=1

mi~r
∗
i = M ~R∗ = ~0 (1.3.2)

pues, trivialmente, la posición del centro de masas con respecto al centro de masas ~R∗ es nula. Además, como
la masa de cada partícula permanece constante en el tiempo:

~R∗ =
1

M

N∑
i=1

mi~r
∗
i ⇒ ~̇R∗ =

1

M

N∑
i=1

mi~̇r
∗
i ⇔

N∑
i=1

mi~̇r
∗
i = M ~̇R∗ = ~0 (1.3.3)

ya que, trivialmente, la velocidad del centro de masas desde el punto de vista del centro de masas es nula.
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En consecuencia, aplicando las ecuaciones 1.3.2 en la página anterior y 1.3.3 en la página anterior en 1.3.1
en la página anterior, llegamos a:

~J =
N∑
i=1

mi~r
∗
i × ~̇r ∗i +

(
N∑
i=1

mi

)
~R× ~̇R =

N∑
i=1

mi~r
∗
i × ~̇r ∗i +M ~R× ~̇R

Aplicando el corolario 5 en la página 22, sabemos que el primer sumando de la expresión anterior se corresponde
con el momento angular del sistema S con respecto al centro de masas ~J∗, mientras que el segundo término
es el momento angular con respecto de O que tendría una partícula de masa M situada en el centro de masas
de S y que se desplazara a la velocidad del centro de masas de S. Así, obtenemos:

~J = ~J∗ + ~JC.D.M.

Q.E.D.

1.3.1. Variación del momento angular

Definición 7. Sean S un sistema de N partículas y O ∈ R3 un punto cualquiera del espacio. Llamamos
momento de fuerzas o torque de la partícula i-ésima ~Ni con respecto de O al producto vectorial del
vector posición de la partícula i-ésima con respecto de O y la fuerza resultante que actúa sobre la partícula
i-ésima.

~Ni := ~ri × ~Fres,i

Definición 8. Sean S un sistema de N partículas y O ∈ R3 un punto cualquiera del espacio. Llamamos
momento de fuerzas total ~N del sistema S respecto al punto O a la suma de los momentos de fuerzas
respecto de O de cada una de las partículas de S.

~N :=

N∑
i=1

~Ni

Corolario 6. Sean S un sistema de N partículas y O ∈ R3 un punto cualquiera del espacio. Podemos expresar
el momento de fuerzas total de S respecto de O como:

~N =

N∑
i=1

~ri × ~Fres,i =

N∑
i=1

N∑
j=1

~ri × ~Fij +

N∑
i=1

~ri × ~Fi

donde recordamos que ~Fij representa la fuerza interna que realiza la partícula j-ésima sobre la i-ésima y ~Fi
representa la fuerza externa que se ejerce sobre la partícula i-ésima.

Demostración. Se llega al resultado al sustituir la definición 7 en 8 y al tener en cuenta:

~Fres,i =

N∑
j=1

~ri × ~Fij + ~Fi

Es decir, usando que la fuerza resultante que actúa sobre la partícula i-ésima tiene una componente de fuerzas
internas (que se puede obtener como la suma de las fuerzas que ejercen el resto de partículas del sistema sobre
la partícula i-ésima) y una componente de fuerzas externas ~Fi. Q.E.D.
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Proposición 5. Sea S un sistema de N partículas tal que la masa de sus partículas no varía en el tiempo.
La variación del momento angular total de S según un punto O ∈ R3 con respecto al tiempo coincide con el
momento de fuerzas total del sistema respecto del punto O.

~̇J = ~N =
N∑
i=1

N∑
j=1

~ri × ~Fij +
N∑
i=1

~ri × ~Fi

Demostración. Partimos del corolario 5 en la página 22:

~J =
N∑
i=1

mi~ri × ~̇ri

Derivando a ambos lados, obtenemos:

~̇J =
d

dt

(
N∑
i=1

mi~ri × ~̇ri
)

Como la derivada es lineal:

~̇J =
N∑
i=1

d

dt

(
mi~ri × ~̇ri

)
Como la masa de cada partícula no varía con el tiempo, aplicando la regla del producto, obtenemos:

~̇J =
N∑
i=1

mi ~̇ri × ~̇ri︸ ︷︷ ︸
=~0

+
N∑
i=1

mi~̇ri × ~̈ri

donde el primer término se anula porque el producto vectorial de un vector por sí mismo es nulo. Reescribiendo
la expresión anterior llegamos a:

~̇J =

N∑
i=1

~̇ri ×
(
mi~̈ri

)
Por la segunda ley de Newton el término entre paréntesis es la resultante de todas las fuerzas (internas y
externas) que actúan sobre la partícula i-ésima. Así, tenemos:

~̇J =
N∑
i=1

~̇ri × ~Fres,i

Aplicando la definición 7 en la página anterior, obtenemos:

~̇J =

N∑
i=1

~Ni

Por ende, por la definición 8 en la página anterior, llegamos a:

~̇J = ~N

Por último, haciendo uso del corolario 6 en la página anterior, obtenemos:

~̇J =

N∑
i=1

N∑
j=1

~ri × ~Fij +

N∑
i=1

~ri × ~Fi

Q.E.D.
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Definición 9. Decimos que una fuerza es central cuando siempre está dirigida hacia un punto O ∈ R3

llamado centro del movimiento. Es decir, sea ~R cualquier punto de R3, entonces:

~F es central⇔ ~F
(
~R
)

= F!
(∣∣∣−−→RO∣∣∣)

Teorema 3 (Teorema de conservación del momento angular). Sea S un sistema de N partículas tal que la
masa de sus partículas no varía en el tiempo. Si todas las fuerzas internas son centrales, entonces la variación
del momento angular ~J del sistema S con respecto de O ∈ R3 coincide con el momento de fuerzas resultante
de las fuerzas externas que actúan sobre S respecto del punto O. Es decir:

~̇J = ~Next =

N∑
i=1

~ri × ~Fi

Demostración. Como la masa de las partículas que forman S no varía con el tiempo, podemos aplicar la
proposición 5 en la página anterior, obteniendo:

~̇J =

N∑
i=1

N∑
j=1

~ri × ~Fij +

N∑
i=1

~ri × ~Fi

Consideremos el primer sumando:

N∑
i=1

N∑
j=1

~ri × ~Fij =
N∑
i=1

N∑
j=i+1

(
~ri × ~Fij + ~rj × ~Fji

)
Por la tercera ley de Newton, tenemos que ~Fij = −~Fij . Sustituyendo, obtenemos:

N∑
i=1

N∑
j=1

~ri × ~Fij =

N∑
i=1

N∑
j=i+1

(
~ri × ~Fij + ~rj ×

(
−~Fij

))
=

N∑
i=1

N∑
j=i+1

(~ri − ~rj)× ~Fij

Nótese que ~ri − ~rj es el vector que nace en la partícula j-ésima y muere en la partícula i-ésima. Como las
fuerzas internas son centrales (por hipótesis), por la definición 9, ~Fij irá en la dirección que une las partículas
i-ésima y j-ésima, es decir, será ~Fij ‖ ~ri − ~rj . En consecuencia, como el producto vectorial de dos vectores
paralelos es nulo, obtenemos:

N∑
i=1

N∑
j=1

~ri × ~Fij =
N∑
i=1

N∑
j=i+1

(~ri − ~rj)× ~Fij = ~0

Sustituyendo el resultado anterior en el enunciado de la proposición 5 en la página anterior, llegamos a:

~̇J =

N∑
i=1

~ri × ~Fi =

N∑
i=1

~Next,i = ~Next

pues recordamos que ~Fi era la resultante de las fuerzas externas que actúan sobre la partícula i-ésima. Q.E.D.

Ejemplo 2. Veamos lo que quiere decir el teorema 3 con un sistema de dos partículas 1 y 2.
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~r1

~r2

~r

O

F

F

1

2

Podemos definir un vector que indique la posición de una partícula con respecto de la otra. Llamaremos
a dicho vector ~r := ~r1 − ~r2. Estas dos partículas podrán interactuar entre sí de alguna forma, es decir, habrá
fuerzas internas. Imaginemos que la partícula 2 ejerce una fuerza repulsiva sobre la partícula 1 en la dirección
de ~r. Por la tercera ley de Newton, la partícula 1 ejercerá una fuerza en la misma dirección, pero en sentido
contrario. Llamaremos ~F := ~F12. Por tanto, por la tercera ley de Newton, ~F = −~F21. Bien, vamos a introducir
todo esto en la expresión para la variación de ~J . ¿Pueden las fuerzas internas cambiar el momento angular?
Ahora lo veremos. Para nuestro sistema de dos partículas, se tiene:

~r1 × ~F12 + ~r2 × ~F21 = ~r1 × ~F − ~r2 × ~F = (~r1 − ~r2)× ~F = ~r × ~F

Sólo en el caso de fuerzas centrales, el producto vectorial ~r × ~F se anula. Es decir, en general, las fuerzas
internas sí que generan momento angular. Sin embargo, si las fuerzas son centrales (~F ‖ ~r), entonces, el
producto vectorial anterior se anula y las fuerzas internas no crean momento angular.

Corolario 7. Sea S un sistema de N partículas tal que la masa de sus partículas no varía en el tiempo. Si
todas las fuerzas (tanto internas como externas) que actúan sobre las partículas del sistema son centrales,
entonces el momento angular total del sistema S con respecto de cualquier punto O ∈ R3 se conserva: ~J =

−→cte.
En particular, si no hay fuerzas externas y las fuerzas internas son centrales, el momento angular se

conserva.

Demostración. Como las fuerzas internas de nuestro sistema son centrales por hipótesis (al serlo todas las
fuerzas), podemos aplicar el teorema 3 en la página anterior, obteniendo:

~̇J = ~Next =
N∑
i=1

~ri × ~Fi

Ahora bien, por la definición 9 en la página anterior, como todas las fuerzas son centrales, será ~Fi ‖ ~ri y, en
consecuencia, será ~ri × ~Fi = ~0 ∀i = 1, . . . , N . Así:

~̇J = ~0⇒ ~J =
−→
cte

En particular, ~F = ~0 es una fuerza central, pues ~0 ‖ ~v ∀~v ∈ R3. Por tanto, si no hay fuerzas externas
~Fi = ~0 ∀i = 1, . . . , N , las fuerzas externas son centrales y se cumple el enunciado del corolario. Q.E.D.

Proposición 6. Sea S un sistema de N partículas tal que la masa de sus partículas no varía en el tiempo. Si
todas las fuerzas internas del sistema S son centrales, la variación con respecto al tiempo del momento angular
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~J∗ según el centro de masas coincide con el momento de fuerzas resultante de todas las fuerzas externas visto
desde el sistema de referencia centro de masas. En otras palabras:

~̇J∗ = N∗ =
N∑
i=1

~r ∗i × ~Fi

Demostración. Sea O el origen de un sistema de referencia inercial. Por el teorema 3 en la página 26, tenemos
que debe cumplirse:

~̇J =
N∑
i=1

~ri × ~Fi

Por la proposición 2 en la página 19, tenemos:

~r ∗i = ~ri − ~R⇔ ~ri = ~R+ ~r ∗i

Sustituyendo en la ecuación anterior obtenemos:

~̇J =
N∑
i=1

(
~R+ ~r ∗i

)
× ~Fi =

N∑
i=1

~R× ~Fi +
N∑
i=1

~r ∗i × ~Fi = ~R×
(

N∑
i=1

~Fi

)
+

N∑
i=1

~r ∗i × ~Fi (1.3.4)

donde hemos podido intercambiar la suma con el producto vectorial, pues éste es distributivo con respecto a
la suma.

Por otra parte, por la proposición 4 en la página 22:

~J = ~J∗ +M ~R× ~̇R⇔ ~J∗ = ~J −M ~R× ~̇R⇒

⇒ ~̇J∗ = ~̇J −

M ~̇R× ~̇R︸ ︷︷ ︸
=~0

+M ~R× ~̈R

 = ~̇J −M ~R× ~̈R = ~̇J − ~R×
(
M ~̈R

)
donde el término marcado se anula pues el producto vectorial de un vector por sí mismo es nulo. Por la
segunda ley de Newton para un sistema de partículas (ver teorema 2 en la página 18), tenemos:

~̇J∗ = ~̇J − ~R×
(

N∑
i=1

~Fi

)

Sustituyendo el valor hallado de ~̇J en la ecuación 1.3.4, llegamos a:

~̇J∗ = ~R×
(

N∑
i=1

~Fi

)
+

N∑
i=1

~r ∗i × ~Fi − ~R×
(

N∑
i=1

~Fi

)
=

N∑
i=1

~r ∗i × ~Fi

Q.E.D.

Observación 6. La proposición 6 en la página anterior nos está indicando que el momento angular desde
el centro de masas sólo puede variar si existe un momento de fuerzas desde el centro de masas. En general,
podremos ignorar el movimiento del centro de masas, aunque el observador del centro de masas no sea inercial.

Ejemplo 3. Sea O nuestro origen de coordenadas. Tenemos un disco de radio r cuyo centro es O. Hacemos
una fuerza en un punto del disco. Dicha fuerza es susceptible de ser descompuesta en dos componentes ~F‖ y
~F⊥, una componente paralela a la dirección radial ~F‖ y otra perpendicular ~F⊥.
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F⊥

F‖

La componente paralela es una fuerza central y, en consecuencia, no provoca variación del momento
angular.

~r × ~F‖ = ~0⇒ No cambia ~J

Sin embargo, la componente perpendicular a la dirección radial sí que general variación del momento angular.

~r × ~F⊥ 6= ~0⇒ Sí cambia ~J

Como podemos ver, la única componente que es capaz de crear un torque es la componente tangencial de la
fuerza.

Ejemplo 4 (Sistema Tierra-Luna). Vamos a suponer que los planetas son sólidos rígidos y que son puntuales.
Ambas aproximaciones son, evidentemente, falsas. En cualquier caso, tenemos la siguiente situación:

r

CDM

T

L

Tomamos nuestra referencia O en un punto cualquiera del espacio, entonces, por la proposición 4 en la
página 22, tenemos:

~J∗ =
MTML

M
~r × ~̇r + ~J∗T + ~J∗L

donde el primer factor del primer sumando es la masa reducida µ del sistema Tierra-Luna y los segundos
sumandos se deben a la rotación de la Tierra en torno a sí misma y a la rotación de la Luna en torno a sí
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misma. Como la fuerza externa que tenemos (la debida al Sol) es central, podremos decir que el momento
angular anterior se conservará. Además, como la masa de la Luna es muy pequeña en comparación con la de
la Tierra, podremos despreciar el último sumando de la expresión anterior.

Como hemos dicho antes, la Tierra no es un sólido rígido perfecto, pues arrastra una masa de agua y una
masa de gas que son más elásticas que la propia Tierra. De esta forma, cuando la Tierra rota, va arrastrando
consigo toda la masa de agua y toda la masa de gas. Por eso, tenemos una masa de forma de ovoide rotando
en torno a la Tierra. Es decir, siempre hay algo de inercia y, por consiguiente, siempre hay una fricción entre
la Tierra y la atmósfera y los océanos. Por tanto, siempre se va a ir disipando energía. Por consiguiente, la
Tierra siempre va a ir perdiendo algo de energía cinética de rotación; es decir, ωT decrece, luego ~J∗T también
decrece. Obviamente, esto en escala de tiempo humana es difícil de ver; pero esto es fácilmente observable en
escalas geológicas. Por ende, en escalas geológicas, la componente correspondiente a la rotación del sistema
Tierra-Luna en torno a su centro de masas debe aumentar mientras el término de la rotación de la Tierra
en torno a sí misma decrece para que el momento angular total permanezca constante. Recordemos que el
momento angular total debe conservarse pues la fuerza del Sol es central. Como conclusión de todo esto, vemos
que la distancia Tierra-Luna va aumentando poco a poco entre 3 cm

año y 4 cm
año .

1.4. Energía de un sistema de partículas

Definición 10. Sea S un sistema de N partículas. Llamamos energía cinética de la partícula i-ésima al
producto de la mitad de su masa por el cuadrado de su rapidez.

Ti :=
1

2
mi~̇r

2
i

Definición 11. Sea S un sistema de N partículas. Llamamos energía cinética total del sistema S a la
suma de las energías cinéticas de cada una de las partículas que forman S.

T :=

N∑
i=1

Ti

Corolario 8. Sea S un sistema de N partículas. Podemos expresar su energía cinética total como:

T =

N∑
i=1

1

2
mi~̇r

2
i

Demostración. El resultado se obtiene trivialmente al aplicar la definición 10 en la definición 11. Q.E.D.

Proposición 7. Sean R un sistema de referencia afín cualquiera y S un sistema de N partículas. La energía
cinética total del sistema S según R puede expresarse como la suma de la energía cinética del sistema S
dada según el sistema de referencia centro de masas y la energía cinética que tendría una partícula de masa

M =

N∑
i=1

mi y velocidad ~̇R. Es decir:

T = T ∗ + TC.D.M.

donde:

T ∗ =
N∑
i=1

1

2
mi~̇r

∗ 2
i

y:

TC.D.M. =
1

2
M ~̇R 2
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Demostración. Por la definición 11 en la página anterior, tenemos que según R, la energía cinética del sistema
es:

T =

N∑
i=1

1

2
mi~̇r

2
i

Por la proposición 2 en la página 19, tenemos:

~r ∗i = ~ri − ~R⇔ ~ri = ~R+ ~r ∗i ⇒ ~̇ri = ~̇R+ ~̇r ∗i

pues la derivada es lineal. Sustituyendo lo anterior en la ecuación para T , llegamos a:

T =
N∑
i=1

1

2
mi

(
~̇R+ ~̇r ∗i

)2

=

N∑
i=1

1

2
mi

(
~̇R 2 + ~̇r ∗ 2

i + 2 ~̇R · ~̇r ∗i
)

=

=
N∑
i=1

1

2
mi

~̇R 2 +
N∑
i=1

1

2
mi~̇r

∗ 2
i +

N∑
i=1

1

2
2 ~̇R ·mi~̇r

∗
i =

=
1

2
~̇R 2

N∑
i=1

mi +

N∑
i=1

1

2
mi~̇r

∗ 2
i + ~̇R ·

(
N∑
i=1

mi~̇r
∗
i

)
=

=
1

2
M ~̇R 2 +

N∑
i=1

1

2
mi~̇r

∗ 2
i + ~̇R ·

(
N∑
i=1

mi~̇r
∗
i

)
(1.4.1)

Notemos que:

~0 = ~̇R∗ =
1

M

N∑
i=1

mi~̇r
∗
i ⇔

N∑
i=1

mi~̇r
∗
i = ~0

pues ~̇R∗ = ~0 ya que el centro de masas no se desplaza según el centro de masas. Sustituyendo esto en la
ecuación 1.4.1:

T =
1

2
M ~̇R 2 +

N∑
i=1

1

2
mi~̇r

∗ 2
i

Q.E.D.

1.4.1. Variación de la energía cinética

Proposición 8. Sea S un sistema de N partículas tal que la masa de sus partículas no varía en el tiempo.
La variación con respecto al tiempo de la energía cinética total del sistema viene dada por la expresión:

Ṫ =

N∑
i=1

N∑
j=1

~̇ri · ~Fij +

N∑
i=1

~̇ri · ~Fi

donde el primer sumando se corresponde con las fuerzas internas y el segundo sumando se corresponde con
las fuerzas externas.

Demostración. Partimos del corolario 8 en la página anterior:

T =
N∑
i=1

1

2
mi~̇r

2
i =

N∑
i=1

1

2
mi

(
~̇ri · ~̇ri

)
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Como las masas de las partículas que forman parte de S no varían con el tiempo, al derivar la expresión
anterior (al ser la derivada lineal), llegamos a:

Ṫ =

N∑
i=1

1

2
mi

d

dt

(
~̇ri · ~̇ri

)
=

N∑
i=1

1

2
mi

(
~̈ri · ~̇ri

)
+

N∑
i=1

1

2
mi

(
~̇ri · ~̈ri

)
Como el producto escalar es conmutativo, podemos reescribir Ṫ como:

Ṫ =

N∑
i=1

mi~̇ri · ~̈ri =

N∑
i=1

~̇ri ·
(
mi~̈ri

)
Por otra parte, por la segunda ley de Newton aplicada a la partícula i-ésima, obtenemos:

mi~̈ri =
N∑
j=1

~Fij + ~Fi

Así, sustituyendo en la expresión dada para Ṫ , obtenemos:

Ṫ =

N∑
i=1

~̇ri ·

 N∑
j=1

~Fij + ~Fi


Como el producto escalar es distributivo con respecto a la suma, obtenemos:

Ṫ =

N∑
i=1

N∑
j=1

~̇ri · ~Fij +

N∑
i=1

~̇ri · ~Fi

Q.E.D.

Corolario 9. Sea S un sistema de N partículas tal que la masa de sus partículas no varía en el tiempo. Si
todas las fuerzas internas son perpendiculares al vector velocidad de cada partícula, es decir, ~̇ri ⊥ ~Fij ∀i, j =
1, . . . , N ; entonces la variación de energía cinética total del sistema S con respecto al tiempo se debe únicamente
a la potencia generada por las fuerzas externas.

Ṫ =

N∑
i=1

~̇ri · ~Fi

En particular, si ~̇ri = ~0 ∀i = 1, . . . , N , entonces la energía cinética total del sistema se conserva Ṫ = 0.

Demostración. Partimos de la proposición 8 en la página anterior:

Ṫ =

N∑
i=1

N∑
j=1

~̇ri · ~Fij +
N∑
i=1

~̇ri · ~Fi

Ahora, bien, como por hipótesis es ~̇ri ⊥ ~Fij ∀i, j = 1, . . . , N , tenemos:

~̇ri ⊥ ~Fij ∀i, j = 1, . . . , N ⇔ ~̇ri · ~Fij = 0 ∀i, j = 1, . . . , N

Sustituyendo en la expresión dada por la proposición 8 en la página anterior, llegamos a:

Ṫ =

N∑
i=1

~̇ri · ~Fi

En particular, si ~̇ri = ~0 ∀i = 1, . . . , N , se cumple ~̇ri ⊥ ~Fij ∀i, j = 1, . . . , N , luego se da la expresión
anterior. Además, como es ~̇ri = ~0 ∀i = 1, . . . , N , al sustituir, obtenemos Ṫ = 0. Q.E.D.
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Ejemplo 5. Supongamos que tenemos un sistema de dos partículas 1 y 2. Por la tercera de ley de Newton,
tenemos:

~F12 = −~F21 := ~F

~r = ~r1 − ~r2 ⇒ ~̇r = ~̇r1 − ~̇r2

Así:
~̇r1F − ~̇r2F = ~̇r · ~F

y este término no tiene por qué anularse. De hecho, las fuerzas internas no contribuyen a Ṫ si:

~̇r = 0 Ejemplo: reacción en un pivote.

~̇r ⊥ ~F Ejemplo: movimiento circular.

Proposición 9. Sea S un sistema de N partículas tal que todas las fuerzas internas son conservativas y
tal que la masa de cada una de sus partículas permanece constante en el tiempo. Entonces la variación con
respecto al tiempo de la suma de la energía cinética del sistema T y el potencial de las fuerzas internas Vint
se debe únicamente a la potencia generada por las fuerzas externas.

d

dt
(T + Vint) =

N∑
i=1

~̇ri · ~Fi

Demostración. Como todas las fuerzas son conservativas, sabemos que existen funciones Vij : Ω ⊆ R3 −→ R

con Ω abierto tales que ~Fij = −~∇Vij = −dVij
d~ri

∀i, j = 1, . . . , N .

Por la regla de la cadena, tenemos:

−dVij
dt

= −dVij
d~ri

d~ri
dt

= −~∇Vij · ~̇r = ~Fij · ~̇ri = ~̇ri · ~Fij

Sumando a los índices i y j a ambos lados desde 1 hasta N , obtenemos:

−
N∑
i=1

N∑
j=1

dVij
dt

=
N∑
i=1

N∑
j=1

~̇ri · ~Fij ⇔
N∑
i=1

N∑
j=1

~̇ri · ~Fij = − d

dt

 N∑
i=1

N∑
j=1

Vij

 = −dVint
dt

pues la derivada es lineal. Sustituyendo en la proposición 8 en la página 31, llegamos a:

Ṫ = −dVint
dt

+
N∑
i=1

~̇ri · ~Fi ⇔
dT

dt
+

dVint
dt

=
N∑
i=1

~̇ri · ~Fi

Como la derivada es lineal, lo anterior es equivalente a:

d

dt
(T + Vint) =

N∑
i=1

~̇ri · ~Fi

Q.E.D.

Proposición 10. Sea S un sistema de N partículas tal que todas las fuerzas internas son conservativas y
tal que la masa de cada una de sus partículas permanece constante en el tiempo. Entonces la variación con
respecto al tiempo de la suma de la energía cinética del sistema T según el centro de masas y el potencial de
las fuerzas internas Vint se debe únicamente a la potencia generada por las fuerzas externas según el centro
de masas. En otras palabras:

d

dt
(T ∗ + Vint) =

N∑
i=1

~̇r ∗i · ~Fi
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Demostración. Partimos de la proposición 9 en la página anterior:

d

dt
(T + Vint) =

N∑
i=1

~̇ri · ~Fi

Por la proposición 7 en la página 30:

d

dt
(T ∗ + TC.D.M. + Vint) =

N∑
i=1

~̇ri · ~̇Fi ⇔

⇔ d

dt

(
T ∗ + Vint +

1

2
M ~̇R 2

)
=

N∑
i=1

~̇ri · ~̇Fi

Como la derivada es lineal, podemos escribir lo anterior como:

d

dt
(T ∗ + Vint) +

d

dt

(
1

2
M ~̇R 2

)
=

N∑
i=1

~̇ri · ~Fi ⇔

⇔ d

dt
(T ∗ + Vint) +M ~̇R · ~̈R =

N∑
i=1

~̇ri · ~Fi ⇔

⇔ d

dt
(T ∗ + Vint) =

N∑
i=1

~̇ri · ~Fi − ~̇R ·
(
M ~̈R

)
Por la segunda ley de Newton aplicada a un sistema de partículas (ver proposición 1 en la página 17):

d

dt
(T ∗ + Vint) =

N∑
i=1

~̇ri · ~Fi − ~̇R ·
(

N∑
i=1

~Fi

)
=

N∑
i=1

~̇ri · ~Fi −
N∑
i=1

~̇R · ~Fi =

=
N∑
i=1

(
~̇ri · ~Fi − ~̇R · ~Fi

)
=

N∑
i=1

(
~̇ri − ~̇R

)
· ~Fi

Por último, por la proposición 2 en la página 19, tenemos:

d

dt
(T ∗ + Vint) =

N∑
i=1

~̇r ∗i · ~Fi

Q.E.D.

Observación 7. Nótese que en el enunciado de la proposición 10 en la página anterior, el potencial de las
fuerzas internas no lleva ∗. Esto no es necesario, porque como las fuerzas internas son conservativas, dicho
potencial debe ser únicamente función de la distancia entre las partículas Vij = F! (~ri − ~rj). Esto se debe a
que el vector resta de dos vectores nunca depende del origen del sistema de referencia afín tomado.

Teorema 4 (Teorema de conservación de la energía mecánica para un sistema de partículas). Sea S un
sistema de N partículas tal que que la masa de cada una de sus partículas permanece constante en el tiempo.
Si todas las fuerzas que actúan sobre todas las partículas son conservativas, entonces la energía mecánica total
T + V del sistema se conserva.

E = T + V = cte
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Demostración. Si todas las fuerzas son conservativas, en particular lo son las externas. En consecuencia,

sabemos que existen funciones escalares Vi : Ω ⊆ R3 −→ R con Ω abierto tales que: ~Fi = −~∇Vi = −dVi
d~ri

∀i =

1, . . . , N .
Por la regla de la cadena:

−dVi
dt

= −dVi
d~ri
· d~ri

dt
= ~Fi · ~̇ri = ~̇ri · ~Fi

Sumando a ambos lados en i desde 1 hasta N , obtenemos:

−
N∑
i=1

dVi
dt

=
N∑
i=1

~̇ri · ~Fi

Como la derivada es lineal, lo anterior es equivalente a:

N∑
i=1

~̇ri · ~Fi = − d

dt

(
N∑
i=1

Vi

)
= −dVext

dt

por el principio de superposición. Como todas las fuerzas internas son conservativas, podemos aplicar la
proposición 9 en la página 33:

d

dt
(T + Vint) =

N∑
i=1

~̇ri · ~Fi = −dVext
dt
⇔

⇔ d

dt
(T + Vint) = −dVext

dt

Como la derivada es lineal, obtenemos:

d

dt
(T + Vint + Vext) = 0⇔ d

dt
(T + V ) = 0⇔ E = T + V = cte

Q.E.D.

Observación 8. En el caso del teorema 4 en la página anterior, V sí que depende del sistema de referencia
usado, pues Vi = F (~ri).

1.5. Ecuaciones de Lagrange para un sistema de partículas

Definición 12. Sea S un sistema de N partículas tal que todas las fuerzas que actúan sobre todas las
partículas del sistema son conservativas. Llamamos lagrangiano o función lagrangiana a la resta de la
energía cinética total del sistema y su energía potencial.

L := T − V

Teorema 5 (Ecuaciones de Euler-Lagrange). Sea S un sistema de N partículas tal que todas las fuerzas
internas son conservativas y tal que que la masa de cada una de sus partículas permanece constante en el
tiempo. Entonces:

d

dt

(
∂L
∂q̇i,j

)
=

∂L
∂qi,j

i = 1, . . . , N ; j = x, y, z

Demostración. Como todas las fuerzas que actúan sobre S son conservativas, sabemos que existe una función
escalar V : Ω ⊆ R3 −→ R con Ω abierto tal que:

mi~̈ri = −∂V
∂~ri

∀i = 1, . . . , N ⇔ mir̈i,j = − ∂V

∂ri,j
∀i = 1, . . . , N ; j = x, y, z (1.5.1)
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donde V será la función potencial de la resultante de todas las fuerzas.
Por otra parte, por el corolario 8 en la página 30:

T =
N∑
i=1

1

2
mi~̇r

2
i ⇒

∂T

∂~̇rj
=

∂

∂~̇rj

(
N∑
i=1

1

2
mi~̇r

2
i

)

Como la derivada es lineal, obtenemos:

∂T

∂~̇rj
=

N∑
i=1

1

2
mi
∂~̇r 2

i

∂~̇rj
=

N∑
i=1

1

2
mi2~̇riδij = mi~̇ri ∀i = 1, . . . , N

donde δij =

{
0 si i 6= j
1 si i = j

es la delta de Kronecker. De esta forma, lo anterior es equivalente a:

∂T

∂ṙi,j
= miṙi,j ∀i = 1, . . . , N ; ∀j = x, y, z (1.5.2)

Además, sabemos por las proposición 11 en la página 30 que T no dependerá de las posiciones y como V es
el potencial asociado a una fuerza conservativa, V no dependerá de las velocidades.

∂T

∂~ri
= ~0 ∀i = 1, . . . , N ⇔ ∂T

∂ri,j
= 0 ∀i = 1, . . . , N ; ∀j = x, y, z (1.5.3)

∂V

∂~̇ri
= ~0 ∀i = 1, . . . , N ⇔ ∂V

∂ṙi,j
= 0 ∀i = 1, . . . , N ;∀j = x, y, z (1.5.4)

De esta forma, por la definición 12 en la página anterior al ser la derivada lineal:

∂L
∂ri,j

=
∂

∂ri,j
(T − V ) =

∂T

∂ri,j
− ∂V

∂ri,j

Por las ecuaciones 1.5.3 y 1.5.1 en la página anterior, obtenemos:

∂L
∂ri,j

= mir̈i,j ∀i = 1, . . . , N ; ∀j = x, y, z (1.5.5)

Por otra parte, por la definición 12 en la página anterior al ser la derivada lineal:

∂L
∂ṙi,j

=
∂

∂ṙi,j
(T − V ) =

∂T

∂ṙi,j
− ∂V

∂ṙi,j

Por las ecuaciones 1.5.2 y 1.5.4, obtenemos:

∂L
∂ṙi,j

= miṙi,j ⇒
d

dt

(
∂L
∂ṙi,j

)
= mir̈ij ∀i = 1, . . . , N ; ∀j = x, y, z (1.5.6)

Por ende, juntando las ecuaciones 1.5.5 y 1.5.6, llegamos a:

d

dt

(
∂L
∂q̇i,j

)
=

∂L
∂qi,j

i = 1, . . . , N ; j = x, y, z

Q.E.D.
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Proposición 11. Sea S un sistema de N partículas tal que todas las fuerzas internas son conservativas y
tal que que la masa de cada una de sus partículas permanece constante en el tiempo. Si las fuerzas externas
que actúan sobre las partículas de S son tales que existe un campo ~g : R3 −→ R3 constante en el espacio
(~g 6= F (~r)) tal que ~Fi = mi~g ∀i, . . . , N , entonces el lagrangiano del sistema S es susceptible de separarse en
dos lagrangianos, uno para el movimiento del centro de masas y otro para el movimiento de las partículas de
S en torno a su centro de masas.

Demostración. Hallemos la energía potencial asociada a las fuerzas externas:

−dVi
d~ri

= mi~g ∀i = 1, . . . , N

Por el teorema del gradiente:

Vi = −
∫
~ri

mi~g · d~ri +K = −mi~g · ~ri +K

Podemos suponer sin pérdida de generalidad que K = 0. Sumando a todas las partículas, obtendremos el
potencial asociado a las fuerzas externas:

Vext =
N∑
i=1

Vi =
N∑
i=1

−mi~g · ~ri = −~g ·
(

N∑
i=1

mi~ri

)
= −M~g ·


N∑
i=1

mi~ri

M


Por la definición 1 en la página 16, tenemos:

Vext = −M~g · ~R

Ahora bien, por la definición 12 en la página 35, tenemos:

L = T − V

Por la proposición 7 en la página 30 y usando que V = Vext + Vint, obtenemos:

L = T ∗ + TC.D.M. − Vext − Vint =
1

2
M ~̇R 2 +M~g · ~R+

N∑
i=1

1

2
mi~̇r

∗ 2
i − Vint

donde el último término únicamente depende de la distancia entre la partículas. Así, podemos escribir:

LC.D.M. = TC.D.M. − Vext =
1

2
M ~̇R 2 +M~g · ~R

L∗ = T ∗ − Vint =
N∑
i=1

1

2
mi~̇r

∗ 2
i − Vint

Q.E.D.

Observación 9. Como consecuencia de la proposición 11, el lagrangiano de un sistema de partículas puede
separarse en un lagrangiano que sólo depende de ~R y ~̇R y otro que depende de ~r∗i y ~̇r∗i . Por ende, podemos
aplicar las leyes de conservación de forma separada al centro de masas y al resto de partículas.
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1.6. Problemas

Ejercicio 1 (Problema 1.1). Calcular la posición del centro de masas de una hemiesfera sólida de densidad
constante ρ y radio a. Suponer el centro de la esfera original en el origen de coordenadas y la base de la
hemiesfera en el plano XY .

Solución. Tal como dicta el enunciado, calcularemos el centro de masas de una distribución continua de masa
con forma de hemiesfera. Sabemos por la proposición 1 en la página 16 que la expresión para el cálculo de un
centro de masas para distribuciones continuas de masa es la siguiente:

~R =

∫∫∫
V
~rρ(~r)dV∫∫∫
V

dm

Podemos obviar el cálculo de la integral presente en el denominador, pues sabemos que su resultado será igual
a la masa total de la hemiesfera; al ser una distribución de masas con densidad constante, tendremos que la
masa total de la hemiesfera es igual a:

M = ρVhemi =
1

2
ρVesfera =

2

3
ρπa3 (1.6.1)

Debido a la simetría respecto a un eje de revolución (y a que la densidad de masa en constante en todo el
volumen de la hemisfera), podemos asegurar que la posición del centro de masas estará localizado en algún
punto del eje Z; así pues:

~R =
1

M

∫∫∫
V
zρ(~r)dV ẑ

Empleando coordenadas esféricas, el diferencial de volumen será expresado como dV = r2 sen θdrdθdϕ, por lo
tanto:

~R =
1

M

(∫∫∫
V
zρr2 sen θdrdθdϕ

)
ẑ

En coordenadas esféricas, z = r cos θ. Además los límites de integración cumplirán que r varía en el intervalo
[0, r], ϕ en el intervalo [0, 2π] y la variable θ en [0, π2 ]; por lo que la integral resultante queda como:

~R =
1

M

(
ρ

∫ a

0

∫ 2π

0

∫ π/2

0
r3 sen θ cos θdrdθdϕ

)
ẑ =

=
1

M

(
ϕ
∣∣∣2π
0

)(
1

2
sen2 θ

∣∣∣π/2
0

)(
ρ

∫ a

0
r3dr

)
ẑ =

=
1

M

(
ϕ
∣∣∣2π
0

)(
1

2
sen2 θ

∣∣∣π/2
0

)(
1

4
r4
∣∣∣a
0

)
ẑ =

ρπa4

4M
ẑ

Sustituyendo el valor antes calculado de M en la ecuación 1.6.1, obtenemos que la posición del centro de
masas de una hemiesfera centrada en el origen y con base en el plano XY se encuentra en:

~R =
3

8
aẑ

Q.E.F.

Ejercicio 2 (Problema 1.2). Una cuerda (densidad lineal de masa λ, longitud l) se encuentra inicialmente en
reposo en posición vertical, con su extremo inferior justo encima de una superficie horizontal. En un instante
dado se deja caer en caída libre sobre la superficie. ¿Qué fuerza se ejerce sobre la superficie horizontal, cuando
una porción de la cuerda de longitud x ha alcanzado la superficie?
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Solución. En este problema se dividirá la cuerda en dos partes: la que sigue cayendo (MC = λ(l−x)) y la que
se encuentra apoyada sobre el suelo (MS = λx). Gracias a la proposición 1 en la página 16, puede calcularse
la posición del centro de masas de la cuerda en función de la distancia de caída x (visto desde un punto a
distancia l del suelo). Primero, resulta conveniente concretar el centro de masas de la parte de la cuerda que
está cayendo, así como de la parte que ya se encuentra en el suelo. Respectivamente:

xCM,C =
l − x

2
+ x =

l + x

2
xCM,S = l

xCM =
MSxCM,S +MCxCM,C

M
=

1

λl

(
xλl +

l + x

2
λ(l − x)

)
=

1

l

2xl + (l + x)(l − x)

2
=
l2 − x2 + 2xl

2l

La variación de esta posición será entonces:

ẋCM =
d

dt

(
l2

2l
− x2

2l
+ x

)
= −2xẋ

2l
+ ẋ = ẋ

(
1− x

l

)
=
ẋ

l
(l − x)

La energía potencial vendrá dada como:

V = MgxCM = −λlg l
2 − x2 + 2xl

2l
= −λg l

2 − x2 + 2xl

2

Y la energía cinética (dado que el fragmento que cae tiene masa MC y velocidad ẋCM,C = ẋ
2 ):

T =
1

2
MC ẋ

2
CM,C =

1

2
λ(l − x)

(
ẋ

2

)2

Como la energía se conserva en todo momento, necesariamente:

E0 = V (x = 0) = −λgl
2

2
= E(x) =

λ

2

[
(l − x)

(
ẋ

2

)2

− g(l2 − x2 + 2xl)

]
⇔

⇔ −λgl
2

2
=
λ

2

[
(l − x)

(
ẋ

2

)2

− g(l2 − x2 + 2xl)

]
Despejando, se llega a la ecuación diferencial:

ẋ2 = 4g
2xl − x2

l − x
Inicialmente, podría parecer que esta solución no tiene sentido físico, pues se cumple:

ĺım
x→l

ẋ =∞

Esto significa que el extremo superior de la cuerda llega al suelo con velocidad infinita, hecho que se ve
amortiguado por fuerzas internas y por el hecho de que la cuerda no es perfectamente inextensible. Sin
embargo, parece lógico afirmar que un sistema que pierde masa hasta quedarse sin nada (el tramo de la
cuerda que cae) incrementa su velocidad de manera indefinida, haciendo que la función diverja hacia infinito
en el punto x = l. Una vez que se ha obtenido la velocidad en función de la longitud de cuerda posada sobre
el suelo, puede calcularse la fuerza ejercida sobre esa superficie en función del mismo parámetro, pues:

F = Fg + Fdinámica = Fg +
dp

dt
= Fg +

vdm

dt
= mg +

λẋ2dt

dt
= λg

(
x+ 4

2lx− x2

l − x

)
De nuevo aparece una magnitud que diverge cuando la longitud de cuerda apoyada en el suelo tiende a l, lo
que resulta comprensible tras haber observado este particular efecto en la velocidad.
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Q.E.F.

Ejercicio 3 (Problema 1.3). (Ejercicio de examen, Septiembre de 2018) Una rana de masa m está sentada
en el extremo de un bloque de madera (de longitud L y masa M) que descansa sobre la superficie de un lago
helado (sin rozamiento). En un momento dado, la rana salta hacia el otro extremo de la tabla con un ángulo
α. ¿Cuál debe ser la velocidad de la rana (en módulo) para que llegue justo al otro extremo de la tabla?

Solución. El principal punto a considerar antes de enfrentarse a la resolución de este problema, consiste en
ver que al saltar la rana de un extremo a otro de la tabla, ésta se moverá en sentido contrario al que la rana ha
saltado (debido a la conservación del momento lineal, presente en el corolario 3 en la página 19); esto causará
que cuando la rana ”aterrice” sobre el extremo opuesto de la tabla, este extremo se encontrará en una posición
distinta a la que se encontraba originalmente.

El movimiento de la rana en el aire es tiro parabólico. En consecuencia, su posición de la rana tras el salto
puede expresarse como:

~Xrana = (vrana cosα t) î+

(
vrana senα t− 1

2
gt2
)
ĵ

Para conocer el tiempo que ha transcurrido desde el salto hasta el aterrizaje, solo debemos igualar la compo-
nente en ĵ a 0:

vrana senα t− 1

2
gt2 = 0→

{
t = 0
t = 2vrana

g senα
(1.6.2)

Teniendo en cuenta que a t = 0 la rana acaba de saltar, obviamos este resultado, siendo el segundo tiempo
(t = 2vrana

g senα) el que trataremos. En este tiempo, la rana habrá recorrido un espacio:

∆x = vrana cosα t (1.6.3)

De modo que en el mismo tiempo, para que la rana lograse alcanzar el extremo opuesto de la tabla (está en
movimiento), la tabla habrá recorrido un espacio L−∆x en dirección contraria al salto de la rana.

Por lo comentado anteriormente, tendremos que en el tiempo t dado por la ecuación 1.6.2 que la rana
tarda en realizar el salto, la tabla ha recorrido un cierto espacio, esto puede ser formulado como:

L−∆x = vtablat

Conociendo el espacio ∆x (ecuación 1.6.3) recorrido por la rana, podemos sustituir en la anterior ecuación:

vtabla =
L− vrana cosα t

t

Conocido también el tiempo t (ecuación 1.6.2) que necesita la rana para alcanzar el extremo opuesto de la
tabla:

vtabla =
L− vrana cosα

(
2vrana

g senα
)

2vrana
g senα

Empleando la conocida relación trigonométrica del ángulo doble, 2 cosα senα = sen(2α), la expresión de la
velocidad de la tabla en función de parámetros conocidos y la velocidad de la rana en su primer momento es:

vtabla =
L− v2

rana sen(2α)/g

2vrana
g senα

(1.6.4)

Tenemos así una relación entre el módulo de la velocidad de la tabla y el módulo de la velocidad de la rana;
para poder conocer el valor de estas dos cantidades, deberemos derivar otra expresión que las relacione.

Como dijimos al comienzo de este ejercicio, la tabla se mueve debido al salto de la rana a causa de la
conservación del momento lineal. Según queda probado en el corolario 3 en la página 19, la variación del
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momento lineal de un sistema sin influencia de fuerzas externas (como es el nuestro en el plano horizontal
debido a la nula existencia de rozamiento) es nula, por lo que el momento lineal (únicamente en este plano,
pues en el eje vertical no se conserva, de conservarse, al saltar la rana, la tabla se hundiría en el hielo) antes
y después del salto es el mismo; esto nos aporta la siguiente ecuación:

mvrana cosα− vtablaM = 0⇔ vtabla =
m

M
vrana cosα

Sustituyendo este valor en la relación que calculamos anteriormente (ecuación 1.6.4 en la página anterior),
esto nos resulta en:

L− v2
rana sen(2α)/g

2vrana
g senα

= vrana
m

M
cosα

Podemos operar esta expresión (empleando de nuevo la relación trigonométrica del angulo doble) para obtener
la que sigue:

L− v2
rana

sen(2α)

g
= v2

rana

m

gM
sen(2α)⇔

⇔ L =
v2
rana

g
sen(2α)

(m
M

+ 1
)

Así, despejando el valor de la rapidez de la rana, obtendremos:

vrana =

√
gL(

m
M + 1

)
sen 2α

Q.E.F.

Ejercicio 4 (Problema 1.4). Un cohete en el espacio exterior (sin gravedad) se acelera desde el reposo (con
velocidad inicial nula) con aceleración constante a hasta que alcanza una velocidad v. La masa inicial del
cohete es M0. Calcule el trabajo hecho por el motor del cohete. (Tenga en cuenta tanto el trabajo sobre el
cohete como el trabajo sobre el combustible eyectado).

Solución. Al tratarse de un ejercicio unidimensional, se eliminará el carácter vectorial de las magnitudes.
Así, la definición de trabajo queda:

W =

∫
Fdx =

∫
d

dt
dx =

∫
vdp

El cohete propuesto puede describirse con la ecuación del cohete de Tsiolkovski (vista en el ejemplo 1 en la
página 20), que se obtiene tras aplicar la conservación del momento lineal (corolario 3 en la página 19) para
un objeto de masa M viajando a velocidad v que sufre variaciones de masa dM . Al ser estos diferenciales
de masa negativos, puede interpretarse que se eyectan diferenciales de masa −dM con una velocidad v − u,
siendo u la velocidad relativa con la que salen despedidas estas pequeñas cantidades de masa vista desde el
cohete. Entonces, puede escribirse el momento lineal del sistema a tiempo t y tras un dt:{

p(t) = Mv

p(t+ dt) = (M + dM)(v + dv) + dM(u− v)

De esta forma, despreciando la contribución del producto de diferenciales:

Mv = (M + dM)(v + dv) + dM(u− v)⇔ −Mdv = udM

Resolviendo esta ecuación diferencial:

m = m0e−v/u ⇔ m0 = mev/u (1.6.5)
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Con m0 la masa inicial del cohete. Ahora, conociendo también que la velocidad es constante (luego v=at),
puede expresarse dp como:

dpcohete = d(mv) = madt+ atdm = m0ae−at/u
(

1− at

u

)
dt

Así, para calcular el trabajo total sobre el sistema:

Wtotal = Wcohete +Weyectado =

∫ t

0
dpcohetevcohete +

∫ t

0
dpeyectadoveyectado

Sabiendo ahora que para la masa expulsada v = vcohete − u y dp = dmeyectada(vcohete − u):

Wcohete =

∫ t

0
m0ae−aτ/u

(
1− aτ

u

)
aτdτ

Weyectado =

∫ t

0

m0a

u
(aτ − u)2e−aτ/udτ

Wtotal = m0atue−at/u
(1,6,5)

= mrestantevcoheteu

Q.E.F.

Ejercicio 5 (Problema 1.5). Supongamos un cohete ascendiendo verticalmente en contra de la gravedad. El
cohete quema combustible a un ritmo constante, y eyecta los gases con velocidad u. Despreciando el rozamiento
con el aire, encuentre la velocidad del cohete tras quemar una cierta cantidad de combustible.

Solución. Además de considerar que el rozamiento con el aire es despreciable, consideraremos que el campo
gravitatorio que actúa sobre el cohete es constante e igual a g. Debido a que existe una fuerza externa (la
gravitatoria) el momento lineal no podrá conservarse (tal como se demuestra en el teorema 2 en la página 18)
debido a que ~̇P = ~F 6= ~0.

Podremos decir que en un diferencial de tiempo dt el cohete eyecta un diferencial de masa dm, siendo el

ritmo de eyección h :=
dm

dt
.

Podemos comenzar describiendo el momento lineal del sistema (a partir de la definición formal 3 en la
página 17 del momento lineal) antes y después de que un cierto tiempo dt haya transcurrido:{

Pt = Mv
Pt+dt = (M − dm)(v + dv)− dm(u− v)

Sabemos que para un sistema de partículas, el cambio del momento lineal con el tiempo es igual a ~̇P =∑
i
~Fi (de nuevo por el teorema 2 en la página 18) y puesto que nos encontramos bajo un campo de fuerzas

gravitatorias de valor g, tendremos que:

Ṗ =
Pt+dt − Pt

dt
=
Mdv − dmdv − udm

dt
= −gM

Podemos despreciar el factor dmdv (diferencial de segundo orden) en comparación conMdv y udm (de primer
orden), así, tendremos que:

−Mg = M
dv

dt
− udm

dt
≡M dv

dt
− uh

A partir de esta expresión, podríamos determinar la velocidad (y, por lo tanto, la posición) del cohete en función
del tiempo, sin embargo, puesto que nos piden que lo calculemos en función de la cantidad de combustible
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quemado, tendremos que emplear la regla de la cadena y hacer
dv

dt
=

dv

dm

dm

dt
=

dv

dm
h. Así la expresión anterior

quedará de la siguiente manera:

−Mg = Mh
dv

dm
− uh

Puesto que dm es un diferencial de masa que el cohete pierde, tendremos la relación dm = −dM y así:

Mg = Mh
dv

dM
+ uh⇔

⇔Mg − uh = Mh
dv

dM
⇔ (Mg − uh) dM = Mhdv ⇔

⇔ Mg − uh
M

dM = hdv ⇔
(
g − u h

M

)
dM = hdv ⇔

⇔
∫ M

M0

(
g − u h

M

)
dM =

∫ v

v0

hdν ⇔

⇔ (M −M0) g − uh [lnM]MM0
= h (v − v0)⇔

⇔ (M −M0) g + uh ln

(
M0

M

)
= hv − hv0 ⇔

⇔ v(M) =
g

h
(M −M0) + u ln

(
M0

M

)
+ v0

Q.E.F.

Ejercicio 6 (Problema 1.6). Un vagón de masa M puede desplazarse por un raíl sin rozamiento. Parte con
una velocidad v0, mientras cae lluvia que va llenando el vagón. El ritmo de masa que cae por unidad de tiempo
es α. Calcule la velocidad y la distancia recorrida en función del tiempo.

Solución. El problema es bastante similar al que retrata un cohete con la salvedad de que los diferenciales de
masa son positivos, luego la masa del móvil aumenta. Es preciso tener también en cuenta que el momento lineal
de las gotas de lluvia no es transferido al vagón (se considera que cae perpendicular a él de forma perfectamente
inelástica). Esto se traduce únicamente como un incremento de masa. El sistema puede describirse como un
objeto de masa M que viaja a velocidad v mientras sufre variaciones de masa dM con un ritmo de caída de
α. Se considera que sufre variaciones diferenciales negativas en su velocidad.

De esta forma, el momento lineal del sistema a tiempo t y tras un dt es:{
p(t) = Mv

p(t+ dt) = (M + dM)(v + dv)

Según el corolario 3 en la página 19, p(t) = p(t + dt). Y si se desprecia también la contribución de los
diferenciales de segundo orden:

Mv = (M + dM)(v + dv)⇔ −Mdv = vdM

Resolviendo esta ecuación diferencial:∫ v

v0

−dv′

v′
=

∫ M

M0

dm

m
⇔ ln

v

v0
= ln

M0

M

Y como la función logaritmo es biyectiva, la velocidad en función del tiempo queda:

v =
v0M0

M
=

v0M0

M0 + αt
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Ahora, haciendo uso de v = dx
dt , la posición x en función del tiempo será:

x =

∫ t

0
vdτ =

∫ t

0

v0M0

M0 + ατ
dτ =

v0M0

α
ln

(
M0 + αt

M0

)
Q.E.F.

Ejercicio 7 (Problema 1.7). Un cohete en el expacio exterior (sin influencias gravitatorias) empieza a moverse
desde un estado de reposo eyectando masa. Deducir la ecuación para la velocidad del cohete en función del
ratio de masa. Calcúlese para qué fracción de masa inicial se tiene el momento lineal máximo.

Solución. Puesto que el cohete se encuentra en el espacio exterior sin ninguna influencia gravitatoria, podemos
asumir que no existirán fuerzas externas al cohete y que, por lo demostrado en el corolario 3 en la página 19,
la cantidad del momento lineal se conservará.

Si en un momento dado la masa del cohete es M y su velocidad v, su momento lineal será Pt = Mv; en
un diferencial de tiempo, el cohete habrá perdido un diferencial de masa dm, suponiendo que la velocidad de
eyección sea u, el cohete adquirirá un diferencial de velocidad; podemos expresar esta información como parte
de la cantidad de momento lineal Pt+dt = (M − dm)(v + dv)− dm(u− v).

Puesto que bajo ausencia de fuerzas externas la cantidad de momento lineal se conserva (de nuevo por el
corolario 3 en la página 19), podemos decir que Pt = Pt+dt, es decir:

Mv = (M − dm)(v + dv)− dm(u− v)

Operando esta expresión, podemos llegar a la que sigue:

0 = Mdv − dmdv − udm

Al ser el sumando dmdv un diferencial de segundo orden, este puede ser despreciado frente al resto de sumandos
(diferenciales de primer orden), de modo que:

0 = Mdv − dmdv − udm→Mv = udm

Puesto que dm es la cantidad de masa que el cohete pierde, es equivalente decir dm = −dM y por lo tanto:

Mdv = udm⇔ 1

u
dv = − 1

M
dM

Integrando a ambos lados de la igualdad, obtenemos:∫ v

v0

dν

u
=

∫ M

M0

dM
M ⇔ 1

u
(v − v0) = ln

(
M0

M

)
Ya que en el enunciado se nos dice que el cohete parte del reposo, la expresión de la velocidad en función de
la masa del cohete será:

v = u ln

(
M0

M

)
Ahora, para calcular la fracción de masa y masa inicial que determinan la máxima cantidad de momento
lineal, expresaremos esta cantidad como:

P = Mv = uM ln

(
M0

M

)
Para calcular el momento donde la cantidad de momento es máxima en relación de la masa, tendremos que
estudiar los máximos relativos de la función P (M) y estudiar el valor de P en los extremos de los valores
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permitidos de M . Hagamos esta segunda parte primero. La masa final del cohete estará entre M0 y M , luego
debemos hallar P (M0) y PM .

P (M = M0) = uM0 ln 1 = 0

Por otra parte, nótese que P (0) no está definido. No obstante, como los polinomios dominan sobre los loga-
ritmos, el límite cuando M → 0+ de la función P está bien definido. En otras palabras, P tiene extensión
continua en M = 0 y el valor de dicha extensión es:

ĺım
M→0

P (M) = 0

Hecho lo anterior, procedamos a derivar y a igualar la derivada a cero:

u ln

(
M0

M

)
+ uM

M

M0
M0

(
− 1

M2

)
= u ln

(
M

M0

)
− u = u

[
ln

(
M

M0

)
− 1

]
= 0⇔ M0

M
= e

Por lo tanto, como es P
(
M0
e

)
> 0, la fracción de masa inicial y masa para la que la cantidad de momento

lineal del cohete es máxima es M0
M = e.

Q.E.F.

Ejercicio 8 (Problema 1.8). Se lanza un cohete desde la superficie de la Tierra para que llegue hasta una
altura de 50 km. Calcula la velocidad que hay que comunicarle, despreciando la variación de g con la altura
(y la rotación de la Tierra). Si la masa final del cohete (sin el combustible) es de 100 kg y la velocidad a la
que se expulsan los gases es de 2 km

s , calcula la masa inicial del cohete.

Solución. El cohete propuesto puede describirse con la ecuación del cohete de Tsiolkovski (al igual que en el
ejemplo 1 en la página 20), considerando que la variación de momento lineal es igual a la fuerza resultante
sobre el sistema (corolario 3 en la página 19), y tratando el cohete como un objeto de masa M viajando a
velocidad v que sufre variaciones de masa dM . Estos diferenciales de masa son negativos, por lo que puede
interpretarse que se eyectan diferenciales de masa −dM con una velocidad v−u, siendo u la velocidad relativa
con la que salen despedidas estas pequeñas cantidades de masa vista desde el cohete. Entonces, puede escribirse
el momento lineal del sistema a tiempo t y tras un dt:{

p(t) = Mv

p(t+ dt) = (M + dM)(v + dv) + dM(u− v)

De esta forma, despreciando la contribución del producto de diferenciales y siendo la fuerza Mg = dp
dt :

dtF = (M + dM)(v + dv) + dM(u− v)−Mv ⇔Mgdt = Mdv + udM

Resolviendo esta ecuación diferencial:∫ v

v0

dv′ = −g
∫ t

0
dt′ − u

∫ m

m0

dM

M
⇔ v = v0 − gt+ u ln

m0

m
= −gt+ u ln

m0

m0 − ht

Con m0 la masa inicial del cohete y suponiendo que la masa varíe de forma lineal. Ahora, puede obtenerse la
ecuación para la posición del cohete:

x =

∫ xf

0
dx =

∫ t

0
vdτ =

∫ t

0

(
−gτ + u ln

m0

m0 − hτ

)
dτ

x = −1

2
gt2 + tu

[
ln

(
m0

m0 − ht

)
+ 1

]
− m0u

h
ln

(
m0

m0 − ht

)
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Si se pretende que el cohete llegue con velocidad nula al punto superior:

−gt+ u ln
m0

mf
= 0⇔ t =

u

g
ln
m0

mf

x = −1

2
g

(
u

g
ln
m0

mf

)2

+
u2

g
ln
m0

mf

[
ln

(
m0

mf

)
+ 1

]
− m0u

h
ln

(
m0

mf

)
Ahora, la ecuación que relaciona la masa inicial necesaria con la tasa h de eyección de masa por unidad de
tiempo es:

50000 = −9, 81

2

(
2000

9, 81
ln
m0

100

)2

+
4

9, 81
ln
m0

100

[
ln
(m0

100

)
+ 1
]
− 2m0

h
ln
(m0

100

)
Es decir, la masa inicial dependerá de un parámetro libre sin especificar (La tasa de expulsión de materia por
unidad de tiempo).

Q.E.F.

Ejercicio 9 (Problema 1.9). Sean N partículas de masa M colocadas a lo largo de una recta, de modo que
cada una toca a la siguiente.

a) Desde la izquierda vienen dos masas M con la misma velocidad v y chocan con la fila de N masas.
Demostrar la imposibilidad que, como consecuencia de la colisión, sea expulsada una sola masa por la derecha
o que lo sean dos masas con velocidades diferentes v1 y v2.

b) A la fila de N masas se le añade otra de masa m por la derecha y se tiene una masa M con velocidad v
que choca con la fila por la izquierda. Demostrar la imposibilidad que si m < M , salga expulsada una única
masa. Si salen expulsadas dos masas, ¿cuáles serían sus velocidades? Si m > M y, como consecuencia de la
colisión, sale una masa por la derecha y la masa que ha chocado rebota, ¿cuáles serán sus velocidades? ¿Qué
ocurre si m es muy grande?

Solución. Este ejercicio es un ejemplo de choque de partículas muy similar al observado en el conocido
”péndulo de Newton” donde una partícula con una cierta masa colisiona con una fila de masas iguales a ella
causando que la partícula del extremo salga expulsada (y al estar conectadas a cuerdas tensoras) para después
volver a repetirse el proceso.

Considerando que no exista fricción entre las partículas y el suelo o entre ellas mismas, y que las colisiones
sean perfectamente elásticas, podemos suponer que la cantidad de momento lineal se conservará (puesto que
según el corolario 3 en la página 19 en ausencia de fuerzas externas la variación del momento lineal respecto
al tiempo es nula).

a) Antes de adentrarnos en la solución del ejercicio, centrémonos primero en estudiar que ocurre en una
colisión perfectamente elástica entre dos partículas de masaM estando una en reposo y otra con una velocidad
v. En el instante antes de la colisión, la primera partícula tendrá una velocidad v y la segunda partícula estará
en reposo, por ello la cantidad de momento lineal del sistema (empleando la definición formal presente en la
definición 3 en la página 17) será igual a p0 = Mv, y justo después de la colisión, la cantidad de momento
lineal será igual a pf = Mu1+Mu2 = M(u1+u2) siendo u1 la velocidad de la primera partícula tras la colisión
y u2 la velocidad de la segunda. Al conservarse la cantidad de momento lineal (de nuevo por el corolario 3 en
la página 19 ), tendremos que:

p0 = pf → v = u1 + u2

Puesto que bajo nuestra suposición el choque es elástico, el coeficiente de restitución del choque cumplirá que
e = 1, es decir:

e = 1 = −u1 − u2

v
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Así, obtenemos un sistema de dos ecuaciones para las dos incógnitas u1 y u2, donde obtenemos la solución:

u1 = 0 u2 = v

Es decir, tras la colisión de dos partículas de igual masa donde una de ellas se encontraba originalmente en
reposo, las velocidades de las dos partículas se cambian haciendo que la primera partícula se quede en reposo
y que la segunda sea expulsada con una velocidad igual a la que tenía originalmente la primera partícula.

Esto nos permite solucionar el ejercicio; supongamos que las dos partículas en que van a colisionar con la
fila de N partículas se lanzan en un intervalo cualquiera de tiempo (primero una y luego otra), en ese caso, lo
que ocurrirá será:

i) La partícula chocará con la primera partícula de la fila, transfiriendo toda su velocidad a ésta.
ii) La primera partícula chocará con la segunda, transfiriendo su velocidad a ésta.
.
.
.
N) La partícula (N − 1)-ésima choca con la partícula N -ésima transfiriendo su velocidad a ésta.
N+1) La partícula N -ésima saldrá expulsada con una velocidad v.
Así, una partícula colisionando con la fila de N partículas de misma masa causará que una partícula

sea expulsada de la fila con la misma velocidad que tenía la partícula incidente y haciendo que el resto
de partículas pertenezcan en reposo (tal como el mencionado péndulo Newtoniano). Por lo que, al lanzar la
segunda partícula, saldrá expulsada una segunda partícula de la fila con velocidad igual a la primera incidente,
por lo que serán 2 partículas las que sean expulsadas, las dos con misma velocidad igual a v.

b) Empleando lo estudiado en el anterior apartado (dos partículas de misma masa con una en reposo tras
colisionar intercambian sus estados de movimiento), podemos ver que el problema de hacer chocar una partícula
con otra en reposo, es equivalente a hacer que choque con una fila de partículas en reposo; por lo tanto, para
solucionar este ejercicio solo deberemos estudiar una colisión entre una partícula de masa M y velocidad v y
una partícula de masa m en reposo.

Tomando una partícula de masa M con velocidad v que colisiona elásticamente con una partícula en
reposo de masa m, vemos (por la defición 3 en la página 17) que la cantidad de momento lineal inicial será
p0 = Mv y tras la colisión pf = Mu1 +mu2, si como anteriormente se cumple que no existen fuerzas externas,
se conservará la cantidad de momento (de nuevo por el corolario 3 en la página 19), por lo que:

p0 = pf →M(v − u1) = mu2

Si el choque es perfectamente elástico, el coeficiente de restitución cumplirá que e = 1 y:

e = 1 = −u1 − u2

v

Solucionando el sistema de ecuaciones entre relaciones de u1 y u2, obtendremos que:

u1 = v

(
M −m
M +m

)
u2 = 2v

(
M

M +m

)
Como vemos, la velocidad a la que sale expulsada la partícula de masa m será siempre positiva (por eso
decimos que sale expulsada) mientras que la partícula de masa M puede revotar contra la otra partícula (si
M < m) o ser expulsada con una cierta velocidad (si M > m).

Así pues, como respuesta al ejercicio, si M > m la partícula de masa m saldrá expulsada con velocidad
u2 = 2v

(
M

M+m

)
y la última partícula de masa M de la fila saldrá expulsada también con una velocidad

u1 = v
(
M−m
M+m

)
; si m < M la partícula de masa m saldrá expulsada con velocidad u2 = 2v

(
M

M+m

)
y la
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última partícula de masa M rebotará contra ella con una velocidad u1 = v
(
M−m
M+m

)
, ésta partícula chocará

con la anterior partícula de masa M transfiriendo toda su velocidad a esta (tal como vimos en el anterior
apartado), causando que la partícula de masa M original salga expulsada (por la izquierda) a una velocidad
u1 = v

(
M−m
M+m

)
.

En el caso de que m sea muy grande (comparada con M), podremos decir que ésta tiende a ∞, para ver
los efectos tras el choque podemos calcular el límite cuando m→∞ en las velocidades u1 y u2:

ĺım
m→∞

u1 = −v ĺım
m→∞

u2 = 0

Estos resultados nos dicen que sim >>> M , la partícula de masam no se moverá tras el choque, mientras que
la partícula de masa M rebotará contra ella con la misma velocidad y de sentido contrario (y tras múltiples
choques, la partícula original será expulsada por la izquierda con la misma velocidad con la que incidió pero
con sentido contrario).

Q.E.F.
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Capítulo 2

Sólido rígido

2.1. Introducción

Consideremos una peonza.

m~g
~N

CDM

Supondremos que la peonza tiene un punto fijo de apoyo en la Tierra en torno al cual la peonza puede rotar
pero no desplazarse. Veamos qué fuerzas actúan sobre la peonza. En el punto de apoyo tenemos la normal
del suelo y, además, en el centro de masas tenemos el peso. Estudiemos los momentos de fuerzas tomando el
punto de apoyo como punto de referencia. De esta forma, la normal no ejerce momento, pero el peso sí. Por
lo tanto, todo parece indicar que la peonza debería caerse; no obstante, sabemos experimentalmente que esto
no ocurre, en este capítulo veremos por qué.

En este capítulo vamos a ver qué acontece cuando tenemos cuerpos girando. Todo lo que el lector ha visto
hasta ahora sobre sólidos rígidos no son más que burdas simplificaciones: hasta ahora, siempre hemos supuesto
que:

~J = I~ω

donde I es el momento de inercia del sólido. En este caso, sería siempre ~J ‖ ~ω; pero esto no se da siempre. En
general, de hecho, I será un tensor (0, 2).

Algo similar a la peonza ocurre con las carreras de motos, en las que el motorista es capaz de inclinarse (e
incluso tocar el suelo con el codo) sin que la moto se caiga.
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m~g
~N

~Fc

También, en un coche, al dar una curva a alta velocidad, al conductor le interesa hacer tracción en la rueda
interior, para que el rozamiento del suelo le ayude a dar la curva.

2.2. Leyes básicas

Vamos a hacer un resumen de las leyes físicas vistas hasta ahora, pero aplicadas a un sólido rígido.

Definición 13. Sea N ∈ N ∪ {∞}. Llamamos sólido rígido a un conjunto de N partículas tal que las
distancias relativas entre las partículas que lo forman son constantes. Es decir:

|~rj − ~ri| = −→cte ∀i, j = 1, . . . , N

Observación 10. Los sólidos rígidos no existen en la realidad, ya sea porque presentan elasticidad, por efectos
de temperatura, etc.

Observación 11. Un sólido rígido puede estar formado por un número finito o infinito de partículas. Una
peonza es tan sólido rígido como una varilla que une dos bolas.
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Para describir un sistema de partículas, en general, necesitamos 3N partículas. Sin embargo, en el caso
de un sólido rígido nos van a bastar 3 coordenadas para el centro de masas y otras 3 coordenadas para dar
la orientación relativa del sólido rígido con respecto al centro de masas. En este capítulo, vamos a centrarnos
sobre todo en la segunda parte. Nótese que la posición del centro de masas está relacionada con la traslación
del cuerpo, mientras que las coordenadas de la orientación están relacionadas con la rotación del cuerpo.

Proposición 12. Sea N ∈ N y sea un sólido rígido de N partículas. Se cumple:

1. La posición del centro de masas del sólido rígido viene dado por:

~R =
1

M

N∑
i=1

mi~ri

donde M =

N∑
i=1

mi.

2. El momento lineal total del sólido rígido coincide con el que tendría una única partícula de masa M =
N∑
i=1

mi y que se desplazara con la velocidad del centro de masas ~̇R.

~P = M ~̇R =
N∑
i=1

mi~̇ri

3. El momento angular total del sólido rígido con respecto de un punto O ∈ R3 puede expresarse como:

~J =
N∑
i=1

mi~ri × ~̇ri

4. El momento angular total del sólido rígido visto desde un sistema de referencia R está relacionado con
aquél visto desde el centro de masas por la ecuación:

~J = ~JC.D.M. + ~J∗

5. La energía cinética total del sólido rígido puede calcularse como:

T =

N∑
i=1

1

2
mi~̇r

2
i

6. La energía cinética total del sólido rígido vista desde un sistema de referencia R está relacionada con
aquélla vista por el centro de masas mediante:

T = TC.D.M. + T ∗

7. El movimiento del centro de masas del sólido rígido está regido por la ecuación:

~̇P = M ~̈R =

N∑
i=1

~Fi

Licencia: Creative Commons 51

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.2. LEYES BÁSICAS

8. La variación del momento angular total del sólido rígido con respecto de un punto O ∈ R3 es debida
únicamente a agentes externos y coincide con el momento de fuerzas resultante de las fuerzas externas:

~̇J =
N∑
i=1

~ri × ~Fi = ~Next

9. La variación de la energía cinética total del sólido rígido se debe exclusivamente a agentes externos y
coincide con la potencia generada por las fuerzas externas:

Ṫ =
N∑
i=1

~̇ri · ~Fi

10. Si todas las fuerzas externas que actúan sobre el sólido rígido son conservativas, entonces la energía
mecánica del sólido rígido se conserva:

E = T + V = cte

donde V depende únicamente de las fuerzas externas.

X

Y

~R

~ri

~r∗i

CDM

i

Demostración.

1. Se llega al resultado aplicando la definición 1 en la página 16.

2. Esto se debe a la proposición 1 en la página 17 y al corolario 2 en la página 17.

3. Se obtiene el enunciado al hacer uso del corolario 4 en la página 21.

4. Se llega al resultado al aplicar la proposición 4 en la página 22.

5. Esto se debe al corolario 8 en la página 30.
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6. Se obtiene el enunciado al hacer uso de la proposición 7 en la página 30.

7. Se llega al resultando aplicando el teorema 2 en la página 18.

8. Por la definición de sólido rígido (ver definición 13 en la página 50), la distancia entre cada una de las
partículas que lo forman permanece constante en el tiempo:

|~rj − ~ri| = −→cte ∀i, j = 1, . . . , N

En consecuencia, para cada par de partículas i-ésima y j-ésima la fuerza ~Fij debe ser perpendicular al
vector ~rj−~ri, pues si no lo fuera, aparecería una aceleración que aumentaría el módulo del vector ~rj−~ri y
esto sería absurdo pues contradiría la hipótesis. En consecuencia, debe ser ~Fij ⊥ ~rj−~ri ∀i, j = 1, . . . , N .
Por otra parte, por la 3ª ley de Newton, debe ser ~Fij = −~Fji. En consecuencia, si ~Fij 6= ~0 la partícula
j-ésima debería estar rotando en torno a la partícula i-ésima con aceleración angular Fij

mj
en ausencia de

fuerzas externas pues:

~Nij = ~ri × ~Fij + ~rj × ~Fji = ~ri × ~Fij + ~rj ×
(
−~Fij

)
= (~ri − ~rj)× ~Fij

Es decir, el vector ~Lij = mj (~ri − ~rj) ×
(
~̇ri − ~̇rj

)
debería estar cambiando como indica la expresión

anterior. Como ~Fij ⊥ ~rj − ~ri ∀i, j = 1, . . . , N , lo anterior será igual a:

~Nij = |~ri − ~rj |Fij k̂

siendo k̂ el vector unitario perpendicular a ~Fij y a ~ri − ~rj . Como no tiene sentido que un sólido rígido
gire cada vez más rápido o cada vez más despacio por sí mismo, concluimos que necesariamente será:

~Fij = ~0 ∀i = 1, . . . , N

En consecuencia:
~ri × ~Fij = ~0 ∀i, j = 1, . . . , N

y, así, la fuerzas
{
~Fij

}N
i,j=1

son centrales, pues son nulas. Por el teorema 3 en la página 26, obtenemos
que:

~̇J = ~Next =

N∑
i=1

~ri × ~Fi

9. Por lo expuesto en la demostración del punto (8) es:

~Fij = ~0 ∀i = 1, . . . , N

Es decir, no hay fuerzas internas. Por el corolario 9 en la página 32, obtenemos:

Ṫ =

N∑
i=1

~̇ri · ~Fi

10. Por lo expuesto en el punto (8), las fuerzas internas son nulas, luego son conservativas. Es más, podemos
suponer sin pérdida de generalidad que Vij = 0 ∀i, j = 1, . . . , N . De esta forma, como las fuerzas externas
son conservativas por hipótesis, podemos aplicar el teorema 4 en la página 34, obteniendo:

E = T + V = cte
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donde V = Vint + Vext. No obstante, por lo dicho anteriormente:

Vint =

N∑
i=1

N∑
j=1

Vij = 0

luego V = Vext.

Q.E.D.

Corolario 10. Sea un sólido rígido macizo con función densidad ρ : V ⊆ R3 −→ R con V medible Lebesgue.
Se cumple:

1. La posición del centro de masas del sólido rígido viene dado por:

~R =
1

M

∫∫∫
V
ρ (~r)~r dV

donde M =
∫∫∫

V ρ (~r) dV .

2. El momento lineal total del sólido rígido coincide con el que tendría una única partícula de masa M =∫∫∫
V ρ (~r) dV y que se desplazara con la velocidad del centro de masas ~̇R.

~P = M ~̇R =

∫∫∫
V
ρ (~r) ~̇r dV

3. El momento angular total del sólido rígido con respecto de un punto O ∈ R3 puede expresarse como:

~J =

∫∫∫
V
ρ (~r)

(
~r × ~̇r

)
dV

4. El momento angular total del sólido rígido visto de un sistema de referencia R está relacionado con
aquél visto por el centro de masas por la ecuación:

~J = ~JC.D.M. + ~J∗

5. La energía cinética total del sólido rígido puede calcularse como:

T =

∫∫∫
V

1

2
ρ (~r) ~̇r 2 dV

6. La energía cinética total del sólido rígido vista desde un sistema de referencia R está relacionada con
aquélla vista por el centro de masas mediante:

T = TC.D.M. + T ∗

7. El movimiento del centro de masas del sólido rígido está regido por la ecuación:

~̇P = M ~̈R =

∫∫∫
V

~FdV

8. La variación del momento angular total del sólido rígido con respecto de un punto O ∈ R3 es debida
únicamente a agentes externos y coincide con el momento de fuerzas resultante de las fuerzas externas:

~̇J =

∫∫∫
V

(
~r × ~F

)
dV = ~Next
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9. La variación de la energía cinética total del sólido rígido se debe exclusivamente a agentes externos y
coincide con la potencia generada por las fuerzas externas:

Ṫ =

∫∫∫
V

(
~̇r · ~F

)
dV

10. Si todas las fuerzas externas que actúan sobre el sólido rígido son conservativas, entonces la energía
mecánica del sólido rígido se conserva:

E = T + V = cte

donde V depende únicamente de las fuerzas externas.

Demostración. En general, vamos a hacer uso de la proposición 12 en la página 51 y vamos a cambiar la serie
infinita por una integral.

1. Se cumple por el corolario 1 en la página 16.

2. Partimos de lo que queremos demostrar: ∫∫∫
V
ρ (~r) ~̇rdV

En un instante t fijo, claramente ~̇r es función de ~r. Como ~̇r está acotada, podemos aplicar el teorema 1
en la página 3 para f (~r) = ~̇r y n = 3, obteniendo que existen sucesiones {mN ;i}(2N)3

i=1 y {~rN ;i}(2N)3

i=1 tales
que: ∫∫∫

V
ρ (~r) ~̇rdV = ĺım

N→∞

(2N)3∑
i=1

mN ;if (~rN ;i) = ĺım
N→∞

(2N)3∑
i=1

mN ;i~̇rN ;i =

= ĺım
N→∞

=M︷ ︸︸ ︷
(2N)3∑
i=1

mN ;i

(2N)3∑
i=1

mN ;i

(2N)3∑
i=1

mN ;i~̇rN ;i = ĺım
N→∞

M

(2N)3∑
i=1

mN ;i~̇rN ;i

(2N)3∑
i=1

mN ;i︸ ︷︷ ︸
= ~̇R

= ĺım
N→∞

M ~̇R = ĺım
N→∞

~P

donde el último paso se debe a la proposición 12 en la página 51.

3. Partimos de lo que queremos demostrar:

I :=

∫∫∫
V
ρ (~r)

(
~r × ~̇r

)
dV

Aplicando el teorema 1 en la página 3, tomando n = 3 y f (~r) = ~r× ~̇r, obtenemos que existen sucesiones
{mN ;i}(2N)3

i=1 y {~rN ;i}(2N)3

i=1 tales que:

I = ĺım
N→∞

(2N)3∑
i=1

mN ;if (~rN ;i) = ĺım
N→∞

(2N)3∑
i=1

mN ;i

(
~rN ;i × ~̇rN ;i

)
que es justo el límite cuando el número de partículas tiende a infinito de la expresión dada por la
proposición 12 en la página 51 para el momento angular.
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4. El resultando se sigue de la proposición 12 en la página 51.

5. Partimos de lo que queremos demostrar:

I =

∫∫∫
V

1

2
ρ (~r) ~̇r 2 dV =

1

2

∫∫∫
V
ρ (~r) ~̇r 2 dV

Aplicando el teorema 1 en la página 3, tomando n = 3 y f (~r) = ~̇r 2, obtenemos que existen sucesiones
{mN ;i}(2N)3

i=1 y {~rN ;i}(2N)3

i=1 tales que:

I =
1

2
ĺım
N→∞

(2N)3∑
i=1

mN,if (~rN ;i) =
1

2
ĺım
N→∞

(2N)3∑
i=1

mN ;i~̇r
2
N ;i =

= ĺım
N→∞

(2N)3∑
i=1

1

2
mN,i~̇r

2
N ;i

que es justo el resultado dado por la proposición 12 en la página 51 para la energía cinética de un sistema
de (2N)3 partículas.

6. El resultando se sigue de la proposición 12 en la página 51.

7. Partimos de lo que queremos demostrar:

I =

∫∫∫
V

~F (~r) dV =

∫∫∫
V
ρ (~r)~a (~r) dV

Aplicando el teorema 1 en la página 3, tomando n = 3 y f (~r) = ~a (~r), obtenemos que existen sucesiones
{mN ;i}(2N)3

i=1 y {~rN ;i}(2N)3

i=1 tales que:

I = ĺım
N→∞

(2N)3∑
i=1

mN ;i~a (~rN ;i)

Y aplicando la segunda ley de Newton para un sistema de partículas (ver teorema 2 en la página 18),
obtenemos:

I = ĺım
N→∞

(2N)3∑
i=1

~FN ;i = ĺım
N→∞

M ~̈R

donde el último paso se debe a la proposición 12 en la página 51.

8. Partimos de lo que queremos demostrar:

I =

∫∫∫
V

(
~r × ~F (~r)

)
dV =

∫∫∫
V
ρ (~r) (~r × ~a (~r)) dV

Aplicando el teorema 1 en la página 3, tomando n = 3 y f (~r) = ~r × ~a (~r), obtenemos que existen
sucesiones {mN ;i}(2N)3

i=1 y {~rN ;i}(2N)3

i=1 tales que:

I = ĺım
N→∞

(2N)3∑
i=1

mN ;if (~rN ;i) = ĺım
N→∞

(2N)3∑
i=1

mN ;i

~rN ;i × a (~rN ;i)︸ ︷︷ ︸
=:~aN ;i

 =

Licencia: Creative Commons 56

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.3. ROTACIÓN EN TORNO A UN EJE

= ĺım
N→∞

(2N)3∑
i=1

mN ;i (~rN ;i × ~aN ;i) = ĺım
N→∞

(2N)3∑
i=1

(
~rN ;i × ~FN ;i

)
donde hemos aplicado la segunda ley de Newton para un sistema de partículas (ver teorema 2 en la
página 18). Por la proposición 12 en la página 51, tenemos:

I = ĺım
N→∞

(2N)3∑
i=1

(
~rN ;i × ~FN ;i

)
= ĺım

N→∞
~̇J

9. Partimos de lo que queremos demostrar:

I =

∫∫∫
V

(
~̇r · ~F (~r)

)
dV =

∫∫∫
V
ρ (~r)

(
~̇r · ~a (~r)

)
Aplicando el teorema 1 en la página 3, tomando n = 3 y f (~r) = ~̇r · ~a (~r), obtenemos que existen
sucesiones {mN ;i}(2N)3

i=1 y {~rN ;i}(2N)3

i=1 tales que:

I = ĺım
N→∞

(2N)3∑
i=1

mN ;if (~rN ;i) = ĺım
N→∞

(2N)3∑
i=1

mN ;i

~̇rN ;i · ~a (~rN ;i)︸ ︷︷ ︸
=:~aN ;i

 =

= ĺım
N→∞

(2N)3∑
i=1

mN ;i

(
~̇rN ;i · ~aN ;i

)
Y aplicando la segunda ley de Newton para un sistema de partículas (ver teorema 2 en la página 18),
obtenemos:

I = ĺım
N→∞

(2N)3∑
i=1

~̇rN ;i · ~FN ;i

Por la proposición 12 en la página 51, llegamos a:

I = ĺım
N→∞

Ṫ

10. El resultando se sigue de la proposición 12 en la página 51.

Q.E.D.

2.3. Rotación en torno a un eje

Proposición 13. Una partícula describe un movimiento circular en torno a un eje Z si y sólo si r = cte y
existe una función vectorial ~ω (t) : R −→ R3 tal que ~ω ‖ k̂ ∀t, siendo k̂ el vector unitario del eje Z, y:

~v = ~ω × ~r

(donde ~v es el vector velocidad de la partícula y ~r es su vector posición) para todo sistema de referencia inercial
cuyo origen esté situado en el eje de giro Z.

Licencia: Creative Commons 57

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.3. ROTACIÓN EN TORNO A UN EJE

~ω~vi

O
~ri

mi

Demostración.

⇐: Partimos de que r = cte y de que existe ~ω (t) : R −→ R3 tal que ~ω ‖ k̂ ∀t y ~v = ~ω × ~r para
todo sistema de referencia inercial situado cuyo origen se encuentra en el eje Z. Debemos probar que la
partícula sigue una trayectoria circular y que dicha trayectoria está contenida en el plano z = z0 para
algún z0 ∈ R.
Esto último es sencillo:

~v = ~ω × ~r ⇔ (vx, vy, vz) = (0, 0, ω)× (x, y, z) =

= ωk̂ ×
(
xî+ yĵ + zk̂

)
= xωĵ − yωî = (−yω, xω, 0) (2.3.1)

Luego el vector ~v está contenido en el plano z = 0. De esta forma, vemos que la componente z de la
posición de la partícula ~r no puede cambiar, luego la trayectoria de la partícula estará contenida en un
plano paralelo al z = 0.
Ahora, veamos que la trayectoria es circular. Sabemos que r = cte; es decir:

r =
√
x2 + y2 + z2 = cte⇔ r2 = x2 + y2 + z2 = cte

Por el razonamiento hecho anteriormente, debe ser z2 = cte. En consecuencia:

x2 + y2 = r2 − z2 = cte

Nótese que lo anterior siempre está bien definido pues r ≥ z ⇔ r2 ≥ z2. En resumen, llegamos a:

x2 + y2 = cte

que es la ecuación de un círculo centrado en el origen en coordenadas cartesianas.

⇒: Partimos de que la trayectoria de la partícula es una circunferencia contenida en el plano z = z0

para algún z0 ∈ R. Entonces es:(
x2 + y2 = cte

)
∧ (z = cte)⇒ x2 + y2 + z2 = cte⇔ r =

√
x2 + y2 + z2 = cte
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Por otro lado:
x2 + y2 = cte⇔ 2xẋ+ 2yẏ = 0⇔ xẋ = −yẏ ⇔ ẋ = −y

x
ẏ (2.3.2)

z = cte⇔ ż = 0

Si tomamos ~ω (t) = (0, 0, ω (t)), entonces, por la ecuación 2.3.1 en la página anterior, obtenemos:

~v = (−yω, xω, 0)

que satisface la ecuación 2.3.2, pues:

−y
x
ẏ = −y

x
xω = −yω = ẋ

Q.E.D.

Observación 12. El enunciado de la proposición 13 en la página 57 nos indica que en un movimiento circular
el vector posición ~ri precede con velocidad angular ω.

2.3.1. Momento angular

Proposición 14. Sea un sólido rígido de N partículas que rota en torno a un eje Z con velocidad angular ω.
Su momento angular respecto de un punto O viene dado por la expresión:

~J =

N∑
i=1

mi

(
−xizi,−yizi, x2

i + y2
i

)
ω

Demostración. Por la proposición 12 en la página 51, tenemos:

~J =
N∑
i=1

mi~ri × ~̇ri (2.3.3)

Por otra parte, como el sólido rígido rota en torno al eje Z, cada una de sus partículas describirá una trayectoria
circular en torno a dicho eje. Por la proposición 13 en la página 57, tenemos que:

~̇ri = ~ω × ~ri = ωk̂ × ~ri

Sustituyendo en la ecuación 2.3.3, tenemos:

~J =
N∑
i=1

mi~ri ×
(
ωk̂ × ~ri

)
=

N∑
i=1

ωmi~ri ×
(
k̂ ×

(
xiî+ yiĵ + zik̂

))
=

=

N∑
i=1

ωmi

(
xiî+ yiĵ + zik̂

)
×
(
xiĵ − yiî

)
=

N∑
i=1

ωmi

(
x2
i k̂ + y2

i k̂ − xiziî− yiziĵ
)

=

=
N∑
i=1

mi

(
−xizi,−yizi, x2

i + y2
i

)
ω

Q.E.D.

Como vemos en la proposición 14, aunque ~ω sólo tiene dirección k̂, ~Ji tiene componentes en todos los ejes.
Por ahora, vamos a olvidarnos de las coordenadas x e y del momento angular y vamos a centrarnos en la
componente z.
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Definición 14. Sea un sólido rígido de N partículas que está girando en torno a un eje Z. Llamamos
momento de inercia respecto al eje de giro Iz al factor por el que hay que multiplicar la velocidad
angular ω para obtener la componente z del momento angular respecto de un punto O.

Corolario 11. Sea un sólido rígido de N partículas que está rotando en torno a un eje Z. Su momento de
inercia con respecto al eje de giro Z viene dado por la expresión:

Iz =
N∑
i=1

mi

(
x2
i + y2

i

)
Demostración. Por la proposición 14 en la página anterior, tenemos que:

Jz = ω
N∑
i=1

mi

(
x2
i + y2

i

)
Por analogía con la definición 14, llegamos al enunciado. Q.E.D.

Proposición 15 (Ecuación del movimiento de un sólido rígido en rotación). Sea un sólido rígido de N
partículas que está rotando en torno a un eje Z. La variación de la componente z de su momento angular con
respecto de un punto O puede expresarse como:

J̇z = Izω̇ =

N∑
i=1

mi

(
x2
i + y2

i

)
ω̇

Además, siempre existen {ρi}Ni=1 y {Fϕ,i}Ni=1 tales que:

J̇z =
N∑
i=1

ρiFϕ,i

donde ρi es una distancia y Fϕ,i es una fuerza contenida en el plano XY .

Demostración. Por la proposición 14 en la página anterior, tenemos:

Jz = ω

N∑
i=1

mi

(
x2
i + y2

i

)
Derivando con respecto al tiempo a ambos lados, obtenemos:

J̇z = ω̇

N∑
i=1

mi

(
x2
i + y2

i

)
+ ω

N∑
i=1

mi
d

dt

(
x2
i + y2

i

)
pues la derivada es lineal. No obstante, por definición de sólido rígido (ver definición 13 en la página 50), el
término

(
x2
i + y2

i

)
debe ser constante en el tiempo. Así, obtenemos:

J̇z = ω̇
N∑
i=1

mi

(
x2
i + y2

i

)
(2.3.4)

y, por el corolario 11, es:
J̇z = Izω̇
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Ahora, llamando ρ2
i := x2

i + y2
i ∀i = 1, . . . , N , podemos expresar la ecuación 2.3.4 en la página anterior

como:

J̇z =

N∑
i=1

miρ
2
i ω̇

Tomando, ϕ :=
∫ t

0 ωdτ , podemos expresar lo anterior como:

J̇z =

N∑
i=1

miρ
2
i ϕ̈

donde ϕ es ahora un ángulo. De hecho, el ángulo ϕ correspondiente a las coordenadas cilíndricas en torno al
eje Z. Ahora, nótese:

J̇z =
N∑
i=1

ρimiρiϕ̈

Démonos cuenta de que el término miρiϕ̈ := Fϕ,i tiene efectivamente unidades de fuerza:

[Fϕ,i] = masa · longitud · 1

tiempo2 = masa · aceleración = fuerza

Además, claramente ρiϕ̈ es una aceleración lineal contenida en el planoXY , pues indica una variación de ϕ, que
está, a su vez, contenido en dicho plano. Así, Fϕ,i estará, necesariamente, contenido en el plano XY . Q.E.D.

Observación 13. La proposición 15 en la página anterior nos indica que únicamente las fuerzas contenidas en
el plano XY y que actúen a una distancia no nula del eje de giro serán capaces de variar el momento angular
del sólido rígido en torno al eje de giro.

2.3.2. Energía cinética

Proposición 16. Sea un sólido rígido de N partículas que está rotando en torno a un eje Z. Su energía
cinética de rotación puede expresarse en función de la velocidad angular ω y del momento de inercia con
respecto al eje de giro como sigue:

T =
1

2
Izω

2

Además, siempre existen {ρi}Ni=1 y {Fϕ,i}Ni=1 tales que:

Ṫ = Izωω̇ = ω

N∑
i=1

ρiFϕ,i

donde ρi es una distancia y Fϕ,i es una fuerza contenida en el plano XY .

Demostración. Por el corolario 8 en la página 30, tenemos:

T =

N∑
i=1

1

2
miṙ

2
i (2.3.5)

Como cada partícula describe una trayectoria circular en torno al eje de giro, por la proposición 13 en la
página 57, será:

ṙi = |~ω × ~ri| =
∣∣∣ωk̂ × (xiî+ yiĵ + zik̂

)∣∣∣ =
∣∣∣ωxiĵ − ωyiî∣∣∣ = ω

√
x2
i + y2

i ⇔

⇔ ṙ2
i = ω2

(
x2
i + y2

i

)
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Sustituyendo en la ecuación 2.3.5 en la página anterior, llegamos a:

T =
N∑
i=1

1

2
miω

2
(
x2
i + y2

i

)
=

1

2
ω2

N∑
i=1

mi

(
x2
i + y2

i

)
(2.3.6)

Por el corolario 11 en la página 60, podemos expresar lo anterior como:

T =
1

2
Izω

2

Por otra parte, partamos de la ecuación 2.3.6 y definamos ρ2
i := x2

i + y2
i ∀i = 1, . . . , N . Así, la mencionada

ecuación queda:

T =

N∑
i=1

1

2
miρ

2
iω

2

Derivando a ambos lados, obtenemos:

Ṫ =

N∑
i=1

1

2
miρ

2
i 2ωω̇ =

N∑
i=1

miρ
2
iωω̇ (2.3.7)

Por el corolario 11 en la página 60, tenemos que:

Ṫ = Izωω̇

Volviendo a la ecuación 2.3.7 y tomando ϕ :=
∫ t

0 ωdτ , obtenemos:

Ṫ =

N∑
i=1

miρ
2
i ϕ̇ϕ̈ =

N∑
i=1

miρ
2
iωϕ̈ = ω

N∑
i=1

ρimiρiϕ̈

donde ϕ es ahora un ángulo. De hecho, el ángulo ϕ correspondiente a las coordenadas cilíndricas en torno al
eje Z. Démonos cuenta de que el término miρiϕ̈ := Fϕ,i tiene efectivamente unidades de fuerza:

[Fϕ,i] = masa · longitud · 1

tiempo2 = masa · aceleración = fuerza

Además, claramente ρiϕ̈ es una aceleración lineal contenida en el planoXY , pues indica una variación de ϕ, que
está, a su vez, contenido en dicho plano. Así, Fϕ,i estará, necesariamente, contenido en el plano XY . Q.E.D.

Observación 14. Con la proposición 16 en la página anterior, obtenemos una conclusión análoga a la de la
proposición 15 en la página 60: únicamente las fuerzas que se encuentran en el plano XY y que no actúan
sobre algún punto del eje serán capaces de cambiar la energía cinética de un sólido rígido en rotación con
respecto a un eje.

Observación 15. Con las proposiciones 15 en la página 60 y 16 en la página anterior no podemos estudiar
las reacciones que ocurren en el eje, pues ρi = 0 en el eje. Para estudiarlas, tendremos que trabajar con el
momento lineal.

Ejemplo 6. Tenemos una varilla rectangular de lados a y b que puede rotar sobre uno de sus vértices. De
otro de sus vértices cuelga una masa M . Otro extremo está anclado mediante una tensión F de manera que
el sistema está en equilibrio.
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X

Y

Z

F

Mg

O
Q

a

b

Por la proposición 12 en la página 51, será:

J̇ = bF − aMg

Como el sistema está en equilibrio, necesariamente es J̇ = 0. Así:

J̇ = 0⇔ F =
a

b
Mg

Como hemos mencionado en la observación 13 en la página 61, la ecuación anterior no nos da ninguna
información sobre las reacciones en el eje. Para ello, tendremos que usar la variación del momento lineal
(según dada por la proposición 12 en la página 51):

~̇P = M ~̈R = ~Q+ ~F +M~g = ~Q− F î−mgĵ

donde ~Q es la reacción en el eje. Para que haya equilibrio, debe ser ~̇P = ~0. En consecuencia:

~̇P = ~0⇔ ~Q = (F,Mg, 0)

Estudiemos el movimiento del centro de masas de la varilla. Como la varilla rota en torno a un eje fijo
Z, su centro de masas describirá una trayectoria circular en torno al eje de giro. En consecuencia, por la
proposición 14 en la página 59, tendremos:

~̇R = ~ω × ~R

donde la ecuación anterior indica que el centro de masas realiza una trayectoria de radio R en torno al eje de
giro. Hallemos la aceleración del centro de masas. Para ello, simplemente derivamos en la ecuación anterior,
obteniendo:

~̈R = ~̇ω × ~R+ ~ω × ~̇R = ~̇ω × ~R+ ~ω ×
(
~ω × ~R

)
donde el primer término es la aceleración tangencial at = Rω̇ y el segundo término es la aceleración radial
ar = −ω2R.

Q.E.F.

Ejemplo 7. Tenemos una cuerda que cuelga del techo y que hemos enrollado alrededor de un cilindro de
radio ρ. Tomamos el origen de coordenadas en el centro del cilindro. Nos piden hallar la tensión en la cuerda
y hallar la velocidad angular en torno al origen, la aceleración lineal del cilindro y la aceleración angular en
torno al origen.
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M,ρ

~Fg

~T

Como el sólido rígido está rotando en torno a un eje fijo, por la proposición 12 en la página 51 y la
proposición 15 en la página 60, tenemos:

N = J̇ = Tρ = Iθ̈ ⇔ θ̈ =
Tρ

I
(2.3.8)

Además, por la segunda ley de Newton:

− T +Mg = Mÿ ⇔ ÿ =
Mg − T
M

(2.3.9)

Como estamos en un movimiento de rodadura es y = ρθ y, en consecuencia:

ÿ = ρθ̈

Sustituyendo esto último en la ecuación 2.3.9, obtenemos:

ρθ̈ =
Mg − T
M

Haciendo uso de la ecuación 2.3.8, llegamos a:

Tρ2

I
=
Mg − T
M

⇔ Mρ2

I
T = Mg − T ⇔

(
Mρ2

I
+ 1

)
T = Mg ⇔ T =

Mg

1 + Mρ2

I

=
MgI

I +Mρ2
(2.3.10)

Por otra parte, por este enlace1, sabemos que el momento de inercia de un cilindro en torno a su eje de simetría
central es:

I =
1

2
Mρ2 (2.3.11)

Sustituyendo en la ecuación 2.3.10, tenemos:

T =
Mg

1 + Mρ2

1
2
Mρ2

=
Mg

1 + 2
=

1

3
Mg

1https://en.wikipedia.org/w/index.php?title=List_of_moments_of_inertia&oldid=887735536

Licencia: Creative Commons 64

https://en.wikipedia.org/w/index.php%3Ftitle%3DList_of_moments_of_inertia%26oldid%3D887735536
https://en.wikipedia.org/w/index.php?title=List_of_moments_of_inertia&oldid=887735536
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.3. ROTACIÓN EN TORNO A UN EJE

Haciendo uso de la ecuación 2.3.8 en la página anterior:

θ̈ =
Tρ

I
=

1
3Mgρ
1
2Mρ2

=
2

3

g

ρ
⇔ dθ̇

dt
=

2g

3ρ
⇔
∫ θ̇

ω0

dΘ̇ =

∫ t

0

2g

3ρ
dτ ⇔ θ̇ = ω0 +

2

3

g

ρ
t

Análogamente con la ecuación 2.3.9 en la página anterior, obtenemos:

ÿ = ρθ̈ =
2

3
g ⇔ dẏ

dt
=

2

3
g ⇔

∫ ẏ

v0

dẎ =

∫ t

0

2

3
gdτ ⇔ ẏ = v0 +

2

3
gt

Q.E.F.

Alternativamente, podríamos haber hecho este ejercicio por lagrangianos. Haciendo uso de la proposición 16
en la página 61, podemos escribir la energía cinética del cuerpo:

T =
1

2
Iθ̇2 +

1

2
Mẏ2

Como estamos ante un movimiento de rodadura, podemos expresar lo anterior únicamente en función de θ:

T =
1

2
Iθ̇2 +

1

2
Mρ2θ̇2

Por otra parte, la energía potencial es únicamente:

V = −Mgy = −Mgρθ

En consecuencia:
L = T − V =

1

2
Iθ̇2 +

1

2
Mρ2θ̇2 +Mgρθ

Hallemos las parciales:
∂L
∂θ

= Mgρ

∂L
∂θ̇

= Iθ̇ +Mρ2θ̇ ⇒ d

dt

(
∂L
∂θ̇

)
= Iθ̈ +Mρ2θ̈

Y, haciendo uso de la ecuación 2.3.11 en la página anterior, podemos expresar lo anterior como:

d

dt

(
∂L
∂θ̇

)
=

1

2
Mρ2θ̈ +Mρθ̈ =

3

2
Mρ2θ̈

Por el teorema 5 en la página 35, debe ser:

3

2
Mρ2θ̈ = Mgρ⇔ θ̈ =

Mgρ
3
2Mρ2

=
2

3

g

ρ

De forma que hemos llegado a la misma ecuación del movimiento que aplicando las leyes de Newton y la
ecuación del sólido rígido en rotación. Integrando como hemos hecho en la versión anterior, se obtienen las
velocidades que se nos solicitan.

Q.E.F.

Ejemplo 8 (péndulo físico). Tenemos un sólido rígido con momento de inercia I con una forma arbitraria
clavado en un punto O y lo separamos del equilibrio. Nos piden hallar su periodo (suponiendo pequeñas
oscilaciones) y la reacción Q.
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O

CDM

Mg

R
ϕ

Q

Vamos a hacer el ejercicio mediante lagrangianos. Por la proposición 16 en la página 61, tenemos que:

T =
1

2
Iϕ̇2

Por otra parte, la energía potencial queda:

V = −MgR cosϕ

Así:

L = T − V =
1

2
Iϕ̇2 +MgR cosϕ

Hallamos las derivadas parciales:
∂L
∂ϕ

= −MgR senϕ

∂L
∂ϕ̇

= Iϕ̇⇒ d

dt

(
∂L
∂ϕ̇

)
= Iϕ̈

Por el teorema 5 en la página 35, debe ser:

Iϕ̈ = −MgR senϕ⇔ ϕ̈ = −MR

I
g senϕ⇔ ϕ̈+

MgR

I
senϕ = 0 (2.3.12)

En la aproximación de pequeñas oscilaciones es senϕ ≈ ϕ y, por consiguiente:

ϕ̈+
MgR

I
ϕ ≈ 0

Por analogía con la ecuación diferencial de un movimiento armónico, obtenemos:

ϕ̈+
MgR

I︸ ︷︷ ︸
=ω2

ϕ = 0⇒ ω2 =
MgR

I
⇔ 4π2

T 2
=
MgR

I
⇔ T 2 =

4π2I

MgR
⇔ T = 2π

√
I

MgR

Vamos a llamar l =:
I

MR
longitud del péndulo equivalente. En función de dicho parámetro, obtenemos que

el periodo es:

T = 2π

√
l

g
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Ahora, queremos hallar el valor de la reacción Q. Para ello, vamos a aplicar la proposición 12 en la
página 51, por lo que:

~̇P =
N∑
i=1

~Fi = M ~̈R = ~Q+M~g (2.3.13)

De la ecuación anterior desconocemos ~̈R, hallémosla:

~R = (R senϕ,R cosϕ, 0)

~̇R = (R cosϕ ϕ̇,−R senϕ ϕ̇, 0)

~̈R =
(
−R senϕ ϕ̇2 +R cosϕ ϕ̈,−R cosϕ ϕ̇2 −R senϕ ϕ̈, 0

)
Así, a partir de la ecuación 2.3.13, obtenemos:

M ~̈R = (Qx, Qy −Mg, 0)⇔
~Q =

(
−MR senϕ ϕ̇2 +MR cosϕ ϕ̈,−MR cosϕ ϕ̇2 −MR senϕ ϕ̈−Mg, 0

)
(2.3.14)

Por otra parte, como todas las fuerzas que actúan sobre el sistema son conservativas, la energía debe conser-
varse. Así:

1

2
Iϕ̇2 −MgR cosϕ = E ⇔ ϕ̇2 =

2

I
(E +MgR cosϕ)

Podemos expresar lo anterior como:

ϕ̇2 =
2MgR

I
(cosϕ+K) (2.3.15)

donde K es una constante.
De esta forma, mediante las ecuaciones 2.3.15 y 2.3.12 en la página anterior, podemos expresar 2.3.14

como:
~Q =

(
−MR senϕ

2MgR

I
[cosϕ+K]−MR cosϕ

MR

I
g senϕ,

−MR cosϕ
2MgR

I
[cosϕ+K] +MR senϕ

MR

I
g senϕ, 0

)
=

=

(
−2g

I
M2R2 senϕ [cosϕ+K]− g

I
M2R2 senϕ cosϕ,−2g

I
M2R2 cosϕ [cosϕ+K] +

g

I
M2R2 sen2 ϕ, 0

)
Q.E.F.

Ejemplo 9. Tenemos un sólido rígido con una forma arbitraria anclado en un punto O.

Q

F

O

R

CDM
d
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En un momento, el sólido rígido que se encontraba en equilibrio, recibe un impulso. ¿Existe alguna distancia
d que anule la reacción Q? Para ello, vamos a llamar:

K :=

∫
Fdt, S :=

∫
Qdt

Vamos a trabajar, como hemos hecho en los ejemplos 7 en la página 63 y 8 en la página 65, con la segunda
ley de Newton para un sistema de partículas.

dP

dt
=

N∑
i=1

Fext ⇔ dP = Fdt−Qdt⇔ Pf − Pi =

∫
Fdt−

∫
Qdt = K − S (2.3.16)

Hallemos las velocidades inicial y final del centro de masas:

vi = 0 vf = Rω

pues el centro de masas estará describiendo una trayectoria circular en torno al origen. En consecuencia, de
la ecuación 2.3.16, obtenemos:

Pf − Pi = MRω −M · 0 = MRω = K − S (2.3.17)

Por otra parte, por la proposición 12 en la página 51, tenemos:

~̇J = ~Next ⇔ I
dω

dt
= Fd⇔ dω =

Fd

I
dt⇔ ω =

d

I

∫
Fdt =

Kd

I
(2.3.18)

Usando las ecuaciones 2.3.17 y 2.3.18, obtenemos:

MR
Kd

I
= K − S ⇔ S = K

(
1− MR

I
d

)
donde recordemos l =

I

MR
es lo que llamábamos longitud equivalente del péndulo físico (al igual que en el

ejemplo 8 en la página 65). Así, tenemos:

S = K

(
1− d

l

)
Observando la fórmula anterior vemos que si d = l, entonces S = 0. Es decir, la fuerza F se realiza a una
distancia vertical l del punto de apoyo, entonces la reacción del punto de apoyo sobre el sólido rígido es nula.

Q.E.F.

La situación descrita en el ejemplo 9 en la página anterior aparece sobre todo en deportes en los que se
golpean pelotas con un palo. Por ejemplo, en béisbol, hay una distancia privilegiada en la que el jugador no
debe hacer esfuerzo en sujetar el bate, lo que recibe el nombre de «sweet spot» en inglés.

CDM

Sweet spot
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Algo similar ocurre en la historia de las raquetas de tenis. Antes, éstas eran mucho más alargadas y su
diseño se cambió precisamente porque en el diseño antiguo el punto óptimo se encontraba fuera de la zona de
golpeo.

lcdm lcdm

Antes Ahora

2.3.3. Componentes perpendiculares de ~J

Definición 15. Sea un sólido rígido de N partículas que está rotando en torno a un eje Z. Llamamos vector
de inercia con respecto al eje de giro ~I = (Ixz, Iyz, Izz) al vector tal que:

~J = ω~I ⇔ (Jx, Jy, Jz) = (Ixzω, Iyzω, Izzω)

Corolario 12. Sea un sólido rígido de N partículas que está rotando en torno a un eje Z. El vector de inercia
dado en la definición 15 responde a la expresión:

Ixz = −
N∑
i=1

mixizi

Iyz = −
N∑
i=1

miyizi

Izz =

N∑
i=1

mi

(
x2
i + y2

i

)
Demostración. La componente Izz es la mencionada en el enunciado por el corolario 11 en la página 60. Para
el resto, partimos de la proposición 14 en la página 59:

~J =
N∑
i=1

mi

(
−xizi,−yizi, x2

i + y2
i

)
ω ⇒

⇒ (Jx, Jy) =

(
−

N∑
i=1

mixizi,−
N∑
i=1

miyizi

)
ω
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Por analogía con la definición 15 en la página anterior, deducimos que:

Ixz = −
N∑
i=1

mixizi, Iyz = −
N∑
i=1

miyizi

Q.E.D.

Observación 16. Recordemos que el enunciado de la proposición 14 en la página 59 nos indica que, en general,
es ~J ∦ ~ω.

Ejemplo 10. Consideremos el sólido rígido más sencillo que podemos imaginar: una única partícula de masa
m a distancia r del origen. Supongamos que el vector ~r precede con respecto al eje Z con velocidad angular
ω.

~r
~J

~v

X

Y

Z

~ω

En este caso, por la proposición 12 en la página 51, tenemos:

~J = ~r ×m~v ⇒ ~J ⊥ ~r

Es decir, en este caso, claramente ~J ∦ ~ω. Es más, ~J precede, por lo que ∃ ~̇J ⇒ ∃ ~Next, es decir, aparecerá una
fuerza resultante de momentos de reacción. Es decir, aparece una fuerza que intenta cambiar el eje de giro del
sistema. En consecuencia, esto nos indica que un sistema real de este estilo podría sufrir desgaste en el eje de
giro debido a la acción de la mencionada fuerza.

Ejemplo 11. En el interior de nuestros teléfonos móviles hay un motor muy pequeño unido a un disco
descentrado.
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ω

CDM

Esto constituye el vibrador. Como podemos ver, en este dispositivo ocurre lo mismo que en el ejemplo 10
en la página anterior, pues es ~J ∦ ~ω.

2.4. Tensor de inercia

2.4.1. Endomorfismo de inercia

A partir de este momento, la velocidad angular ~ω podrá ir a lo largo de un eje arbitrario cualquiera. Así,
en principio, ~ω tendrá componentes en las tres direcciones:

~ω = (ωx, ωy, ωz)

Proposición 17. Sea un sólido rígido de N partículas. Si estamos trabajando en una base ortonormal, existe
una matriz simétrica ~I ∈ R(3,3) tal que el momento angular del sólido rígido puede obtenerse como la acción
de la matriz ~I sobre la velocidad angular ~ω.

~J =~I~ω

Además, las componentes de dicha matriz vienen dadas por:

Iij =
N∑
k=1

mk

(
δijr

2
k − rk,irk,j

)
∀i, j = x, y, z

donde r2
k = r2

k,x + r2
k,y + r2

k,z.

Demostración. Podemos suponer sin pérdida de generalidad que nuestra base ortonormal es la canónica. Por
la proposición 12 en la página 51, tenemos que:

~J =

N∑
k=1

mk~rk × ~̇rk (2.4.1)

Por otra parte, las partículas del sólido rígido describirán trayectorias circulares en torno al vector ~ω. En
consecuencia, por la proposición 13 en la página 57, será:

~̇rk = ~ω × ~rk
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Sustituyendo lo anterior en la ecuación 2.4.1 en la página anterior, llegamos a:

~J =
N∑
k=1

mk~rk × (~ω × ~rk) =

N∑
k=1

mk~rk ×

∣∣∣∣∣∣
î ĵ k̂
ωx ωy ωz
xk yk zk

∣∣∣∣∣∣ =

=

N∑
k=1

mk~rk × (ωyzk − ωzyk, ωzxk − ωxzk, ωxyk − ωyxk) =

=

N∑
k=1

mk

∣∣∣∣∣∣
î ĵ k̂
xk yk zk

ωyzk − ωzyk ωzxk − ωxzk ωxyk − ωyxk

∣∣∣∣∣∣ =

=
N∑
k=1

mk

(
ωxy

2
k − ωyxkyk − ωzxkzk + ωxz

2
k,

ωyz
2
k − ωzykzk − ωxxkyk + ωyx

2
k, ωzx

2
k − ωxxkzk − ωyykzk + ωzy

2
k

)
=

=

N∑
k=1

mk

([
y2
k + z2

k

]
ωx − xkykωy − xkzkωz,

[
x2
k + z2

k

]
ωy − xkykωx − ykzkωz, =

[
x2
k + y2

k

]
ωz − xkzkωx − ykzkωy

)
=

=

N∑
k=1

mk

[(
y2
k + z2

k,−xkyk,−xkzk
)
ωx +

(
−xkyk, x2

k + z2
k,−ykzk

)
ωy +

(
−xkzk,−ykzk, x2

k + y2
k

)
ωz
]

=

=

N∑
k=1

mk

y2
k + z2

k −xkyk −xkzk
−xkyk x2

k + z2
k −ykzk

−xkzk −ykzk x2
k + y2

k

ωxωy
ωz

 =

=



N∑
k=1

mk

(
y2
k + z2

k

) N∑
k=1

mk (−xkyk)
N∑
k=1

mk (−xkzk)
N∑
k=1

mk (−xkyk)
N∑
k=1

mk

(
x2
k + z2

k

) N∑
k=1

mk (−ykzk)
N∑
k=1

mk (−xkzk)
N∑
k=1

mk (−ykzk)
N∑
k=1

mk

(
x2
k + y2

k

)


︸ ︷︷ ︸

=:~I

ωxωy
ωz



Llamando ~I a la matriz marcada arriba, hemos probado la existencia de la matriz pedida en el enunciado.
Ahora, usando la notación rk,x = xk; rk,y = yk; rk,z = zk, podemos ver claramente que los términos de la

diagonal de la matriz ~I son:

Iii =

N∑
k=1

mk

∑
j 6=i

r2
k,j

 =

N∑
k=1

mk

(
r2
k − r2

k,i

)
=

N∑
k=1

mk

(
δiir

2
k − rk,irk,i

)
Por otra parte, los términos que no son de la diagonal pueden expresarse como:

Iij =

N∑
k=1

mk (−rk,irk,j) =
N∑
k=1

mk

(
δijr

2
k − rk,irk,j

)
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En consecuencia, pueden expresarse las componentes de la matriz ~I tal y como viene descrito en el enunciado.
Por último, nótese que:

Iij =
N∑
k=1

mk

(
δijr

2
k − rk,irk,j

)
=

N∑
i=1

mk

(
δjir

2
k − rk,jrk,i

)
= Iji ∀i, j = x, y, z

pues el producto es conmutativo y la delta de Kronecker es simétrica. Por ende, la matriz ~I es simétrica.
Q.E.D.

Definición 16. Sea un sólido rígido de N partículas. Llamaremos endomorfismo de inercia a la aplicación
I : R3 −→ R3 tal que su expresión coordenada en una base ortonormal

{
î, ĵ, k̂

}
es la dada en la proposición 17

en la página 71.

Corolario 13. Sea un sólido rígido macizo con volumen V y con función densidad ρ : SR −→ R, donde con
SR denotamos el conjunto de puntos que conforman el sólido rígido. Los elementos de la matriz coordenada
del endomorfismo de inercia en una base ortonormal

{
î, ĵ, k̂

}
vienen dados por las expresiones:

Iij =

∫∫∫
V
ρ (rx, ry, rz)

[
δijr

2 − rirj
]

dV ∀i, j = x, y, z

Demostración. Partimos de lo que queremos demostrar:

Iij =

∫∫∫
V
ρ (rx, ry, rz)

[
δijr

2 − rirj
]

dV

Aplicando el teorema 1 en la página 3, tomando n = 3 y f (~r) = δijr
2−rirj , obtenemos que existen sucesiones

{mN ;k}(2N)3

k=1 y {~rN ;k}(2N)3

k=1 tales que:

I = ĺım
N→∞

(2N)3∑
k=1

mN ;kf (~rN ;k) = ĺım
N→∞

(2N)3∑
k=1

mN ;k

[
δijr

2
N ;k − (~rN ;k)i (~rN,k)j

]
Y aplicando la proposición 17 en la página 71, obtenemos:

I = ĺım
N→∞

Iij

Q.E.D.

Corolario 14. Sea un sólido rígido formado por N partículas. Su endomorfismo de inercia cumple las si-
guientes propiedades:

1. Todos sus autovalores son reales.

2. Existe una base tal que su matriz coordenada es diagonalizable.

3. Siempre existe una base vectorial de vectores propios que es ortonormal.

Demostración. Por la proposición 17 en la página 71, sabemos que la matriz de inercia es simétrica. Por tanto,
el endomorfismo de inercia es autoadjunto respecto al producto escalar canónico. Por Álgebra Lineal, sabemos
que los valores propios de todo endomorfismo autoadjunto son siempre reales y, además, el endomorfismo es
diagonalizable.

Por otra parte, sabemos que, en el caso de endomorfismos autoadjuntos, vectores propios que se corres-
ponden a valores propios distintos son ortogonales entre sí. De esta forma, si el endomorfismo cuenta con 3
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valores propios distintos, entonces cualquier base de vectores propios será ortogonal y, normalizando dichos
vectores, ortonormal.

Si, por un contrario, la matriz sólo cuenta con 2 valores propios distintos entre sí, entonces habrá un espacio
propio de dimensión 2 y otro de dimensión 1. Escogiendo una base ortogonal cualquiera del subespacio de
dimensión 2 y concatenando a dicha base cualquier vector propio del espacio de dimensión 1, obtenemos una
base ortogonal. Normalizando, conseguimos que sea ortonormal.

Por último, si la matriz únicamente cuenta con un autovalor distinto, entonces cualquier base ortonormal
de R3 es una base de vectores propios (ortonorm). Q.E.D.

2.4.2. Forma cuadrática de inercia

Proposición 18. Sea un sólido rígido de N partículas. Existe una forma cuadrática Q : R3 −→ R (un tensor
(0, 2)) a través de la cual puede hallarse la energía cinética T de un sólido rígido en función de su velocidad
angular ~ω. La matriz coordenada asociada a dicha forma cuadrática en una base ortogonal

{
î, ĵ, k̂

}
es la mitad

de matriz de inercia en dicha base. Es decir:

T = Q (~ω) =
1

2
~ω~I~ω =

1

2

(
ωx ωy ωz

)Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ωxωy
ωz


Demostración. Por el corolario 8 en la página 30, tenemos:

T =

N∑
i=1

1

2
mi~̇r

2
i

Por definición de sólido rígido (ver definición 13 en la página 50), las distancias relativas entre las partículas
que forman el sólido rígido deben permanecer constantes. En consecuencia, las partículas del sólido rígido
deben describir una circunferencia en torno a ~ω (al menos, de forma instantánea). Por la proposición 13 en la
página 57, tenemos que:

~̇ri = ~ω × ~ri =

∣∣∣∣∣∣
î ĵ k̂
ωx ωy ωz
xi yi zi

∣∣∣∣∣∣ = (ωyzi − ωzyi, ωzxi − ωxzi, ωxyi − ωyxi)

En consecuencia, es:
~̇r 2
i = (ωyzi − ωzyi)2 + (ωzxi − ωxzi)2 + (ωxyi − ωyxi)2 =

= ω2
yz

2
i + ω2

zy
2
i − 2ωyωzyizi + ω2

zx
2
i + ω2

xz
2
i − 2ωxωzxizi + ω2

xy
2
i + ω2

yx
2
i − 2ωxωyxiyi =

= ω2
x

(
y2
i + z2

i

)
+ ω2

y

(
x2
i + z2

i

)
+ ω2

z

(
x2
i + y2

i

)
− 2ωyωzyizi − 2ωxωzxizi − 2ωxωyxiyi

Sustituyendo en la ecuación dada por el corolario 8 en la página 30, obtenemos:

T =
1

2

ω2
x

N∑
i=1

mi

(
y2
i + z2

i

)
︸ ︷︷ ︸

=Ixx

+ω2
y

N∑
i=1

mi

(
x2
i + z2

i

)
︸ ︷︷ ︸

=Iyy

+ω2
z

N∑
i=1

(
x2
i + y2

i

)
︸ ︷︷ ︸

=Izz

+

+ωyωz

N∑
i=1

−miyizi︸ ︷︷ ︸
=Iyz

+ωzωy

N∑
i=1

−miziyi︸ ︷︷ ︸
=Izy

+ωxωz

N∑
i=1

−mixizi︸ ︷︷ ︸
=Ixz

+ωzωx

N∑
i=1

−mizixi︸ ︷︷ ︸
=Izx

+
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+ωxωy

N∑
i=1

−mixiyi︸ ︷︷ ︸
=Ixy

+ωyωz

N∑
i=1

−miyixi︸ ︷︷ ︸
=Iyx

 =

=
1

2
[ωxIxxωx + ωyIyyωy + ωzIzzωz + ωyIyzωz + ωzIzyωy + ωxIxzωz + ωzIzxωx + ωxIxyωy + ωyIyxωx] =

=
1

2

(
ωx ωy ωz

)Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ωxωy
ωz

 =
1

2
~ω~I~ω

Tomando Q como la forma cuadrática cuya matriz asociada en la base
{
î, ĵ, k̂

}
sea 1

2
~I, probamos su existencia

y su relación con ~I. Q.E.D.

Definición 17. Sea un sólido rígido de N partículas. Llamaremos forma cuadrática de inercia a la forma
cuadrática Q : R3 −→ R dada en la proposición 18 en la página anterior.

2.4.3. ¿Qué demonios es el tensor de inercia?

Llegado este momento, es muy posible que el lector ande algo perdido con respecto a los conceptos de
endomorfismo y forma cuadrática de inercia. Estos términos no se usan habitualmente en física, sino que en
su lugar se suele decir «tensor de inercia». Ahora vamos a estudiar la razón.

Por una parte, hemos deducido en la proposición 17 en la página 71 que dada una base ortonormal, existe
una matriz de inercia simétrica que permite relacionar el momento angular ~J de un sólido rígido con su
velocidad angular ~ω. Además, sabemos que dicha matriz es la representación coordenada de un endomorfismo
que hemos llamado endomorfismo de inercia.

Por otra parte, hemos hallado en la proposición 18 en la página anterior que existe una forma cuadrática
que relaciona la energía cinética T de un sólido rígido con su velocidad angular ~ω y, además, hemos obtenido
que la matriz coordenada de esta forma cuadrática era la misma matriz de inercia que para el caso del momento
angular.

Ahora vamos a ver cómo es que esto es posible. Primero, examinemos por qué esto «chirría» al principio.
Por conocimientos de álgebra lineal, sabemos que la matriz coordenada de un endomorfismo A cambia de
base mediante: C−1AC donde C es una matriz invertible. Por otra parte, una forma cuadrática A (un tensor
(0, 2)) cambia de base mediante CTAC. En principio, la simultaneidad de estas dos formas de cambiar de
base parece imposible.

La clave para solucionar esta aparente paradoja es darnos cuenta de que siempre estamos trabajando con
bases ortonormales. Y, por conocimientos de álgebra lineal, sabemos que las matrices del cambio entre
bases ortonormales son siempre matrices ortogonales; es decir, cumplen CT = C−1. En consecuencia,
a efectos prácticos, es equivalente interpretar la matriz de inercia como un endomorfismo o como una forma
cuadrática, pues siempre van a cambiar de base de la misma forma.

Todo esto motiva el hecho de que se le llame «tensor de inercia» al elemento matemático subyacente bajo la
matriz de inercia, como es habitual en el caso de formas cuadráticas en física. Para entender apropiadamente
las propiedades del tensor de inercia, es menester tener en cuenta su doble naturaleza: como tensor (1, 1)
(endomorfismo) y tensor (0, 2) (forma cuadrática). Esta dualidad nos va a permitir aprovechar las ventajas
de ambos tipos de entes matemáticos, especialmente las características del endomorfismo (las dadas en el
corolario 14 en la página 73).
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2.4.4. Ejes principales de inercia y propiedades

Definición 18. Sea un sólido rígido formado por N partículas. Diremos que un eje j es un eje principal
de inercia si Iij = 0 ∀i 6= j.

Corolario 15. Sea un sólido rígido formado por N partículas. Los vectores propios de su endomorfismo de
inercia son ejes principales de inercia.

Demostración. Por el corolario 14 en la página 73, tenemos que el endomorfismo I es diagonalizable. En la
base de vectores propios, ~I es diagonal, luego Iij = 0 ∀i 6= j y, por consiguiente, por la definición 18, los
vectores propios de ~I son ejes principales de inercia. Q.E.D.

Proposición 19. Sea un sólido rígido macizo con volumen V y con función densidad ρ : SR −→ R, donde
con SR denotamos el conjunto de puntos que conforman el sólido rígido. Si se da alguna de las siguientes
propiedades:

1. El sólido rígido tiene simetría de reflexión en torno al plano XY :

ρ (x, y, z) = ρ (x, y,−z) ∀ (x, y, z) ∈ SR

(x, y, z)

(x, y,−z)

X

Z

Y

2. El sólido rígido tiene simetría de rotación en torno al eje Z:

ρ (x, y, z) = ρ (−x,−y, z) ∀ (x, y, z) ∈ SR

(−x,−y, z)

(x, y, z) X

Z

Y

Entonces, el eje Z es eje principal de inercia del sólido rígido.
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Demostración.

1. Por el corolario 13 en la página 73, tenemos que:

Ixz =

∫∫∫
V
ρ (x, y, z) [−xz] dV

Dividamos el volumen del sólido rígido en dos mitades, el conjunto de puntos del sólido rígido que
cumplen z ≥ 0 (llamaremos a dicho conjunto V+) y el conjunto de puntos que cumplen z < 0 (llamaremos
a dicho conjunto V−). Así, podemos escindir la integral anterior en:

Ixz =

∫∫∫
V+

ρ (x, y, z) [−xz] dxdydz︸ ︷︷ ︸
=:I+

+

∫∫∫
V−

ρ (x, y, z) [−xz] dxdydz︸ ︷︷ ︸
=:I−

(2.4.2)

Consideramos el cambio de variable:

φ : V+ −→ V−

(u, v, w) −→


x = u
y = v
z = −w

Trivialmente, φ es biyectiva y de clase C(∞) y, además:

det Jφ =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 −1

∣∣∣∣∣∣ = −1⇒ |det Jφ| = 1

De esta forma, por el teorema de cambio de variable, tenemos:

I− =

∫∫∫
V−

ρ (x, y, z) [−xz] dxdydz =

∫∫∫
V+

ρ (φ (u, v, w))uwdudvdw =

=

∫∫∫
V+

ρ (u, v,−w)uwdudvdw

Reescribiendo x = u, y = v y z = w, obtenemos:

I− =

∫∫∫
V+

ρ (x, y,−z)xzdxdydz =

∫∫∫
V+

ρ (x, y,−z)xzdV

Como, por hipótesis es ρ (x, y, z) = ρ (x, y,−z) ∀ (x, y, z) ∈ SR, podemos escribir la expresión anterior
como:

I− =

∫∫∫
V+

ρ (x, y, z)xzdV

Por último, sustituyendo en la ecuación 2.4.2, llegamos a:

Ixz =

∫∫∫
V+

ρ (x, y, z) [−xz] dV +

∫∫∫
V+

ρ (x, y, z)xzdV =

=

∫∫∫
V+

ρ (x, y, z) [−xz + xz] dV = 0

Análogamente, se opera con Iyz y se llega a Iyz = 0. Por la definición 18 en la página anterior, Z es un
eje principal de inercia, pues Ixz = 0 = Iyz.
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2. Por el corolario 13 en la página 73, tenemos que:

Ixz =

∫∫∫
V
ρ (x, y, z) [−xz] dV =

∫∫∫
V
ρ (x, y, z) [−xz] dxdydz

Vamos a trabajar en coordenadas cilíndricas, tomando: x = r cos θ e y = r sen θ. En función de estas
coordenadas la expresión anterior queda:

Ixz =

∫∫∫
V
ρ (r, θ, z) [−rz cos θ] rdrdθdz

Por otra parte, notemos que la hipótesis ρ (x, y, z) = ρ (−x,−y, z) ∀ (x, y, z) ∈ SR adopta la siguiente
forma en coordenadas cilíndricas:

ρ (r, θ, z) = ρ (r, θ + π, z) ∀ (r, θ, z) ∈ SR (2.4.3)

Vamos a particionar nuestro volumen en dos conjuntos: V1 =
{

(r, θ, z) ∈ SR t.q. θ ∈
[
−π

2 ,
π
2

)}
y V2 ={

(r, θ, z) ∈ SR t.q. θ ∈
[
π
2 ,−π

2

)}
. De esta forma, podemos expresar Ixz como sigue:

Ixz =

∫∫∫
V1

ρ (r, θ, z) [−rz cos θ] rdrdθdz︸ ︷︷ ︸
=:I1

+

∫∫∫
V2

ρ (r, θ, z) [−rz cos θ] rdrdθdz︸ ︷︷ ︸
=:I2

(2.4.4)

Consideramos el cambio de variable:

φ : V1 −→ V2

(u, v, w) −→


r = u

θ = v + π
z = w

Trivialmente, φ es biyectiva y de clase C(∞) y, además:

det Jφ =

∣∣∣∣∣∣
1 0 0
0 −1 0
0 0 1

∣∣∣∣∣∣ = −1⇒ |det Jφ| = 1

De esta forma, por el teorema de cambio de variable, tenemos:

I2 =

∫∫∫
V2

ρ (r, θ, z) [−rz cos θ] rdrdθdz =

∫∫∫
V1

ρ (φ (u, v, w)) [−uw cos (v − π)]ududvdw =

=

∫∫∫
V1

ρ (u, v + π,w) [−uw cos (v − π)] rdudvdw

Reescribiendo r = u, θ = v y z = w, obtenemos:

I2 =

∫∫∫
V1

ρ (r, θ + π, z) [−rz cos (θ − π)] rdrdθdz

Como cos (θ − π) = cos (π − θ) = − cos θ y por la ecuación 2.4.3, tenemos:

I2 =

∫∫∫
V1

ρ (r, θ, z) rz cos θrdrdθdz

Por consiguiente, sustituyendo en la ecuación 2.4.4, llegamos a:

Ixz =

∫∫∫
V1

ρ (r, θ, z) [−rz cos θ] rdrdθdz +

∫∫∫
V1

ρ (r, θ, z) rz cos θrdrdθdz =
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= −
∫∫∫

V1

ρ (r, θ, z) rz cos θrdrdθdz︸ ︷︷ ︸
=I2

+

∫∫∫
V1

ρ (r, θ, z) rz cos θrdrdθdz︸ ︷︷ ︸
=I2

= −I2 + I2 = 0

Se opera análogamente con el momento Iyz, particionando el volumen en V1 = {(r, θ, z) ∈ SR t.q. θ ∈
[0, π)} y V2 = {(r, θ, z) ∈ SR t.q. θ ∈ [π, 2π)}, pues ahora estamos trabajando con sen θ en vez de con
cos θ. Utilizando sen (θ − π) = − sen (π − θ) = − sen θ y siguiendo el mismo procedimiento que con Ixz,
obtenemos que Iyz = 0 = Ixz. Por la definición 18 en la página 76, Z es un eje principal de inercia.

Q.E.D.

Observación 17. Nótese que el recíproco de la proposición 19 en la página 76 no es cierto.

Observación 18. Si tenemos un sólido rígido con 3 ejes de simetría (de rotación), por la proposición 19 en la
página 76, podremos tomar dichos ejes como ejes principales de inercia. Así, obtendremos directamente una
forma diagonal del tensor de inercia ~I.
Notación 3. Sea un sólido rígido de N partículas. Llamaremos {ê1, ê2, ê3} a la base ortonormal de vectores
propios del tensor de inercia del sólido rígido. Recordemos por el corolario 14 en la página 73 que una
base de dichas características siempre existe. En consecuencia, como la matriz de inercia es diagonal en la
base {ê1, ê2, ê3}, los elementos fuerza de la diagonal serán nulos. Por consiguiente, por la definición 18 en la
página 76, los vectores ê1, ê2, ê3 llevan las direcciones de los ejes principales de inercia del sólido rígido.

Además, denotaremos con ω1, ω2, ω3 a las coordenadas del vector ~ω en la base {ê1, ê2, ê3}. Es decir, será:

~ω = ω1ê1 + ω2ê2 + ω3ê3

Definición 19. Por último, llamaremos momentos principales de inercia I1, I2, I3 a los valores propios
del tensor de inercia.

Observación 19. Utilizando la definición 19, en la base {ê1, ê2, ê3} el tensor de inercia adoptará la siguiente
representación:

~I =

I1 0 0
0 I2 0
0 0 I3


Proposición 20. Sea un sólido rígido formado por N partículas. En la base de vectores propios de su tensor
de inercia, la base {ê1, ê2, ê3}, el momento angular del sólido rígido y su energía cinética pueden hallarse
simplemente como:

~J = I1ω1ê1 + I2ω2ê2 + I3ω3ê3

T =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3

donde I1, I2, I3 son los momentos principales de inercia y ω1, ω2, ω3 son las coordenadas del vector ~ω en la
base {ê1, ê2, ê3}.

Demostración. Por la proposición 17 en la página 71, tenemos que:

~J =~I~ω

Además, por el corolario 14 en la página 73, sabemos que la matriz~I es diagonal en su base de vectores pro-
pios {ê1, ê2, ê3}. Por si fuera poco, los elementos de su diagonal serán sus autovalores que, por la definición 19,
son los momentos principales de inercia. Así, obtenemos:J1

J2

J3

 =

I1 0 0
0 I2 0
0 0 I3

ω1

ω2

ω3

 =

I1ω1

I2ω2

I3ω3


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Por otra parte, por la proposición 18 en la página 74, tenemos que:

T =
1

2
~ω~I~ω

Aquí es donde vamos a aplicar la dualidad el tensor de inercia explicada en la sección 2.4.3 en la página 75.
A pesar de que la matriz ~I es, en realidad, una forma cuadrática en la fórmula anterior, podemos interpretar
que cambia de base como un endomorfismo. En consecuencia, la matriz ~I cumplirá las mismas propiedades
que la usada para el momento angular. Por consiguiente, tenemos:

T =
1

2

(
ω1 ω2 ω3

)I1 0 0
0 I2 0
0 0 I3

ω1

ω2

ω3

 =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3

Q.E.D.

2.4.5. Cuerpos simétricos

Proposición 21. Sea un sólido rígido macizo con volumen V y con función densidad ρ : SR −→ R, donde
con SR denotamos el conjunto de puntos que conforman el sólido rígido.

1. Si el sólido rígido presenta simetría cilíndrica en torno al eje Z, es decir, ρ (x, y, z) = F!
(
x2 + y2, z

)
∀ (x, y, z) ∈ R3(la densidad depende únicamente de la distancia al eje Z y de la coordenada z), indepen-
dientemente de los ejes X e Y escogidos (siempre que estén en el plano perpendicular al eje Z), estos
son ejes principales de inercia y sus momentos principales de inercia correspondientes son iguales entre
sí, o sea, I1 = I2.

~e3~e3

Cilindro Cono Esfera

2. Si el sólido rígido presenta simetría de rotación con más de dos giros, es decir, si existen dos ejes X e Y
ortogonales entre sí tales que ρ (x, y, z) = ρ (y, x, z) ∀ (x, y, z) ∈ SR ∧ ρ (x, y, z) = ρ (−x, y, z) ∀ (x, y, z) ∈
SR, entonces los ejes X e Y son ejes principales de inercia y los momentos principales de inercia co-
rrespondientes a los ejes X e Y son iguales entre sí, o sea, I1 = I2.
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3. Si el sólido rígido presenta simetría esférica en torno a su centro, es decir, ρ (x, y, z) = F!
(
x2 + y2 + z2

)
∀ (x, y, z) ∈ R3, entonces los momentos principales de inercia del sólido rígido son todos iguales entre
sí: I1 = I2 = I3. Además, cualesquiera tres ejes ortogonales que se corten en el centro del sólido rígido
son ejes principales de inercia.

Demostración.

2. Recordemos las expresiones de cálculo del momento de inercia dadas por el corolario 13 en la página 73:

Ixx =

∫∫∫
V
ρ (x, y, z)

(
y2 + z2

)
dV

Estudiemos el cambio de variable:

φ : V −→ V

(u, v, w) −→


x = v
y = u
z = w

Claramente φ es biyectiva y de clase C(∞). Además:

det Jφ =

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣ = −1⇒ |det Jφ| = 1

De esta forma, por el teorema de cambio de variable, tenemos:

Ixx =

∫∫∫
V
ρ (y, x, z)

(
x2 + z2

)
dV

Como, por hipótesis, es ρ (x, y, z) = ρ (y, x, z) ∀ (x, y, z) ∈ SR, podemos escribir la expresión anterior
como:

Ixx =

∫∫∫
V
ρ (x, y, z)

(
x2 + z2

)
dV = Iyy

y esto último es justo la definición de Iyy. Así Ixx = Iyy.
Por otra parte, llamemos:

V+ := {(x, y, z) ∈ SR t.q. x > 0}
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V− := {(x, y, z) ∈ SR t.q. x < 0}
Ahora, por el corolario 13 en la página 73

Ixy = Iij =

∫∫∫
V
ρ (x, y, z) [−xy] dV =

=

∫∫∫
V+

ρ (x, y, z) [−xy] dV︸ ︷︷ ︸
=:I+

+

∫∫∫
V−

ρ (x, y, z) [−xy] dV︸ ︷︷ ︸
=:I−

Y consideramos el cambio de variable:

φ : V+ −→ V−

(u, v, w) −→


x = −u
y = v
z = w

Trivialmente, φ es biyectiva y de clase C(∞) y, además:

det Jφ =

∣∣∣∣∣∣
−1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = −1⇒ |det Jφ| = 1

De esta forma, por el teorema de cambio de variable, tenemos:

I− =

∫∫∫
V−

ρ (x, y, z) [−xy] dxdydz =

∫∫∫
V+

ρ (φ (u, v, w))uwdudvdw =

=

∫∫∫
V+

ρ (−u, v, w)uwdudvdw

Reescribiendo x = u, y = v y z = w, obtenemos:

I− =

∫∫∫
V+

ρ (−x, y, z)xydxdydz =

∫∫∫
V+

ρ (−x, y, z)xydV

Como, por hipótesis es ρ (x, y, z) = ρ (−x, y, z) ∀ (x, y, z) ∈ SR, podemos escribir la expresión anterior
como:

I− =

∫∫∫
V+

ρ (x, y, z)xydV

Por último, sustituyendo en la ecuación 2.4.2 en la página 77, llegamos a:

Ixy =

∫∫∫
V+

ρ (x, y, z) [−xy] dV +

∫∫∫
V+

ρ (x, y, z)xydV =

=

∫∫∫
V+

ρ (x, y, z) [−xy + xy] dV = 0

En consecuencia es Ixy = Iyx = 0. A continuación, como es ρ (x, y, z) = ρ (y, x, z) ∀ (x, y, z) ∈ SR ∧
ρ (x, y, z) = ρ (−x, y, z) ∀ (x, y, z) ∈ SR, se da:

ρ (x, y, z) = ρ (−x, y, z) ∀ (x, y, z) ∈ SR ∧ ρ (x, y, z) = ρ (x,−y, z)∀ (x, y, z) ∈ SR

Por consiguiente:
ρ (x, y, z) = ρ (−x,−y, z)∀ (x, y, z) ∈ SR

Por la proposición 19 en la página 76, el eje Z es un eje principal de inercia. Por tanto es: Ixz = Izx =
Iyz = Izy = 0. Por ende, los ejes X e Y son ejes principales de inercia del sólido rígido.

Licencia: Creative Commons 82

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.4. TENSOR DE INERCIA

1. Dado que es ρ (x, y, z) = F!
(
x2 + y2, z

)
∀ (x, y, z) ∈ R3, tenemos garantizado que, al escoger dos ejes X

e Y perpendiculares al eje Z y perpendiculares entre sí, va a darse:

ρ (x, y, z) = ρ (−x, y, z) ∀ (x, y, z) ∈ SR

y:
ρ (x, y, z) = ρ (y, x, z) ∀ (x, y, z) ∈ SR

pues ρ es únicamente función de x2 + y2 y de z y, claramente:

(−x)2 + y2 = x2 + y2

y2 + x2 = x2 + y2

Esta última afirmación no podría darse si no se cumpliera ρ (x, y, z) = F!
(
x2 + y2, z

)
∀ (x, y, z) ∈ R3

para todo punto de R3. Así, tenemos garantizado que el dominio es simétrico a lo largo de los ejes X e
Y . Por tanto, se cumplen las hipótesis del punto 2 y, por consiguiente, se cumple el enunciado.

3. Escojamos un eje Z arbitrario. Por hipótesis, sabemos que se da:

ρ (x, y, z) = F!
(
x2 + y2 + z2

)
∀ (x, y, z) ∈ R3

En consecuencia, para cada z = z0 fijo se da:

ρ (x, y, z0) = F!
(
x2 + y2

)
∀ (x, y, z) ∈ SR ∩ {z = z0}

Por consiguiente, se dan las hipótesis del punto 1. En consecuencia: Ixx = Iyy y Ixz = Izx = Iyz =
Izy = Ixy = Iyx = 0. Repitiendo el argumento anterior, pero para un x = x0 fijo o para un y = y0

fijo, obtenemos que Iyy = Izz o Ixx = Izz, respectivamente. Por tanto, es Ixx = Iyy = Izz. Como la
elección de ejes se ha hecho de forma arbitraria, lo anterior es válido para cualquier triedro directo de
ejes X,Y, Z.

Q.E.D.

Observación 20. Si se da alguna de las hipótesis de la proposición 21 en la página 80, podremos escribir la
matriz de inercia como:

~I =

I1 0 0
0 I1 0
0 0 I3


y, en consecuencia, por la proposición 17 en la página 71:

~J = I1 (ω1ê1 + ω2ê2) + I3ω3ê3

Además, si ω3 = 0, entonces ~J = I1~ω ⇒ ~J ‖ ~ω. En este caso, cualquier par de ejes en el plano (ê1, ê2) que
sean perpendiculares entre sí, son ejes principales de inercia válidos.

En cualquiera de los casos anteriores, ê3 está fijo (está determinado), pero ê1 y ê2 pueden no estar fijos ni
en el tiempo ni el cuerpo.

Si I1 = I2 = I3, entonces hay simetría esférica. En este caso es:

~J = I1~ω

y podemos hacer una elección arbitraria de ê1, ê2, ê3.
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Proposición 22. Una esfera, un tetraedro, un cubo, un octaedro, un dodecaedro y un icosaedro de densidad
constante ρ0 tienen todos matrices de inercia escalares para alguna base de ejes principales de inercia. Es
decir, su matriz de inercia puede expresarse como:

~I = I

1 0 0
0 1 0
0 0 1


para alguna base de ejes principales de inercia del sólido rígido.

Demostración.

La esfera: una esfera satisface la ecuación x2 + y2 + z2 ≤ a2, donde a2 es una constante. Luego es:

ρ (x, y, z) =

{
ρ0 si x2 + y2 + z2 ≤ a2

0 si x2 + y2 + z2 > a2

Luego, claramente, ρ (x, y, z) = F!
(
x2 + y2 + z2

)
∀ (x, y, z) ∈ R3. Por la proposición 21 en la página 80,

la matriz de inercia es escalar.

El tetraedro: Vamos a tener que calcular toda la matriz de inercia del tetraedro y diagonalizarla pos-
teriormente. Tomemos los ejes coordenados de la siguiente manera. Escogemos el eje X perpendicular
a una arista de la base del tetraedro y el eje Z como la recta perpendicular al eje X que pasa por un
vértice del tetraedro y el punto central de la cara del lado opuesto. Ahora, escogemos el eje Y tal que
X,Y, Z sea un sistema de referencia ortogonal dextrógiro. Para facilitarnos las cuentas vamos a hacer
uso del teorema de Stokes: ∫∫∫

V

~∇ · ~fdV =

∫∫
S

~f · d~S

Por la proposición 17 en la página 71, tenemos:

Ixx =

∫∫∫
V
ρ0

(
y2 + z2

)
dV = ρ0

∫∫∫
V

(
y2 + z2

)
dV

Escogiendo:
~f =

([
y2 + z2

]
x, 0, 0

)
obtenemos:

~∇ · ~f = y2 + z2

Luego, por el teorema de la divergencia, tenemos:∫∫∫
V

(
y2 + z2

)
dV =

∫∫
S

([
y2 + z2

]
x, 0, 0

)
· d~S

Tenemos que hallar los vectores normales a cada cara. Uno de ellos es inmediato: (0, 0, 1), por cómo
hemos definido el eje Z. Otro es (sen θ, 0, cos θ). (Sin finalizar)

El cubo: Seleccionamos como ejes X,Y y Z los ejes de simetría del cubo que pasan por su centro y por
el punto medio de las caras. Así, en torno a cada eje se cumple que el sólido rígido presenta simetría de
rotación con más de dos giros. Al aplicar la proposición 21 en la página 80 a todos los ejes, obtenemos
que, necesariamente, los ejes X,Y y Z son ejes principales de inercia del sólido rígido y que I1 = I2 = I3.

El octaedro: Análogamente al caso del cubo, seleccionamos como ejes X,Y y Z tres ejes de simetría del
octaedro que pasan por su centro y por uno de sus vértices de tal forma que sean perpendiculares entre
sí. Así, en torno a cada eje se cumple que el sólido rígido presenta simetría de rotación con más de dos
giros. Al aplicar la proposición 21 en la página 80 a todos los ejes, obtenemos que, necesariamente, los
ejes X,Y y Z son ejes principales de inercia del sólido rígido y que I1 = I2 = I3.
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El dodecaedro: disponible en próximas ediciones.

El icosaedro: disponible en próximas ediciones.

Q.E.D.

Proposición 23. Sea un sólido rígido macizo de espesor despreciable. Si tomamos el eje ê3 paralelo a la
dirección de su espesor, se da:

I1 + I2 = I3

siendo I1, I2, I3 los momentos principales de inercia del sólido rígido.

Demostración. Para simplificarnos la notación vamos a tomar x̂ = ê1, ŷ = ê2 y ẑ = ê3. Por la proposición 17
en la página 71, tenemos:

Ixx =

∫∫∫
V
ρ
(
y2 + z2

)
dV =

∫∫∫
V
ρy2dV +

∫∫∫
V
ρz2dV

Como el espesor de nuestro sólido rígido es despreciable, podemos considerar que la coordenada z de todos
los puntos de nuestro sólido rígido no varía z = z0. Descomponiendo dV = dzdS, obtenemos:

Ixx =

∫∫∫
V
ρy2dV +

∫∫
S

(∫ z0

z0

ρz2dz

)
︸ ︷︷ ︸

=0

dS =

∫∫∫
V
ρy2dV

Análogamente:

Iyy =

∫∫∫
V
ρx2dV

Por otra parte:

Izz =

∫∫∫
V
ρ
(
x2 + y2

)
dV =

∫∫∫
V
ρx2dV +

∫∫∫
V
ρy2dV = Iyy + Ixx

Q.E.D.

Proposición 24. Sea S un sólido rígido susceptible de descomponerse en dos sólidos rígidos S1 y S2 con
matrices coordenadas del tensor de inercia ~I1 y ~I2, respectivamente. El momento de inercia de S viene dado
por la suma de los momentos de inercia de S1 y S2:

~I =~I1 +~I2

Demostración. El resultado se sigue fácilmente del hecho de que las expresiones dadas en la proposición 17
en la página 71 son lineales respecto al número de partículas.

Supongamos que el sólido rígido S1 tiene N1 partículas y que el sólido rígido S2 tiene N2 partículas; de
forma que N = N1 +N2 es el número de partículas de S. Por la proposición 17 en la página 71, tenemos:

I1,ij =

N1∑
k=1

mk

(
δijr

2
k − rk,irk,j

)
∀i, j = x, y, z

I2,ij =

N2∑
l=1

mk

(
δijr

2
l − rl,irl,j

)
∀i, j = x, y, z

Tomando una variable n tal que l = n−N1, podemos expresar el sumatorio anterior como:

I2,ij =

N1+N2∑
n=N1+1

mk

(
δijr

2
n − rn,irn,j

)
∀i, j = x, y, z
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Por otra parte:

Iij =

N∑
n=1

mk

(
δijr

2
n − rn,irn,j

)
=

N1∑
n=1

mk

(
δijr

2
n − rn,irn,j

)
︸ ︷︷ ︸

=I1,ij

+

N∑
n=N1+1

mk

(
δijr

2
n − rn,irn,j

)
︸ ︷︷ ︸

=I2,ij

=

= I1,ij + I2,ij ∀i, j = x, y, z

Q.E.D.

2.4.6. Teorema de Steiner

Teorema 6 (Teorema de Steiner). Sea un sólido rígido de N partículas (con N ∈ R∪ {∞}) y masa M y sea
~I∗ la matriz coordenada del tensor de inercia respecto a su centro de masas para una base B. Tomemos nuestro
origen de coordenadas en un punto P . Desde dicho punto P , la posición del centro de masas se expresa con
coordenadas (X,Y, Z). Ahora, sea ~I la matriz coordenada del tensor de inercia respecto respecto al punto P
para la misma base B. Ambas matrices están relacionadas por la expresión:

~I = M

Y 2 + Z2 −XY −XZ
−XY X2 + Z2 −Y Z
−XZ −Y Z X2 + Y 2

+~I∗

Es decir, se cumple que el momento de inercia de un sólido rígido en torno a un punto P es la suma del
momento de inercia del sólido respecto a su centro de masas y el momento de inercia que tendría una partícula
puntual de masa M situada en el centro de masas.

Demostración. Recordemos que según la proposición 17 en la página 71 es:

Iij =
N∑
k=1

mk

(
δijr

2
k − rk,irk,j

)
∀i, j = x, y, z (2.4.5)

Ahora, notemos que podemos expresar un punto genérico ~rk como:

~rk = ~R+ ~r ∗k

donde ~R = (X,Y, Z); es decir, ~R es el vector que une el punto P con el centro de masas del sólido rígido.
Expresando lo anterior en coordenadas, obtenemos:

rk,i = Ri + r∗k,i ∀i = x, y, z

Sustituyendo en la ecuación 2.4.5, llegamos a:

Iij =

N∑
k=1

mk

(
δij

3∑
i=1

(
Ri + r∗k,i

)2 − (Ri + r∗k,i
) (
Rj + r∗k,j

))
=

=

N∑
k=1

mk

(
δij

3∑
i=1

[
R2
i + r∗ 2

k,i + 2Rir
∗
k,i

]
−RiRj −Rir∗k,j −Rjr∗k,i − r∗k,ir∗k,j

)
=

=
N∑
k=1

mk

(
δij

3∑
i=1

R2
i −RiRj

)
+

N∑
k=1

mk

(
δij

3∑
i=1

r∗ 2
k,i − r∗k,ir∗k,j

)
︸ ︷︷ ︸

=I∗ij

+δij

N∑
k=1

mk2Rir
∗
k,i+
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−
N∑
k=1

mkRir
∗
k,j −

N∑
k=1

mkRjr
∗
k,i =

=

(
δij

3∑
i=1

R2
i −RiRj

)
N∑
k=1

mk︸ ︷︷ ︸
=M

+I∗ij + δij2Ri

N∑
k=1

mkr
∗
k,i︸ ︷︷ ︸

=0

−Ri
N∑
k=1

mkr
∗
k,j︸ ︷︷ ︸

=0

−Rj
N∑
k=1

mkr
∗
k,i︸ ︷︷ ︸

=0

=

= M

(
δij

3∑
i=1

R2
i −RiRj

)
+ I∗ij (2.4.6)

donde los términos marcados se anulan como consecuencia de la definición de centro de masas (ver definición 1
en la página 16):

~0 = ~R∗ =
1

M

N∑
k=1

mk~r
∗
k ⇔

N∑
k=1

mk~r
∗
k = M ~R∗ = ~0⇔

N∑
k=1

mkr
∗
k,i = 0 ∀i = x, y, z

ya que es trivialmente ~R∗ = ~0.
Desarrollando la ecuación 2.4.6, se llega al enunciado. Q.E.D.

Observación 21. A la hora de resolver problemas, si el sólido rígido tiene un punto fijo lo usaremos como
origen. Si no tiene un punto fijo, usaremos el centro de masas como origen.

Ejemplo 12. Calcular el momento de inercia ~I de un cubo de lado l y densidad constante ρ en torno a uno
de sus vértices.

Z

X

Y
l

Por la proposición 17 en la página 71, tenemos:

Izz =

∫∫∫
V
ρ
(
x2 + y2

)
dV =

∫ l

x=0

∫ l

y=0

∫ l

z=0
ρ
(
x2 + y2

)
dxdydz =

∫ l

x=0

∫ l

y=0
ρl
(
x2 + y2

)
dxdy =

= ρl

∫ l

x=0

(
x2 [y]l0 +

[
y3

3

]l
0

)
dx = ρl

∫ l

x=0

(
lx2 +

l3

3

)
dx =

= ρl

(
l3

3
[x]l0 + l

[
x3

3

]l
0

)
= ρl

(
l4

3
+
l4

3

)
=

2ρ

3
l5 =

2ρ

3
l2 l3︸︷︷︸

=V

=
2

3
l2 ρV︸︷︷︸

=M

=
2

3
Ml2
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Por simetría, obtenemos:

Ixx = Iyy = Izz =
2

3
Ml2

Por otra parte, también por la proposición 17 en la página 71, es:

Ixy = −
∫∫∫

V
ρxydV = −

∫ l

x=0

∫ l

y=0

∫ l

z=0
ρxydxdydz = −ρl

∫ l

x=0
x

[
y2

2

]l
0

dx = −ρl l
2

2

∫ l

x=0
xdx =

= −ρl
3

2

[
x2

2

]l
0

= −ρl
5

4
= −ρl

2

4
l3︸︷︷︸

=V

= − l
2

4
ρV︸︷︷︸
=M

= −1

4
Ml2

Por simetría es:
Ixy = Iyx = Ixz = Izx = Iyz = Izy = −1

4
Ml2

Por ende:

~I =

 2M
3 l2 −M

4 l
2 −M

4 l
2

−M
4 l

2 2M
3 l2 −M

4 l
2

−M
4 l

2 −M
4 l

2 2M
3 l2

 =
1

12
Ml2

 8 −3 −3
−3 8 −3
−3 −3 8


Q.E.F.

Ejemplo 13. Calcular los elementos de la matriz de inercia para ejes que pasan por el centro de masas de
un cubo de densidad ρ y lado l.

Por la proposición 22 en la página 84, sabemos que la matriz de inercia del cubo es escalar para unos ejes
apropiados. En el caso del cubo, escogemos los ejes perpendiculares a cada una de las caras y que atraviesen
su punto medio. Calculamos un único momento de inercia, por ejemplo el Ixx:

Ixx =

∫∫∫
V
ρ
(
y2 + z2

)
dV =

∫ l
2

x=− l
2

∫ l
2

y=− l
2

∫ l
2

z=− l
2

ρ
(
y2 + z2

)
dxdydz =

= ρ [x]
l
2

− l
2

∫ l
2

x=− l
2

∫ l
2

y=− l
2

(
y2 + z2

)
dydz = ρl

∫ l
2

x=− l
2

(
y2 [z]

l
2

− l
2

+

[
z3

3

] l
2

− l
2

)
dy =

= ρl

∫ l
2

x=− l
2

(
y2l +

1

3

(
l3

8
+
l3

8

))
dx = ρl2

∫ l
2

x=− l
2

(
y2 +

1

12
l2
)

dy =

= ρl2

([
y3

3

] l
2

− l
2

+
1

12
l2 [y]

l
2

− l
2

)
= ρl2

(
1

3

(
l3

3
+
l3

3

)
+

1

12
l3
)

=

= ρl5
(

1

12
+

1

12

)
=

1

6
ρl5 =

1

6
l2ρ l3︸︷︷︸

=V

=
1

6
l2 ρV︸︷︷︸

=M

=
1

6
Ml2

Por la mención hecha a la proposición 22 en la página 84, es:

~I =

1
6Ml2 0 0

0 1
6Ml2 0

0 0 1
6Ml2

 =
1

6
Ml2

1 0 0
0 1 0
0 0 1


Q.E.F.
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2.5. Movimiento de un punto fijo

Proposición 25. Sea un sólido rígido con un punto fijo O y sean ê1, ê2, ê3 sus ejes principales de inercia
y I1, I2, I3 sus momentos principales de inercia. Supongamos que el sólido rígido tiene una rotación inicial
en torno al eje ê3 con velocidad angular ω3 6= 0. Si aplicamos una fuerza ~F sobre el sólido rígido tal que∣∣∣~r × ~F

∣∣∣� I3ω3 y tal que ê3, ~r y ~F estén en el mismo plano, siendo ~r el vector posición del punto de aplicación
de la fuerza con respecto al punto fijo O; entonces el sólido rígido girará en torno al eje ê3 con velocidad
angular ω3 (igual que la inicial) y el eje ê3 describirá un cono en torno a la dirección de aplicación de la
fuerza con velocidad angular:

~Ω = − R

I3ω3

~F

siendo R = |~r| la distancia del punto punto fijo O al punto de aplicación de la fuerza.

Demostración. Inicialmente, nuestro sólido rígido está rotando en torno al eje ê3 con velocidad angular ω3.

X

Y

Z

ê3~F

ω3

~r × ~F

O

~r

Por la proposición 20 en la página 79, inicialmente tenemos:

~J0 = I3ω3ê3

Aplicando el toerema de Taylor-Young a primer orden, obtenemos que:

~J (t) = ~J0 +
d ~J

dt
t cuando t→ 0 (2.5.1)

Por otra parte, por la proposición 12 en la página 51:

d ~J

dt
= ~Next = ~r × ~F (2.5.2)

Así, sustituyendo en la ecuación 2.5.1, obtenemos:

~J (t) = I3ω3ê3 + ~r × ~Ft
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En consecuencia, como por hipótesis es ~r × ~F � I3ω3, podemos aproximar:

~J (t) ≈ I3ω3ê3 = ~J0

Así, será:
d ~J

dt
≈ d ~J0

dt
= I3

dω3

dt
ê3 + I3ω3

dê3

dt
(2.5.3)

pues I3 es constante en el tiempo. Nótese que debe ser ~r× ~F ⊥ ~r y ~r× ~F ⊥ ~F . Así, como ê3 está en el mismo
plano que ~r y ~F , necesariamente será ~r× ~F ⊥ ê3, luego es ~J ⊥ d ~J

dt por la ecuación 2.5.2 en la página anterior.

~ω

~̇ω

En consecuencia, necesariamente, el primer sumando de la ecuación 2.5.3 debe ser nulo, lo que implica:

dω3

dt
= 0⇔ ω3 = cte

Así:
I3ω3

dê3

dt
= ~r × ~F ⇔ dê3

dt
=

1

I3ω3
~r × ~F = − 1

I3ω3

~F × ~r =

= − |~r|
I3ω3

~F × ~r

|~r| = − |~r|
I3ω3

~F × r̂ = − R

I3ω3

~F × r̂

ya que por hipótesis era R = |~r|. Por la proposición 13 en la página 57, como es R = |~r| = cte, pues el sólido
rígido está anclado en el punto O, el extremo del vector ê3 describe una trayectoria circular en torno a:

~Ω := − R

I3ω3

~F

con velocidad angular
∣∣∣~Ω∣∣∣. En consecuencia, el vector ê3 describe un cono en torno a ~Ω. Q.E.D.

Observación 22. Al efecto descrito por la proposición 25 en la página anterior se lo conoce como efecto
giroscópico. Veamos que es un giróscopo.
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Se trata de un volante de inercia que puede rotar libremente. Esto se usaba en barcos y aviones para que
el piloto tuviera una dirección de referencia. El funcionamiento era el siguiente: previamente al despegue del
avión a al zarpado del barco se ponía a girar el giroscopio y, de esta manera, cuando los pilotos hacían sus
maniobras, aunque la dirección del barco o del avión variaran, la dirección del eje principal de inercia ê3 del
giróscopo, apenas lo hacía. Así, podían tener una dirección de referencia.

La idea es que la dirección de un objeto es tanto más estable cuanto más rápido gira en torno al eje que
marca dicha dirección (pues más pequeña es la velocidad angular ~Ω que aparece en la proposición 25 en la
página 89). Cuando se lanza un satélite al espacio, en la fase final, tiene que soltarse el satélite del resto del
cohete. Esto tiene que hacerse de forma que el satélite salga en una dirección determinada. Para que esto sea
más sencillo, normalmente se pone a girar el satélite antes de desengancharlo del resto del cohete de forma
que cualquier posible variación en el desenganche altere lo menos posible la dirección del satélite.

El efecto giroscópico también se hace patente en los movimientos de la Tierra. Sabemos que la Tierra rota
sobre sí misma y que además rota en torno al Sol. Pero, además, el eje de rotación de la Tierra no coincide
con el plano de la eclíptica.

~Fsol

~Fsol

~ω3

ê3

Como sabemos, la Tierra no es perfectamente esférica. En consecuencia, el campo gravitatorio generado
por el Sol no es uniforme a lo largo de la superficie de la Tierra. Esto hace que el Sol genere un momento de
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fuerzas sobre la Tierra que hace que su eje de giro preceda en torno a la perpendicular al plano de la eclíptica.
El periodo de dicha precesión es de 25771 años.

Sin embargo, el efecto giroscópico no es el que proporciona la estabilidad en una bicicleta o en una moto,
pues no es la rotación de las ruedas la que otorga la estabilidad a una bicicleta. La mecánica de una bicicleta
depende fuertemente del hecho de que la rueda delantera puede girar. La idea es que la rueda delantera tiende
a sobrevirar y eso hace que el centro de masas tienda a estar sobre la normal.

Ejemplo 14 (Precesión de un disco). Vamos a suponer que tenemos un disco tumbado girando con una
velocidad muy elevada.

M~g

~ω

~̇ω

~R

~R×M~g

Este disco, inicialmente, está girando como está descrito en el dibujo. Tenemos una fuerza que actúa sobre
el cuerpo, el peso. Nótese que ~R×−Mgk̂ va «hacia dentro» del papel.

M~g

~ω

~̇ω

Por la proposición 25 en la página 89, sabemos que el vector ê3 ‖ ~ω describirá un cono en torno a:

~Ω = −(−MgR) k̂

I3ω3
=
MgR

I3ω3
k̂

Esto puede verse en el siguiente vídeo 2.
2https://www.youtube.com/watch?v=DOU13fHjhMI
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Ejemplo 15 (Precesión de una peonza). En algunos libros «la peonza» recibe el nombre de «trompo simé-
trico». Podemos suponer, sin pérdida de generalidad que nuestra peonza es un disco.

X

Y

Z

ê3

ω3

O

~R
~Ω

El eje de simetría de la peonza sigue siendo ê3 y llamamos O al punto de pivotaje. Inicialmente tenemos
el disco rotando en torno a ê3. El disco se ve sometido a una fuerza, el peso:

~F = −Mgk̂

Si ~F es pequeña o, alternativamente MgR � I3ω3 (esta condición se da con fuerzas pequeñas, cuando I3 es
muy grande o cuando ω3 es muy grande), podemos aplicar la proposición 25 en la página 89, obteniendo que
el vector ê3 está describiendo un cono en torno a k̂, el centro de masas estará describiendo una trayectoria
circular en torno a k̂.

Esto puede verse en el siguiente vídeo3.

2.6. Velocidad angular instantánea

Proposición 26. Sea un sólido rígido de N partículas en rotación arbitraria. Existe una función ~ω (t) : R −→
R3 tal que:

~̇rk (t) = ~ω (t)× ~rk (t) ∀k = 1, . . . , N ;∀t ∈ R

tomando como origen del sistema de referencia un punto cualquiera del sólido rígido.

Demostración. Escogemos como origen para nuestro sistema de referencia un punto cualquiera del sólido
rígido. La posición de la partícula k-ésima que forma nuestro sólido rígido puede escribirse usando la base de
ejes principales de inercia como sigue:

~rk (t) = rk1ê1 (t) + rk2ê2 (t) + rk3ê3 (t) ∀k = 1, . . . , N (2.6.1)
3https://youtu.be/J6HDx4pNHqM
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donde rk1, rk2, rk3 serán constantes en el tiempo; pues el sistema de referencia utilizado rota con el cuerpo
y, por definición de sólido rígido (ver definición 13 en la página 50), las distancias entre las partículas que
forman el sólido deben permanecer constantes. Derivando, obtenemos:

~̇rk (t) = rk1
˙̂e1 (t) + rk2

˙̂e2 (t) + rk3
˙̂e3 (t) ∀k = 1, . . . , N (2.6.2)

donde recordamos que rk1, rk2, rk3 son constantes.
Bien, ahora definimos la función matricial A (t) = (aij) (t):

aij (t) := êi (t) · ˙̂ej (t) ∀i, j = 1, 2, 3 (2.6.3)

Veamos cuál es el valor de cada uno de los elementos de esta matriz A. Como nuestra base de ejes principales
de inercia es ortogonal, tenemos que:

ê2
i (t) = êi (t) · êi (t) = 1 ∀i = 1, 2, 3;∀t ∈ R

Derivando con respecto al tiempo, al aplicar la regla del producto, obtenemos:

d

dt

(
ê2
i

)
(t) = ˙̂ei (t) · êi (t) + êi (t) · ˙̂ei (t) ∀i = 1, 2, 3;∀t ∈ R

Como el producto escalar es conmutativo, obtenemos:

d

dt

(
ê2
i

)
(t) = 2êi (t) · ˙̂ei (t) = 2aii (t) = 0 ∀i = 1, 2, 3;∀t ∈ R⇔

⇔ êi (t) · ˙̂ei (t) = aii (t) = 0 ∀i = 1, 2, 3;∀t ∈ R (2.6.4)

donde hemos aplicado la definición de aij dada en la ecuación 2.6.3. Por la ecuación 2.6.4, debe ser, además,
˙̂ei (t) ⊥ êi (t) ∀i = 1, 2, 3,∀t ∈ R. De esta forma, ˙̂e1 estará contenido en el plano formado por ê2 y ê3, ˙̂e2 estará
contenido en el plano formado por ê1 y ê3 y ˙̂e3 estará contenido en el plano formado por ê1 y ê2.

ê1

ê2

ê3

˙̂e1

Teniendo en cuenta lo anterior, como nuestra base de ejes principales de inercia es ortonormal, podemos
descomponer el vector ˙̂e1 como:

˙̂e1 (t) =
(

˙̂e1 (t) · ê2 (t)
)
ê2 (t) +

(
˙̂e1 (t) · ê3 (t)

)
ê3 (t) = a21 (t) ê2 (t) + a31 (t) ê3 (t) (2.6.5)

donde hemos usado la ecuación 2.6.3. Análogamente, podemos hallar las ecuaciones:

˙̂e2 (t) = a12 (t) ê1 (t) + a32 (t) ê3 (t) (2.6.6)
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˙̂e3 (t) = a13 (t) ê1 (t) + a23 (t) ê2 (t) (2.6.7)

Por otra parte, como {ê1, ê2, ê3} forman una base ortonormal, es:

êi (t) · êj (t) = 0 ∀i 6= j;∀t ∈ R

Derivando, obtenemos:

d

dt
(êi · êj) (t) = 0⇔ ˙̂ei (t) · êj (t)+ êi (t) · ˙̂ej (t) = aji (t)+aij (t) = 0⇔ aji (t) = −aij (t) ∀i 6= j ∧ ∀t ∈ R

donde hemos usado la ecuación 2.6.3 en la página anterior. En consecuencia, la matriz A es antisimétrica,
pues su diagonal ya sabemos que son únicamente ceros. Así, los aij dan las componentes del cambio de los
vectores ê1, ê2, ê3.

A continuación, definimos:

~ω (t) := (ω1 (t) , ω2 (t) , ω3 (t)) := (a32 (t) , a13 (t) , a21 (t)) = − (a23 (t) , a31 (t) , a12 (t)) ∀t ∈ R

De esta forma, podemos reescribir las ecuaciones 2.6.5 en la página anterior, 2.6.6 en la página anterior y 2.6.7
en función de omega como:

˙̂e1 (t) = ω3 (t) ê2 (t)− ω2 (t) ê3 (t) =

∣∣∣∣∣∣
ê1 (t) ê2 (t) ê3 (t)
ω1 (t) ω2 (t) ω3 (t)

1 0 0

∣∣∣∣∣∣ = ~ω (t)× ê1 (t)

˙̂e2 (t) = −ω3 (t) ê1 (t) + ω1 (t) ê3 (t) =

∣∣∣∣∣∣
ê1 (t) ê2 (t) ê3 (t)
ω1 (t) ω2 (t) ω3 (t)

0 1 0

∣∣∣∣∣∣ = ~ω (t)× ê2 (t)

˙̂e3 (t) = ω2 (t) ê1 (t)− ω1 (t) ê2 (t) =

∣∣∣∣∣∣
ê1 (t) ê2 (t) ê3 (t)
ω1 (t) ω2 (t) ω3 (t)

0 0 1

∣∣∣∣∣∣ = ~ω (t)× ê3 (t)

Las ecuaciones anteriores nos permiten expresar la ecuación 2.6.2 en la página anterior como:

~̇rk (t) = rk1~ω (t)× ê1 (t) + rk2~ω (t)× ê2 (t) + rk3~ω (t)× ê3 (t) ∀k = 1, . . . , N

Como el producto vectorial es distributivo respecto a la suma, obtenemos:

~̇rk (t) = ~ω (t)× [rk1ê1 (t) + rk2ê2 (t) + rk3ê3 (t)]︸ ︷︷ ︸
=~rk(t)

∀k = 1, . . . , N

y, por la ecuación 2.6.1 en la página 93, el término marcado es justo la posición de la partícula k-ésima. Por
ende:

~̇rk (t) = ~ω (t)× ~rk (t) ∀k = 1, . . . , N

Q.E.D.

Definición 20. A la función ~ω (t) cuya existencia viene dada en la proposición 26 en la página 93 la llamaremos
velocidad angular instantánea.

~ω = ω1ê1 + ω2ê2 + ω3ê3

Licencia: Creative Commons 95

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.7. ECUACIONES DE EULER

Observación 23. La proposición 26 en la página 93 nos dice que siempre existe un un eje de giro que estará
fijo en un cierto instante de tiempo (un eje de giro instantáneo). Es decir, si yo miro el sólido rígido en un
determinado instante τ , puedo considerar que el sólido rígido está girando en torno al vector ~ω (τ) en dicho
instante de tiempo τ .

Además, la proposición 26 en la página 93 nos asegura que todo el desarrollo realizado en la sección 2.4
en la página 71 es válido para cualquier tipo de giro.

Observación 24. En la práctica, si no hay punto fijo en el sólido rígido, usaremos coordenadas con respecto
al centro de masas. Es decir, siempre podemos encontrar ~ω respecto al centro de masas.

Haremos uso de las siguientes ecuaciones del movimiento:

Si hay pivote, tenemos:

~̇J =
N∑
i=1

~ri × ~Fi

con ~J = I1ω1ê1 + I2ω2ê2 + I3ω3ê3, donde tanto {ωi}3i=1 como {êi}3i=1 cambian en el tiempo.

Si no hay puntos fijos, trabajamos desde el sistema de referencia centro de masas:

~̇J ∗ =

N∑
i=1

~r ∗i × ~Fi

con ~J∗ = I∗1ω1ê
∗
1 + I∗2ω2ê

∗
2 + I∗3ω3ê

∗
3, donde {ê∗1, ê∗2, ê∗3} nos dan las direcciones de los ejes principales de

inercia, pero anclados en el centro de masas.

2.7. Ecuaciones de Euler

Los ejes (ê1, ê2, ê3) forman un sistema de referencia en rotación con respecto a un observador externo
inercial. En otras palabras, se trata de un sistema de referencia no inercial. En consecuencia, podemos aplicar
todo lo que conocemos de sistemas de referencia no inerciales en rotación.

Notación 4. En particular vamos a distinguir:

d ~J

dt
6= ~̇J

donde usaremos la notación de Leibniz para el sistema de referencia inercial (el externo) y notación de Newton
para el sistema de referencia no inercial {ê1, ê2, ê3}. Al término con la notación de Leibniz lo llamaremos ritmo
de cambio absoluto, mientras que al término con la notación de Newton lo denominaremos ritmo de cambio
relativo.

Teorema 7 (Ecuaciones de Euler). Sea un sólido rígido con N partículas y sean I1, I2, I3 sus momentos
principales de inercia y ê1, ê2, ê3 las respectivas direcciones de sus ejes principales de inercia. La velocidad
angular instantánea ~ω (t) = (ω1 (t) , ω2 (t) , ω3 (t)) expresada en la base de vectores propios del tensor de inercia
del sólido rígido, satisface las ecuaciones diferenciales:

I1ω̇1 + (I3 − I2)ω2ω3 = N1

I2ω̇2 + (I1 − I3)ω1ω3 = N2

I3ω̇3 + (I2 − I1)ω1ω2 = N3

donde N1, N2, N3 son las componentes del momento de fuerzas externo en la base {ê1, ê2, ê3}.
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Demostración. Vamos a trabajar con dos sistemas de referencia distintos, pero con origen común. El sistema
del espacio será el sistema de referencia inercial, mientras que el sistema del cuerpo es un sistema de referencia
no inercial en rotación con respecto al inercial. Además, sabemos que dicha rotación se produce en torno a la
velocidad angular instantánea ~ω (t). En consecuencia, será:

d ~J

dt
= ~̇J + ~ω × ~J (2.7.1)

por nuestros conocimientos de sistemas de referencia no inerciales.
Por otra parte, por la proposición 20 en la página 79 es:

~J = I1ω1ê1 + I2ω2ê2 + I3ω3ê3 (2.7.2)

Y derivando con respecto al sistema de referencia no inercial (para él los ejes ê1, ê2, ê3 no cambian en el
tiempo), obtenemos:

~̇J = I1ω̇1ê1 + I2ω̇2ê2 + I3ω̇3ê3 (2.7.3)

pues los momentos principales de inercia no cambian en el tiempo.
Además, por el teorema de conservación del momento angular (ver teorema 3 en la página 26), tenemos:

d ~J

dt
=

N∑
i=1

~ri × ~Fi = ~N (2.7.4)

Juntando las ecuaciones 2.7.1, 2.7.3 y 2.7.4, obtenemos:

~N = I1ω̇1ê1 + I2ω̇2ê2 + I3ω̇3ê3 + ~ω × ~J =

= I1ω̇1ê1 + I2ω̇2ê2 + I3ω̇3ê3 +

∣∣∣∣∣∣
ê1 ê2 ê3

ω1 ω2 ω3

J1 J2 J3

∣∣∣∣∣∣
Haciendo uso de la ecuación 2.7.2, llegamos a:

~N = I1ω̇1ê1 + I2ω̇2ê2 + I3ω̇3ê3 +

∣∣∣∣∣∣
ê1 ê2 ê3

ω1 ω2 ω3

I1ω1 I2ω2 I3ω3

∣∣∣∣∣∣ =

= I1ω̇1ê1 + I2ω̇2ê2 + I3ω̇3ê3 + (I3ω2ω3 − I2ω2ω3) ê1+

+ (I1ω1ω3 − I3ω1ω3) ê2 + (I2ω1ω2 − I1ω1ω2) ê3 =

= [I1ω̇1 + (I3 − I2)ω2ω3] ê1 + [I2ω̇2 + (I1 − I3)ω1ω3] ê2 + [I3ω̇3 + (I2 − I1)ω1ω2] ê3

Expresando la ecuación anterior por componentes, llegamos al enunciado:
I1ω̇1 + (I3 − I2)ω2ω3 = N1

I2ω̇2 + (I1 − I3)ω1ω3 = N2

I3ω̇3 + (I2 − I1)ω1ω2 = N3

Q.E.D.

Observación 25. La solución de las ecuaciones diferenciales dadas en el teorema 7 en la página anterior es ~ω (t).
Es decir, solucionándolas obtenemos el movimiento de rotación del sólido rígido en el tiempo. En general, son
unas ecuaciones difíciles de resolver analíticamente. Además, N1, N2, N3 son las componentes de ~Next en la
base {ê1, ê2, ê3}, no en la base del espacio y, en general, la fuerza externa aplicada suele estar fija en el espacio.
Como ê1, ê2, ê3 varían, las componentes de ~Next en la mencionada base también cambian en el tiempo, aun
cuando sea ~Next =

−→
cte. No obstante, las ecuaciones anteriores todavía resultan útiles si ~Next = ~0.

Licencia: Creative Commons 97

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.7. ECUACIONES DE EULER

Definición 21. Diremos que un sólido rígido es libre cuando sobre él no actúe ninguna fuerza externa.

Corolario 16 (Sólido rígido libre). Sea un sólido rígido libre con N partículas y sean I1, I2, I3 sus momentos
principales de inercia y ê1, ê2, ê3 las respectivas direcciones de sus ejes principales de inercia. Si el sólido rígido
está rotando inicialmente únicamente en torno al eje ê3 con velocidad angular ω3, este movimiento de rotación
permanece constante en el tiempo.

Demostración. Como el sólido rígido es libre, por la definición 21, no hay fuerzas externas y, en consecuencia
es ~N = ~0⇒ N1, N2, N3 = 0. Aplicando las ecuaciones de Euler (ver teorema 7 en la página 96), obtenemos:

I1ω̇1 + (I3 − I2)ω2ω3 = 0
I2ω̇2 + (I1 − I3)ω1ω3 = 0
I3ω̇3 + (I2 − I1)ω1ω2 = 0

Además, en el instante t = 0 son ω1, ω2 = 0, por hipótesis, luego, obtenemos:
I1ω̇1 (0) = 0
I2ω̇2 (0) = 0
I3ω̇3 (0) = 0

En consecuencia, ω1, ω2, ω3 permanecerán constantes en un intervalo de tiempo (0,dt). Es decir, será ω1 (dt) =
0, ω2 (dt) = 0, ω3 (dt) = ω3 (0) = ω3 y, llegaríamos de nuevo a las mismas ecuaciones. Por tanto, debe ser
ω̇1 (t) , ω̇2 (t) , ω̇3 (t) = 0 ∀t ∈ (0,∞). Así, es ω1 (t) = 0, ω2 (t) = 0, ω3 (t) = ω3 ∀t ∈ (0,∞). Q.E.D.

Corolario 17 (Estabilidad de la rotación en torno a un eje principal de inercia). Sea un sólido rígido libre
con N partículas y sean I1, I2, I3 sus momentos principales de inercia y ê1, ê2, ê3 las respectivas direcciones
de sus ejes principales de inercia. Supongamos que el sólido rígido está rotando inicialmente únicamente en
torno al eje ê3 con velocidad angular ω3. En un momento dado, se le comunica una pequeña perturbación de
forma que aparecen unas componentes ω1, ω2 6= 0 tales que |ω1| , |ω2| � |ω3| y ω1ω2 ≈ 0. La rotación en torno
al eje ê3 será estable si y sólo si I3 < I1, I2 ∨ I3 > I1, I2.

Demostración. Como el sólido rígido es libre, por la definición 21, sabemos que no actúan fuerzas externas;
por consiguiente, es N1 = N2 = N3 = 0. Aplicando las ecuaciones de Euler (ver teorema 7 en la página 96),
llegamos a: 

I1ω̇1 + (I3 − I2)ω2ω3 = 0
I2ω̇2 + (I1 − I3)ω1ω3 = 0
I3ω̇3 + (I2 − I1)ω1ω2︸ ︷︷ ︸

≈0

= 0

De la última ecuación, obtenemos:

I3ω̇3 ≈ 0⇔ ω̇3 ≈ 0⇔ ω3 ≈ cte

Con esto, las restantes dos ecuaciones se han convertido en un sistema de ecuaciones lineales:

{
I1ω̇1 + (I3 − I2)ω2ω3 = 0
I2ω̇2 + (I1 − I3)ω1ω3 = 0

⇔



ω̇1 =

=:α2︷ ︸︸ ︷
(I2 − I3)ω3

I1
ω2

ω̇2 =
(I3 − I1)ω3

I2︸ ︷︷ ︸
=:β2

ω1
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Definiendo α y β como hemos definido antes, podemos expresar el sistema en forma matricial como sigue:(
ω̇1

ω̇2

)
=

(
0 α2

β2 0

)(
ω1

ω2

)
Para resolver el sistema anterior, tenemos que hallar los vectores propios generalizados de la matriz anterior.
Para ello, hallemos primero los autovalores:∣∣∣∣−λ α2

β2 −λ

∣∣∣∣ = 0⇔ λ2 − α2β2 = 0⇔ λ2 = α2β2 ⇔ λ = ±αβ

Como obtenemos dos autovalores diferentes con multiplicidad uno en el polinomio característico, la matriz es
diagonalizable. Así, la solución general de nuestro sistema será de la forma:(

ω1 (t)
ω2 (t)

)
= Aeαβt +Be−αβt

con A,B ∈ C2. Para estudiar la estabilidad de la solución, únicamente tenemos que ver si el producto αβ
tiene parte real o no. Si tiene parte real, entonces la solución tendrá un término exponencial creciente que
hará que ω1 y ω2 crezcan hasta que la hipótesis |ω1| , |ω2| � |ω3| ya no sea cierta y la solución no será estable.
En cambio, si αβ es un número imaginario puro, únicamente habrá términos oscilantes que siempre están
acotados en módulo y la solución será estable. Para ello, estudiemos:

α2β2 =
(I2 − I3)ω3

I1

(I3 − I1)ω3

I2
=

(I2 − I3) (I3 − I1)

I1I2
ω2

3

Si α2β2 < 0, entonces αβ será un número imaginario puro y, en caso contrario, si α2β2 > 0, entonces αβ ∈ R.
En función de la relación entre I1, I2 e I3 llegamos a las siguientes conclusiones:

Si I3 < I1, I2∨ (I3 > I1, I2), entonces α2β2 < 0 y, por consiguiente, αβ es imaginario puro. En este caso,
ω1 (t) , ω2 (t) son oscilantes y la rotación se mantiene estable.

Si (I1 < I3 < I2) ∨ (I1 > I3 > I2), en ese caso α2β2 > 0 y αβ ∈ R. Por lo comentado antes, la rotación
no será estable.

Q.E.D.

Ejemplo 16 (Estabilidad de la rotación). Mediante una simulación numérica, vamos a tratar de comprobar
lo expuesto en el corolario 17 en la página anterior. Para ello, partiremos de un sólido rígido de forma de
paralelepípedo con momentos principales de inercia I1 = 2, I2 = 4, I3 = 8. Llevaremos a cabo tres simulaciones;
en cada una de ellas partiremos de una situación en la cual el sólido rígido está rotando en torno a uno de
sus ejes principales de inercia ê1, ê2 o ê3 con velocidad angular ω. Entonces, introduciremos una velocidad
inicial 0,05ω en los otros dos ejes, perturbando el sistema. Según el corolario 17 en la página anterior, cuando
sea el eje I1 o I3 el que rota inicialmente, la perturbación no debería afectar casi a la rotación y ésta debería
permanecer estable. Sin embargo, cuando el eje de rotación inicial sea I2, la perturbación debería desestabilizar
el sólido rígido.

Veamos el resultado de las mencionadas simulaciones:

Rotación inicial en torno a ê1:
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5.94

5.96

5.98

6.00

ω ω1(t)

0.00 2.50 5.00 7.50 10.0 12.5 15.0 17.5 20.0

t

−0.500

0.00

0.500

ω

ω2(t)

ω3(t)

El vídeo correspondiente puede verse aquí4. Como puede verse, la velocidad de giro ω1 en torno a ê1

apenas varía, mientras que las velocidades de giro ω2, ω3 en torno a ê2 y ê3 siguen soluciones armónicas
tal y como se ha demostrado en el corolario 17 en la página 98.

Rotación inicial en torno a ê2:
4https://www.youtube.com/watch?v=tKJt3ZCHWic
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0.00 2.50 5.00 7.50 10.0 12.5 15.0 17.5 20.0

t

−6.00

−4.00

−2.00

0.00

2.00

4.00

6.00

ω

ω2(t)

ω3(t)

ω1(t)

El vídeo correspondiente puede verse aquí5. Como puede verse sobre todo en el vídeo, la rotación es un
completo caos. Además, fijándonos en la gráfica, vemos que las soluciones de ω1, ω2, ω3 no son armónicas.

Rotación inicial en torno a ê3:
5https://www.youtube.com/watch?v=pL_LoUyznKs
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6.00

6.00

6.00

6.00

6.00

ω ω3(t)

0.00 2.50 5.00 7.50 10.0 12.5 15.0 17.5 20.0

t

−0.400

−0.200

0.00

0.200

0.400

ω

ω1(t)

ω2(t)

El vídeo correspondiente puede verse aquí6. Como puede verse en la escala vertical de la gráfica, la velo-
cidad ω3 no varía prácticamente nada, mientras que las velocidades ω1 y ω2 siguen soluciones armónicas.

2.8. Ángulos de Euler

2.8.1. Definición y explicación

Sea un sólido rígido de N partículas con N ∈ N ∨ N = ∞. Partimos de un sistema de referencia fijo{
î, ĵ, k̂

}
. Dicho sistema recibirá el nombre de sistema del espacio. Por otra parte, tendremos el sistema de

referencia no inercial {ê1, ê2, ê3}, que llamaremos sistema del cuerpo.
Si existe un punto fijo, tomaremos dicho punto como origen para ambos sistemas y si no existe punto fijo,

tomaremos el centro de masas como origen para ambos sistemas.
Los ángulos de Euler son tres coordenadas angulares (ϕ, θ, ψ) con las que se puede describir el estado

de rotación de un sólido rígido. Veamos cómo podemos llegar a la posición de los ejes principales de inercia
{ê1, ê2, ê3} a partir de los ángulos de Euler:

1. Partimos de los ejes î, ĵ, k̂:
6https://www.youtube.com/watch?v=d3WyXAvMZzE
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î ĵ

k̂

ê′′1

ê′′2

ê′′3

ϕ
ϕ

ê′1

ê′2

ê′3

θ

θ

ê1

ê2

ê3

ψ

ψ

î ĵ

k̂

2. Ahora, hacemos rotar los ejes î y ĵ alrededor del eje k̂ un ángulo ϕ. Llamaremos ê′′1, ê′′2, ê′′3 ≡ k̂ a estos
nuevos ejes:

î ĵ

k̂

ê′′1

ê′′2

ê′′3

ϕ
ϕ

ê′1

ê′2

ê′3

θ

θ

ê1

ê2

ê3

ψ

ψ

î ĵ

k̂

ê′′1

ê′′2

ê′′3

ϕ
ϕ

3. A continuación, rotamos los ejes ê′′1 y ê′′3 en torno a ê′′2 un ángulo θ, obteniendo unos nuevos ejes
ê′1, ê

′
2 ≡ ê′′2, ê′3.
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î ĵ

k̂

ê′′1

ê′′2

ê′′3

ϕ
ϕ

ê′1

ê′2

ê′3

θ

θ

ê1

ê2

ê3

ψ

ψ

î ĵ

k̂

ê′′1

ê′′2

ê′′3

ϕ
ϕ

ê′1

ê′2

ê′3

θ

θ

4. Por último, rotamos los ejes ê′1 y ê′2 en torno al eje ê′3, con lo que llegamos a los ejes ê1, ê2, ê3 ≡ ê′3, que
ya son los ejes principales de inercia de nuestro sólido rígido.

î ĵ

k̂

ê′′1

ê′′2

ê′′3

ϕ
ϕ

ê′1

ê′2

ê′3

θ

θ

ê1

ê2

ê3

ψ

ψ

î ĵ

k̂

ê′′1

ê′′2

ê′′3

ϕ
ϕ

ê′1

ê′2

ê′3

θ

θ

ê1

ê2

ê3

ψ

ψ

Lo anterior puede verse más detallado en el siguiente vídeo7 donde se ha tomado ϕ = −π
5 , θ = −π

5 , ψ = −π
6 .

7https://www.youtube.com/watch?v=x4SO85j-Jk8
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2.8.2. Propiedades derivadas

Proposición 27. Sea un sólido rígido de N partículas tal que I1 = I2. En función de las variaciones de sus
ángulos de Euler

(
ϕ̇, θ̇, ψ̇

)
y de la base de ejes principales de inercia, la velocidad angular instantánea del

sólido rígido queda:
~ω = −ϕ̇ sen θê1 + θ̇ê2 +

(
ϕ̇ cos θ + ψ̇

)
ê3

Además, la dirección k̂ dada en las ilustraciones de la subsección 2.8.1 en la página 102 es susceptible de
descomponerse como:

k̂ = − sen θê1 + cos θê3

Demostración. En el proceso explicado en la subsección 2.8.1 en la página 102, hemos rotado los ejes un
ángulo ϕ en torno a k̂, luego un ángulo θ en torno a ê′′2 y, por último, un ángulo ψ en torno a ê′3. Por tanto,
podemos descomponer la velocidad angular ~ω precisamente como:

~ω = ϕ̇k̂ + θ̇ê′′2 + ψ̇ê′3 = ϕ̇k̂ + θ̇ê′2 + ψ̇ê3 (2.8.1)

Como, por hipótesis, I1 = I2, cualquier par de ejes perpendiculares a ê3 que sean perpendiculares entre
sí, son ejes principales de inercia. Luego, en particular, podemos tomar la combinación de ejes {ê1, ê2, ê3} :=
{ê′1, ê′2, ê3}; de esta forma, únicamente falta descomponer la dirección k̂. Notemos que es k̂ ⊥ ê′2, como puede
verse en la subsección 2.8.1 en la página 102. Por consiguiente, fijándonos en el tercer gráfico disponible en la
subsección 2.8.1 en la página 102, sabiendo que el ángulo θ que aparece en el dibujo es negativo, obtenemos
que:

k̂ = sen |θ| ê1 + cos |θ| ê3

Como, θ es negativo, sen (−x) = − senx y cosx = cos (−x), obtenemos:

k̂ = − sen θê1 + cos θê3

Introduciendo el valor anterior de k̂ en la ecuación 2.8.1, obtenemos:

~ω = −ϕ̇ sen θê1 + θ̇ê2 +
(
ϕ̇ cos θ + ψ̇

)
ê3

Q.E.D.

Corolario 18. Sea un sólido rígido de N partículas tal que I1 = I2. En función de las variaciones de sus
ángulos de Euler

(
ϕ̇, θ̇, ψ̇

)
y de la base de ejes principales de inercia, podemos expresar su momento angular

y su energía cinética como:

~J = −I1ϕ̇ sen θê1 + I2θ̇ê2 + I3

(
ϕ̇ cos θ + ψ̇

)
ê3

T =
1

2
I1ϕ̇

2 sen2 θ +
1

2
I2θ̇

2 +
1

2
I3

(
ϕ̇ cos θ + ψ̇

)2

Demostración. El resultado se sigue trivialmente de las proposiciones 27 y 20 en la página 79. Q.E.D.

2.8.3. Movimiento libre de sólidos rígidos simétricos

Proposición 28. Sea un sólido rígido libre de N partículas tal que I1 = I2 y sean ϕ, θ, ψ sus ángulos de
Euler. Tomamos k̂ en la dirección del momento angular ~J en t = 0. Los ángulos de Euler satisfacen las
ecuaciones:

ϕ̇ = cte, θ = cte, ψ̇ = cte
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Además, la velocidad angular instantánea viene dada por:

~ω = −ϕ̇ sen θê1 +
(
ϕ̇ cos θ + ψ̇

)
ê3

y es constante en módulo. Es más, los vectores ~J (que es constante), ~ω y k̂ están siempre contenidos en el
plano generado por los vectores ê1 y ê3.

Por añadidura, tanto ~ω como ê3 preceden en torno a k̂ con ritmo ϕ̇ = cte y la velocidad angular ~ω precede
en torno a ê3 con ritmo ψ̇ = cte. Por último, θ = cte es el ángulo que forma el eje ê3 con la dirección del
momento angular ~J .

Por último, se cumple la relación:

ϕ̇ =
I3ω3

I1 cos θ

Demostración. Como el sólido rígido es libre, por la definición 21 en la página 98, no hay fuerzas externas.
En consecuencia, por el teorema 3 en la página 26, tenemos:

d ~J

dt
= ~0⇔ ~J =

−→
cte

Es decir, ~J apunta siempre en la misma dirección, que hemos llamado k̂. Entonces, por la proposición 27 en
la página anterior, obtenemos:

~J = Jk̂ = −J sen θê1 + J cos θê3 (2.8.2)

donde J = cte.
Pero, por otra parte, por el corolario 18 en la página anterior, sabemos que:

~J = −I1ϕ̇ sen θê1 + I2θ̇ê2 + I3

(
ϕ̇ cos θ + ψ̇

)
ê3 (2.8.3)

Igualando componente a componente las ecuaciones 2.8.2 y 2.8.3, llegamos a:

−I1ϕ̇ sen θ = −J sen θ ⇔ J = I1ϕ̇

I2θ̇ = 0⇔ θ̇ = 0⇔ θ = cte

I3

(
ϕ̇ cos θ + ψ̇

)
= J cos θ

Así, de la primera ecuación y tercera ecuación, como θ, J, I1, I2, I3 son constantes, obtenemos que, necesaria-
mente:

J = I1ϕ̇ = cte⇔ ϕ̇ = cte (2.8.4)

I3

(
ϕ̇ cos θ + ψ̇

)
= J cos θ = cte⇔ ψ̇ = cte (2.8.5)

Así, obtenemos las ecuaciones:
ϕ̇ = cte, θ = cte, ψ̇ = cte (2.8.6)

Por otra parte, usando las ecuaciones 2.8.4 y 2.8.5, obtenemos:

I3

(
ϕ̇ cos θ + ψ̇

)
︸ ︷︷ ︸

=ω3

= J cos θ = I1ϕ̇ cos θ

donde el término marcado es ω3 debido a la proposición 27 en la página anterior. Operando, concluimos:

ϕ̇ =
I3ω3

I1 cos θ
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Utilizando la proposición 27 en la página 105, teniendo en cuenta los resultados hallados en la ecuación 2.8.6
en la página anterior, llegamos a:

~ω = −ϕ̇ sen θê1 +
(
ϕ̇ cos θ + ψ̇

)
ê3

pues es θ̇ = 0, como hemos visto antes. Como vemos, ~ω está siempre contenida en el plano definido por ê1 y
ê3. A partir de la ecuación anterior y de la ecuación 2.8.2 en la página anterior, deducimos que tanto ~J como
~ω están siempre contenidos en el mismo plano: el definido por ê1 y ê3. En consecuencia, por definición de k̂,
k̂ también estará en dicho plano.

Veamos el módulo de la velocidad angular instantánea. Como {ê1, ê2, ê3} es una base ortonormal, tenemos:

|~ω| =
√
ϕ̇2 sen2 θ + ϕ̇2 cos2 θ + ψ̇2 + 2ϕ̇ψ̇ cos θ =

√
ϕ̇2 + ψ̇2 + 2ϕ̇ψ̇ cos θ = cte

pues θ, ϕ̇, ψ̇ son constantes.
Mirando el tercer dibujo de la subsección 2.8.1 en la página 102, podemos ver que el ángulo que forma

ê3 ≡ ê′3 con el vector k̂ es justo θ, que es constante. También mirando ese dibujo, podemos deducir que, como
ϕ es el ángulo de giro con respecto al eje k̂, ϕ̇ debe marcar la velocidad de rotación del sólido rígido en torno a
k̂. Como {ê1, ê2, ê3} giran con el cuerpo, ϕ̇ debe ser la velocidad con la que los ejes ê1 y ê3 preceden en torno
a k̂. Como ~ω es combinación lineal de ê1 y ê3, ~ω también precederá con ritmo ϕ̇ en torno a k̂. Por último,
fijándonos en la última ilustración de subsección 2.8.1 en la página 102, vemos que ψ es el ángulo de giro en
torno a ê3, luego ψ̇ será la velocidad a la que precederá el eje ê1 en torno a ê3. Como ~ω es combinación lineal
de ê1 y ê3, ~ω también precederá con ritmo ψ̇ en torno a ê3. Q.E.D.

Definición 22. Sea un sólido rígido libre de N partículas tal que I1 = I2. Llamaremos cono del espacio
al cono que describe el vector ~ω en torno al eje k̂ según dado en la proposición 28 en la página 105.

Análogamente, llamaremos cono del cuerpo al cono que describe el vector ~ω en torno al eje ê3 según
dado en la mencionada proposición 28 en la página 105.

Observación 26. Observemos los conos del espacio y del cuerpo mencionados en la definición 22:
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El cono rojo se corresponde con el cono del espacio, mientras que el cono verde se corresponde con el cono
del cuerpo. Si consideramos k̂ fijo, entonces ~ω describe el cono rojo entorno a k̂. Sin embargo, si dejamos ê3

fijo, el vector ~ω describe el cono verde en torno a ê3. Puede verse esto en el siguiente vídeo8 en el que se ha
tomado ϕ̇ = 2

8 = 1
4

vueltas
s y ψ̇ = 1

8
vueltas

s .
Estos dos movimientos mencionados han de ser posibles los dos a la vez. Recordemos que ~ω nos da el eje

de rotación en torno al cual gira el sólido rígido en un instante dado. En consecuencia, los puntos del eje ~ω
están fijos en dicho instante. Esto se asemeja a un movimiento de rodadura.

~ωO

~ω∗

Por consiguiente, podemos interpretar esto como dos conos en movimiento de rodadura cuyo eje que
toca «el suelo» está compartido entre ambos sistemas. Por ende, podemos hacernos una nueva visión de esta
situación: es como si tuviéramos dos conos que ruedan sin deslizar el uno con el otro.

Proposición 29. Sea un sólido rígido libre de N partículas tal que I1 = I2. El ángulo β que forma la velocidad
angular instantánea ~ω con el vector ê3 del sólido rígido satisface la ecuación:

tanβ =
I3

I1
tan θ =

ϕ̇ sen θ

ψ̇ + ϕ̇ cos θ

~ω

k̂

ê3

ê′1

θ

β

8https://www.youtube.com/watch?v=7ZV6rTEVRVo
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Demostración. Por la proposición 28 en la página 105, sabemos que será θ, ϕ̇, ψ̇ = cte y:

~ω = −ϕ̇ sen θê1 +
(
ϕ̇ cos θ + ψ̇

)
ê3 = ω1ê1 + ω3ê3

Como podemos ver con el dibujo anterior, podemos relacionar β con las componentes de ~ω en la base
{ê1, ê2, ê3}. Así, obtenemos que:

tanβ =
−ω1

ω3
=

ϕ̇ sen θ

ψ̇ + ϕ̇ cos θ
(2.8.7)

Por otra parte, por la proposición 20 en la página 79, tenemos:

~J = I1ω1ê1 + I3ω3ê3 (2.8.8)

que es constante, pues el sólido rígido es libre. Además, por la proposición 27 en la página 105 es:

~J = Jk̂ = −J sen θê1 + J cos θê3 (2.8.9)

Juntando las ecuaciones 2.8.8 y 2.8.9 por componentes, llegamos a:

{
−J sen θ = I1ω1

J cos θ = I3ω3
⇔


ω1 =

−J sen θ

I1

ω3 =
J cos θ

I3

Sustituyendo en la ecuación 2.8.7, obtenemos:

tanβ =
−ω1

ω3
=

J sen θ
I1

J cos θ
I3

=
I3

I1

sen θ

cos θ
=
I3

I1
tan θ

Q.E.D.

Corolario 19. Sea un sólido rígido libre de N partículas tal que I1 = I2 = I3. El ángulo β que forma la
velocidad angular instantánea ~ω con el vector ê3 coincide con θ (β = θ). Además, en este caso, ~ω ‖ ~J .

Demostración. Partimos de la proposición 29 en la página anterior:

tanβ =
I3

I1
tan θ

Como en nuestro caso es I3 = I1, obtenemos:

tanβ = tan θ

Como θ y β son ángulos entre ejes, será β, θ ∈ [0, π]. En consecuencia, como la tangente es inyectiva en ese
rango, tenemos β = θ.

Por otra parte, recordemos que θ era el ángulo que formaban los ejes k̂ y ê3 y que β era el ángulo que
formaban los ejes ê3 y ~ω. Como ambos son iguales y cumplen que el ángulo que forma el vector ~ω con el eje
k̂ es θ− β = 0, tenemos que necesariamente ~ω debe coincidir en dirección con k̂. Y k̂ era tenía la dirección de
~J ; luego es ~ω ‖ ~J . Q.E.D.

Definición 23. Sea un sólido rígido de N partículas simétrico tal que I1 = I2, siendo I1, I2, I3 sus momentos
principales de inercia. Diremos que el sólido rígido es:

Oblato si I3 > I1.
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Prolato si I3 < I1.

Corolario 20. Sea un sólido rígido de N partículas. Considerando β, θ > 0, en ausencia de fuerzas se cumple:

Un sólido rígido es oblato si y sólo si β > θ.

Un sólido rígido es prolato si y sólo si β < θ.

Demostración. El resultado se obtiene trivialmente a partir de la definición 23 en la página anterior y de la
proposición 29 en la página 108 al tener en cuenta que la tangente es creciente en [0, π]. Q.E.D.

Observación 27. Lo expuesto en el corolario 20 puede verse en los siguientes vídeos: oblato9 (ϕ̇ = 2
8 = 1

4
vueltas

s

y ψ̇ = 1
8

vueltas
s ) y prolato10 (ϕ̇ = 2

8 = 1
4

vueltas
s y ψ̇ = −1

8
vueltas

s ).

Observación 28. Veamos una aplicación de los conocimientos vistos hasta la fecha a la Tierra. Como la Tierra
tiene un ligero ensanchamiento ecuatorial es I3 / I1. Por consiguiente, como no se da el caso del corolario 20,
hay una pequeña precesión de ~ω en torno a k̂, al ser β / θ.

~ω k̂

ê3

θ

β

ϕ̇

ψ̇

Nótese que esto no tiene nada que ver con la fuerza gravitatoria. Se da simplemente por el hecho de que
la Tierra gira en torno a sí misma. Esta precesión de ~ω alrededor de k̂ tiene lugar en la naturaleza y recibe el
nombre de «bamboleo de Chandler». Lo que se espera en teoría es que la velocidad angular instantánea describa
una trayectoria circular en torno al eje perpendicular al plano de la eclíptica. El radio de esta precesión sería
de unos 3 m. Sin embargo, como la Tierra no es simétrica, los momentos de inercia cambian constantemente
en el tiempo. Por eso, la trayectoria observada no es circular, sino errática y el radio de dicha trayectoria
reside entre 3 m y 15 m. Además, su periodo es de unos 400 días.

9https://drive.google.com/open?id=11zrrh1QrYW_O0zepvGyzoTGaTwi_FtwJ
10https://drive.google.com/open?id=1GilUeJiMpkFL6o16zP_pU233AX1gkkoc
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R

2.9. Mecánica lagrangiana

Proposición 30. Sea un sólido rígido con N partículas tal que I1 = I2 que está sometido a un campo
gravitatorio constante ~g y que cuenta con un punto fijo O por el que pasa el eje ê3 del sólido rígido. Llamemos
R a la distancia entre el punto fijo O y el centro de masas del sólido rígido. Los ángulos de Euler ϕ, θ, ψ del
sólido rígido deben cumplir las ecuaciones:

ϕ̇ =
Jz − J3 cos θ

I1 sen2 θ

I2θ̈ = I1ϕ̇
2 sen θ cos θ − I3

(
ψ̇ + ϕ̇ cos θ

)
ϕ̇ sen θ +MgR sen θ

Jz = I1ϕ̇ sen2 θ + I3

(
ψ̇ + ϕ̇ cos θ

)
cos θ = cte

J3 = I3ω3 = I3

(
ψ̇ + ϕ̇ cos θ

)
= cte

Demostración. Por el corolario 18 en la página 105, sabemos que en la base de vectores propios del tensor de
inercia de nuestro sólido rígido, podemos expresar el momento angular como:

~J = −I1ϕ̇ sen θê1 + I2θ̇ê2 + I3

(
ψ̇ + ϕ̇ cos θ

)
ê3

Por otra parte, haciendo uso de la proposición 27 en la página 105, podemos hallar:

Jz = ~J · k̂ =
(
−I1ϕ̇ sen θê1 + I2θ̇ê2 + I3

(
ψ̇ + ϕ̇ cos θ

)
ê3

)
· (− sen θê1 + cos θê3) =

= I1ϕ̇ sen2 θ + I3

(
ψ̇ + ϕ̇ cos θ

)
︸ ︷︷ ︸

=J3

cos θ ⇔

⇔ Jz = I1ϕ̇ sen2 θ + J3 cos θ ⇔ ϕ̇ =
Jz − J3 cos θ

I1 sen2 θ
(2.9.1)

Ahora, escribamos el lagrangiano del sistema:

L = T − V =
1

2
I1ϕ̇

2 sen2 θ +
1

2
I2θ̇

2 +
1

2
I3

(
ψ̇ + ϕ̇ cos θ

)2
−MgR cos θ

Nótese que la energía potencial efectivamente es V = MgR cos θ, ya que θ es el ángulo que forma el eje ê3 del
sólido rígido con la vertical y la energía potencial será máxima cuando el centro de masas esté en la vertical,
es decir, cuando θ = 0.
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Tenemos tres grados de libertad; en consecuencia, tendremos tres coordenadas generalizadas (los tres
ángulos de Euler). Por ende, llegaremos a tres ecuaciones de Lagrange. Por el teorema 5 en la página 35,
obtenemos:

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ
⇔ d

dt

(
I2θ̇
)

= I1ϕ̇
2 sen θ cos θ − I3

(
ψ̇ + ϕ̇ cos θ

)
ϕ̇ sen θ +MgR sen θ ⇔

⇔ I2θ̈ = I1ϕ̇
2 sen θ cos θ − I3

(
ψ̇ + ϕ̇ cos θ

)
ϕ̇ sen θ +MgR sen θ

d

dt

(
∂L
∂ϕ̇

)
=
∂L
∂ϕ
⇔ d

dt

[
I1ϕ̇ sen2 θ + I3

(
ψ̇ + ϕ̇ cos θ

)
cos θ

]
= 0⇔

⇔ Pϕ =
∂L
∂ϕ̇

= I1ϕ̇ sen2 θ + I3

(
ψ̇ + ϕ̇ cos θ

)
︸ ︷︷ ︸

=I3ω3=J3

cos θ = cte⇔

⇔ I1ϕ̇ sen2 θ + J3 cos θ = cte

donde recordamos que ∂L
∂ϕ̇ recibe el nombre de momento generalizado en torno a ϕ. Utilizando la ecuación 2.9.1

en la página anterior, llegamos a que:

Jz = I1ϕ̇ sen2 θ + J3 cos θ = cte

d

dt

(
∂L
∂ψ̇

)
=
∂L
∂ψ
⇔ d

dt

(
I3

(
ψ̇ + ϕ̇ cos θ

))
= 0⇔

⇔ Pψ =
∂L
∂ψ̇

= I3

(
ψ̇ + ϕ̇ cos θ

)
︸ ︷︷ ︸

=ω3

= cte

De esta forma, vemos que:
J3 = I3ω3 = ψ̇ + ϕ̇ cos θ = cte

Q.E.D.

Corolario 21. Sea un sólido rígido con N partículas tal que I1 = I2 que está sometido a un campo gravitatorio
constante ~g y que cuenta con un punto fijo O por el que pasa el eje ê3 del sólido rígido. Llamemos R a la
distancia entre el punto fijo O y el centro de masas del sólido rígido. Si se cumple, además que θ = cte y
ω3 =

(
ψ̇ + ϕ̇ cos θ

)
= 0, entonces ϕ̇ cumple la ecuación de un péndulo físico:

I1 sen θ cos θϕ̇2 +MgR sen θ = 0

Demostración. Por la proposición 30 en la página anterior es:

I2θ̈ = I1ϕ̇
2 sen θ cos θ − I3

(
ψ̇ + ϕ̇ cos θ

)
︸ ︷︷ ︸

=ω3

ϕ̇ sen θ +MgR sen θ

Como en nuestro caso es θ = cte, será θ̈ = 0. Además, como ω3 = 0, llegamos al enunciado. Q.E.D.

Proposición 31. Sea un sólido rígido con N partículas tal que I1 = I2 que está sometido a un campo
gravitatorio constante ~g y que cuenta con un punto fijo O por el que pasa el eje ê3 del sólido rígido. Llamemos
R a la distancia entre el punto fijo O y el centro de masas del sólido rígido. Supongamos, además, que θ = cte
y que es:

I3ω3 �
√

4I1 cos θMgR
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Entonces llegamos a dos posibles soluciones aproximadas para ϕ̇:

ϕ̇ ≈ MgR

I3ω3
, ϕ̇ ≈ I3ω3

I1 cos θ

que se corresponden con la precesión lenta de un sólido rígido sometido a fuerzas pequeñas (la primera solución,
como vimos en la proposición 25 en la página 89) y con la precesión rápida de un sólido rígido libre (la segunda
solución, como vimos en la proposición 28 en la página 105).

Demostración. Por la proposición 30 en la página 111, es:

ϕ̇ =
Jz − J3 cos θ

I1 sen2 θ
(2.9.2)

Jz = I1ϕ̇ sen2 θ + I3

(
ψ̇ + ϕ̇ cos θ

)
cos θ = cte

I3

(
ψ̇ + ϕ̇ cos θ

)
= cte

Como es θ = cte y, por la proposición 30 en la página 111, es también Jz = cte y J3 = cte, a la vista de
la ecuación 2.9.2, necesariamente, deberá ser ϕ̇ = cte. De esta forma, por la tercera ecuación será, también,
ψ̇ = cte. Además, como es θ = cte, será θ̈ = 0 y, en consecuencia, por la proposición 30 en la página 111,
tenemos:

0 = I1ϕ̇
2 sen θ cos θ − I3

(
ψ̇ + ϕ̇ cos θ

)
ϕ̇ sen θ +MgR sen θ

Definimos ω3 :=
(
ψ̇ + ϕ̇ cos θ

)
= cte. Así, obtenemos:

0 = I1 sen θ cos θϕ̇2 − I3ω3 sen θϕ̇+MgR sen θ ⇔

⇔ 0 = I1 cos θϕ̇2 − I3ω3ϕ̇+MgR

Despejemos ϕ̇ de la ecuación anterior:

ϕ̇ =
I3ω3 ±

√
I2

3ω
2
3 − 4I1 cos θMgR

2I1 cos θ
=

I3ω3 ±
√
I2

3ω
2
3

(
1− 4I1 cos θMgR

I2
3ω

2
3

)
2I1 cos θ

=

=
I3ω3

(
1±

√
1− 4I1 cos θMgR

I2
3ω

2
3

)
2I1 cos θ

Como, por hipótesis es I3ω3 �
√

4I1 cos θMgR, podemos suponer que:

4I1 cos θMgR

I2
3ω

2
3

→ 0

y estaremos en disposición de aplicar el desarrollo en serie de Taylor-Young a primer orden de f (x) =
√

1 + x:

√
1 + x = 1 +

1

2
x+ o (x) cuando x→ 0

Así, obtenemos:

ϕ̇ ≈
I3ω3

(
1±

[
1− 2I1 cos θMgR

I2
3ω

2
3

])
2I1 cos θ

=
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=



I3ω3

(
2− 2I1 cos θMgR

I2
3ω

2
3

)
2I1 cos θ

=
2I3ω3 − 2I1 cos θMgR

I3ω3

2I1 cos θ

I3ω3
2I1 cos θMgR

I2
3ω

2
3

2I1 cos θ
=
MgR

I3ω3

Recordemos que, por hipótesis, era:

I3ω3 �
√

4I1 cos θMgR⇔ I2
3ω

2
3 � 4I1 cos θMgR⇔

⇔ I3ω3 �
4I1 cos θMgR

I3ω3
⇔ 2I3ω3 �

2I1 cos θMgR

I3ω3

De esta forma, podemos aproximar algo más la primera de nuestras soluciones, obteniendo:

ϕ̇ ≈ 2I3ω3

2I1 cos θ
=

I3ω3

I1 cos θ

con lo que llegamos al enunciado. Q.E.D.

2.9.1. Nutación

Definición 24. Diremos que en el movimiento de un sólido rígido hay nutación cuando θ 6= cte.

Proposición 32. Sea un sólido rígido con N partículas tal que I1 = I2 que está sometido a un campo
gravitatorio constante ~g y que cuenta con un punto fijo O por el que pasa el eje ê3 del sólido rígido. Llamemos
R a la distancia entre el punto fijo O y el centro de masas del sólido rígido. Es posible expresar el movimiento
del sólido rígido a través de una energía cinética Teff que sólo depende de θ̇ y de una energía potencial efectiva
Veff que sólo depende de θ. Las expresiones para dichas energías son.

Teff (θ) =
1

2
I2θ̇

2

Veff (θ) =
1

2

(Jz − J3 cos θ)2

I1 sen2 θ
+

1

2

J2
3

I3
+MgR cos θ

Además, existen θ1, θ2 ∈ [0, π] tales que θ ∈ [θ1, θ2] ∀t ∈ R.
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θ1 θ2

θ

Veff(θ)

E

Demostración. Por el corolario 18 en la página 105, tenemos:

T =
1

2
I1ϕ̇

2 sen2 θ +
1

2
I2θ̇

2 +
1

2
I3

(
ϕ̇ cos θ + ψ̇

)2
(2.9.3)

Por otra parte, por la proposición 30 en la página 111, es:

ϕ̇ =
Jz − J3 cos θ

I1 sen2 θ

siendo Jz, J3 = cte. Operando:

I1ϕ̇ sen2 θ = Jz − J3 cos θ ⇒ I2
1 ϕ̇

2 sen4 θ = (Jz − J3 cos θ)2 ⇔

⇔ I1ϕ̇
2 sen2 θ =

(Jz − J3 cos θ)2

I1 sen2 θ
(2.9.4)

Además, también por la proposición 30 en la página 111 es:

J3 = I3ω3 = I3

(
ψ̇ + ϕ̇ cos θ

)
= cte⇔ ω3 =

J3

I3
⇒ ω2

3 =
J2

3

I2
3

⇒ I3ω
2
3 =

J2
3

I3
(2.9.5)

De esta forma, mediante las ecuaciones 2.9.5 y 2.9.4, podemos escribir 2.9.3 como una función que única-
mente depende de θ:

T =
1

2

(Jz − J3 cos θ)2

I1 sen2 θ
+

1

2
I2θ̇

2 +
1

2

J2
3

I3

Por añadidura, sabemos que la energía potencial viene dada por:

V = MgR cos θ
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Por consiguiente, podemos definir Veff , Teff tales que Veff = F! (θ) y T = F!
(
θ̇
)
, obteniendo:

Teff (θ) :=
1

2
I2θ̇

2

Veff (θ) :=
1

2

(Jz − J3 cos θ)2

I1 sen2 θ
+

1

2

J2
3

I3
+MgR cos θ

Ahora, como un campo constante es conservativo, la energía del sistema debe permanecer constante, luego
debe ser:

Teff + Veff = T + V = cte

Estudiemos el comportamiento de la energía potencial efectiva cerca de los puntos críticos θ = 0, π.

ĺım
θ→0

Veff = +∞, ĺım
θ→π

Veff = +∞

pues en ambos casos el término que diverge 1
sen2 θ

es siempre positivo. Así, por el teorema de Weierstrass,
sabemos que hay mínimo absoluto en (0, π) y que este debe alcanzarse en un mínimo local de la función Veff . En
consecuencia, para una energía dada E siempre deberá haber al menos dos valores de θ tales que Veff (θ) = E;
llamemos a esos puntos θ1 y θ2. Por último, como es Veff ≤ E ∀θ, pues deberá ser θ ∈ [θ1, θ2] ∀t ∈ R. Q.E.D.

Observación 29. Consideremos un sólido rígido como el expuesto en la proposición 32 en la página 114. Por
la proposición 30 en la página 111, sabemos que es:

ϕ̇ (θ) =
Jz − J3 cos θ

I1 sen2 θ

donde Jz, J3 = cte. Notemos que según los valores de Jz y J3, puede ser que ϕ̇ varíe de signo para algún θ.

Si es Jz > J3 cos θ ∀θ ∈ [θ1, θ2], como son Jz, J3, I1 > 0, será siempre ϕ̇ > 0. Así, el vector ê3 tendrá su
final en alguna posición entre las líneas trazadas por θ1 y θ2.

θ1

θ2

Si, en cambio es Jz < J3 cos θ para al menos algún θ ∈ [θ1, θ2], entonces ϕ̇ cambia de signo para cierto
θ y el vector ê3 pasará de moverse hacia adelante a moverse hacia atrás y viceversa. Nótese que, como
el coseno es inyectivo en [0, π], cuando se dé la condición anterior siempre existirá un único θ0 tal que
Jz − J3 cos θ = 0.
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θ1

θ2

θ0

Supongamos que es justo θ0 = θ1, es decir que es ϕ̇ (θ1) = 0. Entonces, el movimiento queda de la
siguiente forma:

θ1 = θ0

θ2

Ejemplo 17. Mediante tres simulaciones numéricas, vamos a intentar ilustrar cada uno de los casos expuestos
en la observación 29 en la página anterior.

Caso ϕ̇ (θ1) = 0 ∧ ϕ̇ (θ) > 0 ∀θ 6= θ1. Puede verse un vídeo al respecto aquí11.
11https://www.youtube.com/watch?v=c0O0tpq3A-I
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En la gráfica anterior podemos ver la variación de θ y ϕ̇ con respecto al tiempo t así como la variación
de ϕ̇ y Veff (según definida en la proposición 32 en la página 114) con respecto a θ.

Caso ϕ̇ (θ1) > 0 ∀θ ∈ [θ1, θ2]. Puede verse un vídeo al respecto aquí12.
12https://www.youtube.com/watch?v=hI4RBmg-sU4

Licencia: Creative Commons 118

https://www.youtube.com/watch?v=hI4RBmg-sU4
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 2. SÓLIDO RÍGIDO

2.9. MECÁNICA LAGRANGIANA

2.0

2.5

3.0

3.5

4.0

ϕ̇

2.0

2.5

3.0

3.5

4.0

ϕ̇

0 5 10 15 20

t

0.1 π

0.2 π

0.3 π

0.4 π

θ

0.1 π 0.2 π 0.3 π 0.4 π

θ

36.0

36.5

37.0

37.5

V
e
f
f

En la gráfica anterior podemos ver la variación de θ y ϕ̇ con respecto al tiempo t así como la variación
de ϕ̇ y Veff (según definida en la proposición 32 en la página 114) con respecto a θ.

Caso del signo de ϕ̇ oscilante. Puede verse un vídeo al respecto aquí13.
13https://www.youtube.com/watch?v=WeISwLzQAUY
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En la gráfica anterior podemos ver la variación de θ y ϕ̇ con respecto al tiempo t así como la variación
de ϕ̇ y Veff (según definida en la proposición 32 en la página 114) con respecto a θ.

2.10. Problemas

Ejercicio 10 (Problema 2.5). Un cuerpo rígido formado por tres partículas de masas m, 2m y 4m situadas
en los puntos (2a, 0, 2a), (a,−a, a) y (−a, a, 0) respectivamente. Calcula el momento angular ~J del cuerpo si
gira alrededor del origen con velocidad angular ~ω = b(3,−2, 4).

Solución. Sabemos por teoría que ~J =~I~ω siendo ~I el tensor de inercia del cuerpo. A su vez, las componentes
de este vector vienen determinadas por las expresiones siguientes:

Ixx =
∑

mi(y
2
i + z2

i ) Ixy = −
∑

mixiyi

(siendo Ixy = Iyx y por tanto ~I simétrica).
Así pues, calcularemos primero las componentes diagonales como:

Ixx =
∑

mi(y
2
i + z2

i ) = m
[
02 + (2a)2

]
+ 2m

[
(−a)2 + a2

]
+ 4m

[
a2 + 02

]
=

= 4ma2 + 4ma2 + 4ma2 = 12ma2
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Iyy =
∑

mi(x
2
i + z2

i ) = m
[
(2a)2 + (2a)2

]
+ 2m

[
a2 + a2

]
+ 4m

[
(−a)2 + 02

]
=

= 8ma2 + 4ma2 + 4ma2 = 16ma2

Izz =
∑

mi(x
2
i + y2

i ) = m
[
(2a)2 + 02

]
+ 2m

[
a2 + (−a)2

]
+ 4m

[
(−a)2 + a2

]
=

= 4ma2 + 4ma2 + 8ma2 = 16ma2

A continuación se calcularán los elementos restantes, empleando la propiedad de Ixy = Iyx para ahorrar
cálculos:

Ixy = Iyx = −
∑

mixiyi = −m(2a)(0)− 2m(a)(−a)− 4m(−a)(a) = −0− 2ma2 + 4ma2 =

= 2ma2

Iyz = Izy = −
∑

miyizi = −m(0)(2a)− 2m(−a)(a)− 4m(a)(0) = −0 + 2ma2 − 0 =

= 2ma2

Izx = Ixz = −
∑

mixizi = −m(2a)(2a)− 2m(a)(a)− 4m(−a)(0) = −4ma2 − 2ma2 − 0 =

= −6ma2

Puesto que tenemos todos los componentes del tensor de inercia, podremos calcular el momento angular como:

~J =~I~ω = ma2

12 2 −6
2 16 2
−6 2 16

 3
−2
4

 = ma2

 8
−18
42

 = 2ma2

 4
−9
21


Q.E.F.

Ejercicio 11 (Problema 2.7). Un insecto de masa m está en reposo en el borde de un disco plano uniforme
de masa M y radio R,que gira alrededor de un pivote sin rozamiento con velocidad angular ω. Si el insecto
se mueve hacia el centro del disco, calcula la velocidad angular del disco cuando el insecto lo alcanza y lo que
ha variado su energía cinética.

Solución. Sabemos por teoría que la variación del momento angular de un sistema es causado por fuerzas
tanto internas como externas siguiendo la siguiente expresión:

~̇J =
∑∑

~ri × ~Fij +
∑

~ri × ~Fi

Puesto que nos informan de que la rotación en torno al pivote no genera rozamiento (y asumiendo que no
existen otras influencias externas al sistema), podemos concluir que el sumatorio

∑
~ri× ~Fi será nulo, es decir:

~̇J =
∑∑

~ri × ~Fij

En las fuerzas internas debemos considerar no solo las fuerzas entre los componentes del disco o del insecto,
también deberemos considerar las interacciones entre el disco y el insecto (puesto que el sistema estudiado es
el formado por ambos cuerpos). Asumiendo que tanto el disco como el insecto son cuerpos rígidos y estables,
podremos decir que sus fuerzas internas son nulas (aquí se mete la explicación mágica de Andrés sobre que si
hay fuerzas internas el sólido acelera hasta reventar); pero deberemos pararnos a pensar en el comportamiento
de las interacciones entre el disco y el insecto.
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Podemos obviar interacciones como el peso y la normal que genera el disco sobre el insecto, puesto que
estas fuerzas se cancelarán entre si; sin embargo consideremos (puesto que no se nos indica lo contrario) que
existe una cierta fuerza de rozamiento entre el disco y el insecto , en este caso, la fuerza será paralela al vector
posición del insecto (suponiendo que el insecto presente un movimiento con dirección directa hacia el centro
del disco, tomando este como centro de coordenadas), causando que ~rInsecto× ~FRozamiento = 0. De este modo,
la variación del momento angular será nula y así, el momento angular ~J será constante:

~̇J = 0→ ~J = ~cte

Ahora bien, al ser un sistema con rotaciones deberemos considerar el momento de inercia tanto del disco
como del insecto (consideraremos a este como una partícula puntual), para facilitar los cálculos solo conside-
raremos un momento de inercia escalar, que en el caso de un disco es igual a:

IDisco =
1

2
MR2

en el caso del momento de inercia de una partícula puntual a una distancia d del eje de rotación:

IInsecto = md2

Por lo tanto, tendremos que el momento de inercia del sistema cuando el insecto se encuentra a una cierta
distancia d del centro del disco será:

I(d) = IDisco + IInsecto =
1

2
MR2 +md2

Ahora bien, la relación entre el momento angular y el momento de inercia viene determinada por la expresión
J = Iω, puesto que ~J es constante, J también lo será, de modo que cuando el insecto de encuentra al borde
del disco d = R y cuando se encuentre en el centro del mismo d = 0, el momento angular será el mismo:

J0 = Jf → I(R)ω0 = I(0)ωf(
1

2
MR2 +mR2

)
ω0 =

(
1

2
MR2 +m02

)
ωf

Así pues:

ωf = ω0

(
1 +

2m

M

)
Habiendo calculado la velocidad angular del sistema una vez el insecto se ha desplazado desde el borde del

disco hasta el centro del mismo, podremos calcular la variación de la energía cinética del sistema. Sabemos
que la expresión que relaciona las cantidades antes calculadas es:

T =
1

2
Iω2

Por lo tanto, la variación de energía cinética será igual a:

∆T = Tf − T0 =
1

2
I(R)ω2

0 −
1

2
I(0)ω2

f =

=
1

2

(
1

2
MR2 +mR2

)
ω2

0 −
1

2

(
1

2
MR2 +m02

)
ω2
f

Sustituyendo omegaf por el valor anteriormente calculado:

∆T =
1

2

(
1

2
MR2 +mR2

)
ω2

0 −
1

2

(
1

2
MR2

)(
1 +

2m

M

)2

ω2
0 =
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=
1

2
ω2

0R
2

[(
1

2
M +m

)
− 1

2
MR2

(
1 +

2m

M

)]
=

1

2
ω2

0R
2

[
1

2
M

(
1− 1− 2m

M

)
+m

]
=

=
1

2
ω2

0R
2

[
m− 1

2
M

(
2m

M

)]
Por lo tanto:

∆T = 0

Q.E.F.

Ejercicio 12 (Problema 2.9). Un disco uniforme de masaM y radioR se encuentra bajo un campo gravitatorio
y tiene adherida una masa m puntual a una distancia a del centro del mismo. El disco puede rodar sin deslizar
sobre un plano horizontal. Calcula la frecuencia de las pequeñas oscilaciones en torno al punto de equilibrio,
si el plano que contiene el disco es vertical.

Solución. Este ejercicio se resolverá empleando mecánica lagrangiana, de modo que tendremos que señalizar
las coordenadas que emplearemos; al encontrarnos limitados a un plano, solo emplearemos coordenadas x
e y donde denotaremos con el subíndice d a las coordenadas del centro del disco y con el subíndice m a las
coordenadas de la masa puntual. Así pues, recordando que el disco rueda sin deslizar, tendremos las expresiones
siguientes:

xd = −Rθ yd = R

xm = xd + a sen θ ym = yd − a cos θ

Puesto que serán necesarias a continuación, calcularemos las derivadas temporales de las anteriores expresiones:

ẋd = −Rθ̇ ẏd = 0

ẋm = ẋd + aθ̇ cos θ ẏm = ẏd + aθ̇ sen θ

Puesto que debemos calcular el lagrangiano L = T − V , desarrollaremos estas magnitudes por separado:

T = Td + Tm

Recordemos que el disco es un sólido rígido, por lo que su energía cinética será igual a la energía cinética del
movimiento de su centro de masas sumado a la enrgía cinética de su rotación, esta última componente será
T = 1

2Iθ̇
2, siendo para el caso de un disco I = 1

2MR2:

T =

[
1

2

(
1

2
MR2

)
θ̇2 +

1

2
M
(
ẋ2
d + ẏ2

d

)]
+

1

2
m
(
ẋ2
m + ẏ2

m

)
=
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=
1

2
M

(
1

2
R2θ̇2 +R2θ̇2

)
+

1

2
m

[(
−Rθ̇ + aθ̇ cos θ

)2
+
(
aθ̇ sen θ

)2
]

=

=
3

4
MR2θ̇2 +

1

2
m
(
R2θ̇2 + a2θ̇2 cos2 θ −Raθ̇2 cos θ + a2θ̇2 sen2 θ

)
=

=
3

4
MR2θ̇2 +

1

2
mθ̇2

(
R2 + a2 −Ra cos θ

)
Habiendo calculado la energía cinética, calcularemos la energía potencial (en este caso gravitatoria):

V = Mgyd +mgym = g [MR+m (R− a cos θ)] =

= g [R(M +m)−ma cos θ]

Teniendo las expresiones para la energía cinética y para la energía potencial, el lagrangiano de este sistema
será el siguiente:

L = T − V =
3

4
MR2θ̇2 +

1

2
mθ̇2

(
R2 + a2 −Ra cos θ

)
− g [R(M +m)−ma cos θ]

Para obtener la ecuación del movimiento de este sistema usaremos las ecuaciones de Euler-Lagrange:

∂L
∂θ
− d

dt

(
∂L
∂θ̇

)
= 0

∂L
∂θ

=
1

2
mθ̇2Ra sen θ − gma sen θ

∂L
∂θ̇

=
3

2
MR2θ̇ +mθ̇

(
R2 + a2 −Ra cos θ

)
d

dt

(
∂L
∂θ̇

)
=

3

2
MR2θ̈ +mθ̈

(
R2 + a2 −Ra cos θ

)
+mθ̇2Ra sen θ

Así pues, por las ecuaciones de Euler-Lagrange:[
1

2
mθ̇2Ra sen θ − gma sen θ

]
−
[

3

2
MR2θ̈ +mθ̈

(
R2 + a2 −Ra cos θ

)
+mθ̇2Ra sen θ

]
= 0

−1

2
mθ̇2Ra sen θ − gma sen θ − 3

2
MR2θ̈ −mθ̈

(
R2 + a2 −Ra cos θ

)
= 0

−mθ̇2Ra sen θ − 2gma sen θ = 3MR2θ̈ + 2mθ̈
(
R2 + a2 −Ra cos θ

)
Ahora bien, si consideramos (tal como nos dicta el enunciado) oscilaciones pequeñas, podremos efectuar ciertas
aproximaciones; la primera de ellas es que si θ es pequeño θ̇2 ≈ 0, además de esto, emplearemos las más que
conocidas aproximaciones (para ángulos pequeños) sen θ ≈ θ y cos θ ≈ 1; de este modo, la anterior expresión
será (para pequeñas oscilaciones) equivalente a:

−2gmaθ = 3MR2θ̈ + 2mθ̈(R2 + a2 −Ra)

Reordenando los términos, observamos la expresión de un oscilador armónico:

θ̈
[
3MR2 + 2m(R2 + a2 −Ra)

]
+ 2gmaθ = 0

d2θ

dt2
+

[
2gma

3MR2 + 2m(R2 + a2 −Ra)

]
θ = 0

Por lo tanto, la frecuencia para pequeñas oscilaciones de este sistema será:

ω =

√
2gma

3MR2 + 2m(R2 + a2 −Ra)
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Q.E.F.

Ejercicio 13 (Problema 2.11). Calcula los momentos principales de inercia alrededor del vértice de un cono
macizo uniforme de altura h y radio R. ¿Para qué valor del cociente h

R son ejes principales cualquier eje que
pase por el vértice?

Solución. Tomando como ejes x̂, ŷ y ẑ los mostrados en la siguiente imagen (siendo ẑ aquel que pase por el
eje de simetría del cono y x̂ e ŷ) dos ejes ortonormales entre si y con ẑ cualesquiera), tendremos que la matriz
de inercia ~I será diagonal, con sus componentes verticales Ixx, Iyy e Izz siendo los momentos principales de
inercia: Estos momentos principales de inercia cumplirán que Ixx = Iyy, puesto que por simetrías de rotación

estos dos ejes pueden ser arbitrarios (siempre que se encuentren en el plano normal a ẑ), por lo visto en teoría,
estos momentos se calcularán como:

Ixx = Iyy =

∫∫∫
V
ρ(~r)(y2 + z2)dV

Izz =

∫∫∫
V
ρ(~r)(x2 + y2)dV

Puesto que el enunciado dicta que el cono es macizo y uniforme, podremos decir que ρ(~r) = ρ = cte.
Tomando coordenadas cilíndricas, tendremos los cambios:

x = r cos θ y = r sen θ dV = rdθdrdz

En cuanto a los límites de integración, θ variará entre 0 y 2π, z entre 0 y h mientras que r dependerá de la
altura del cono a la que nos encontremos. Calculemos pues, los momentos de inercia Ixx e Iyy:

Ixx = Iyy =

∫∫∫
V
ρ(y2 + z2)dV = ρ

∫ 2π

θ=0

∫ h

z=0

∫ r(z)

r=0
(r2 sen2 θ + z2)rdθdrdz

Para conocer la función r(z) (esto es, el radio del cono en relación a la altura), solo debemos estudiar el ángulo
de apertura del cono (el cual permanecerá constante). La tangente de este ángulo (llamémoslo α) será igual
a:

tanα =
R

h
= cte =

r(z)

z
→ r(z) =

Rz

h

Así pues:

Ixx = Iyy =

∫∫∫
V
ρ(y2 + z2)dV = ρ

∫ 2π

θ=0

∫ h

z=0

∫ Rz/h

r=0
(r2 sen2 θ + z2)rdθdrdz =
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= ρ

[∫ 2π

θ=0

∫ h

z=0

∫ Rz/h

r=0
r3 sen2 θdθdrd+

∫ 2π

θ=0

∫ h

z=0

∫ Rz/h

r=0
rz2dθdrd

]
=

= ρ

−sen 2θ − 2θ

4

∣∣∣∣∣
2π

0

∫ h

z=0

∫ Rz/h

r=0
r3drdz + 2π

∫ h

z=0

∫ Rz/h

r=0
rz2drdz

 =

= ρ

[
π

∫ h

z=0

(
r4

4

∣∣∣Rz
h

0

)
dz + 2π

∫ h

z=0

(
r2

2

∣∣∣Rz
h

0

)
z2dz

]
=

= ρπ

[
1

4

∫ h

z=0

R4z4

h4
dz +

∫ h

z=0

R2z4

h2
dz

]
=

= ρπ

[
1

4

R4

h4

(
z5

5

∣∣∣h
0

)
+
R2

h2

(
z5

5

∣∣∣h
0

)]
= ρπ

1

5

[
1

4
R4h+R2h3

]
Puesto que el volumen V de un cono es igual a V = 1

3πR
2h, lo anterior puede ser reescrito en función de la

masa M del cono (ya que M = ρV ):

ρπ
1

5

[
1

4
R4h+R2h3

]
= ρV

3

5

[
1

4
R2 + h

]
=

3

5
M

[
1

4
R2 + h

]
El procedimiento a seguir con Izz es prácticamente el mismo (empleando mismos límites de integración

incluso), solo que este momento se calculará como:

Izz =

∫∫∫
V
ρ(~r)(x2 + y2)dV = ρ

∫ 2π

θ=0

∫ h

z=0

∫ Rz/h

r=0
(r2 sen2 θ + r2 cos2 θ)rdθdrdz =

= ρ

∫ 2π

θ=0

∫ h

z=0

∫ Rz/h

r=0
r3dθdrdz = 2πρ

∫ h

z=0

∫ Rz/h

r=0
r3drdz =

= 2πρ

∫ h

z=0

(
r4

4

∣∣∣Rz
h

0

)
dz =

1

2

R4

h4
ρπ

∫ h

0
z4dz =

=
1

2

R4

h4
ρπ

(
z5

5

∣∣∣h
0

)
= ρπ

R4h

10
=

3

10
V ρR2 =

3

10
MR2

El enunciado nos pregunta a continuación el valor del cociente h
R para que todo eje que pase por el vértice

sea eje principal de inercia; si todo eje que pase por el eje es eje principal de inercia, eso indica que debe
cumplirse:

Ixx = Iyy = Izz →
3

5
M

[
1

4
R2 + h

]
=

3

10
MR2 → h

R
=

1

2

Q.E.F.

Ejercicio 14 (Problema 2.15). Un cono macizo de masa M , radio R y altura h rota con velocidad angular ω
en torno a su eje de simetría, siendo su vértice un punto fijo. Si se supone que no hay nutación y se sabe que
su velocidad de precesión es Ω, calcula la energía cinética del cono.

Solución. Sabemos que el tensor de inercia de un cono en torno a su vértice (tomando como ejes de coorde-
nadas sus ejes principales) es el siguiente:

~I =

I1 0 0
0 I2 0
0 0 I3

 = 3M


1
5

(
h2 + R2

4

)
0 0

0 1
5

(
h2 + R2

4

)
0

0 0 1
10R

2


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Según los datos del enunciado, tendremos que para los ángulos de Euler se cumplirá que:

ϕ̇ = Ω ψ̇ = ω θ̇ = 0

Sabemos por teoría que la expresión de la velocidad angular ~ω en términos de los ángulos de Euler es la
siguiente:

~ω = −ϕ̇ sen θê1 + θ̇ê2 + (ϕ̇ cos θ + ψ̇)ê3 = −ϕ̇ sen θê1 + (ϕ̇ cos θ + ψ̇)ê3

La energía cinética T de un sólido rígido en revolución vendrá determinada por la expresión:

T =
1

2

∑
Iiω

2
i

Donde definiremos ωi como el término que acompaña a êi, es decir:

ω1 = −ϕ̇ sen θ ω2 = 0 ω3 = (ϕ̇ cos θ + ψ̇)

Por ello:

T =
3

2
M

[
1

5

(
h2 +

R2

4

)
(ϕ̇ cos θ + ψ̇)2 +

(
1

10
R2

)
(ϕ̇ sen θ)2

]
=

=
3

2
M

[
1

5

(
h2 +

R2

4

)
(ϕ̇2 cos2 θ + ψ̇2 + 2ϕ̇ψ̇ cos θ) +

1

10
R2ϕ̇2 sen2 θ

]
=

=
3

2
M

[
1

10
R2ϕ̇2

(
sen2 θ +

cos2 θ

10

)
+

1

5
h2
(
ϕ̇2 cos2 θ + ψ̇2 + 2ψ̇ϕ̇ cos θ

)
+
R2

10
ψ̇

(
ϕ̇

10
+ ϕ̇ cos θ

)]
Sustituyendo los valores derivados de los ángulos de Euler:

T =
3

2
M

[
1

10
R2Ω2

(
sen2 θ +

cos2 θ

10

)
+

1

5
h2
(
Ω2 cos2 θ + ω2 + 2ωΩ cos θ

)
+
R2

10
ω

(
Ω

10
+ Ω cos θ

)]
Q.E.F.

Licencia: Creative Commons 127

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Capítulo 3

Pequeñas oscilaciones y modos normales de
oscilación

En general, vamos a suponer que tenemos siempre sistemas conservativos con un número de grados de
libertad igual al número de coordenadas generalizadas. Por lo tanto, vamos a tener siempre un número n de
coordendas generalizadas que denotaremos con (q1, q2, . . . , qn) y el tiempo t. Supondremos, además, que la posi-
ción de equilibrio de nuestro sistema se alcanza cuando las coordenadas generalizadas se anulan q1, . . . , qn = 0.

3.1. Coordenadas ortogonales

Definición 25. Sea un sistema de n grados de libertad. Diremos que unas coordenadas generalizadas {qi}ni=1

son ortogonales si la energía cinética del sistema puede expresarse como:

T =
n∑
i=1

1

2
miq̇

2
i

Es decir, si en la expresión de la energía cinética no aparecen términos cruzados.

Lema 1 (Teorema de Gauss-Lagrange). Sea V un espacio vectorial de dimensión n y φ una forma cuadrática.
Entonces, existe un cambio de base en V que reduce φ a su forma diagonal.

Demostración. Haremos inducción sobre la dimensión del espacio vectorial n. Sea {êi}ni=1 una base arbitraria

de V y sea ~x =

n∑
i=1

xiêi un vector genérico de V . Además, llamaremos A = (aij) ∈ C(n,n) a la matriz hermítica

asociada a la forma cuadrática φ; de manera que es:

φ (~x) = ~x †A~x =
n∑
i=1

n∑
j=1

Aijxixj

donde con la daga † denotamos «transpuesto conjugado».

n = 1: En este caso es:
φ (~x) = a11x1x1

que claramente está expresado en forma diagonal.

Supongamos que la hipótesis se cumple para n−1 y veamos que se cumple para n. A su vez, distingamos
ahora dos casos:
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3.1. COORDENADAS ORTOGONALES

1. Existe un índice i ∈ {1, . . . , n} tal que aii 6= 0: Podemos suponer sin pérdida de generalidad que
dicho coeficiente es el a11; si no lo es, reordenamos las variables hasta que lo sea. De esta forma,
tenemos:

φ (~x) =

n∑
i=1

n∑
j=1

aijxixj = a11x
2
1 + x1

n∑
i=2

ai1xi + x1

n∑
j=2

a1jxj +

n∑
i=2

n∑
j=2

aijxixj (3.1.1)

Ahora definimos:

ϕ (x2, . . . , xn) := − 1

a11

∣∣∣∣∣∣
n∑
j=2

a1jxj

∣∣∣∣∣∣
2

+
n∑
i=2

n∑
j=2

aijxixj (3.1.2)

que es una forma cuadrática de n− 1 variables x2, . . . , xn. A continuación, consideramos:

L :=
1

a11

∣∣∣∣∣∣
n∑
j=1

a1jxj

∣∣∣∣∣∣
2

− 1

a11

∣∣∣∣∣∣
n∑
j=2

a1jxj

∣∣∣∣∣∣
2

=

1

a11

( n∑
i=1

a1ixi

) n∑
j=1

a1jxj

−( n∑
i=2

a1ixi

) n∑
j=2

a1jxj

 =

=
1

a11

 n∑
i=1

n∑
j=1

a1iaijxixj −
n∑
i=2

n∑
j=2

a1iaijxixj


Como la matriz A es hermítica, se da aij = aji ∀i, j = 1, . . . , n. Por tanto, podemos expresar lo
anterior como:

L =
1

a11

 n∑
i=1

n∑
j=1

ai1a1jxixj −
n∑
i=2

n∑
j=2

ai1a1jxixj

 =

=
1

a11

a11a11xixj +
n∑
i=2

ai1a11xix1 +
n∑
j=2

a11a1jx1xj

 =

= a11xixj + x1

n∑
i=2

ai1xi + x1

n∑
j=2

a1jxj (3.1.3)

Mediante la ecuación 3.1.3 podemos expresar la ecuación 3.1.1 como:

φ (~x) = L+
n∑
i=2

n∑
j=2

aijxixj =
1

a11

∣∣∣∣∣∣
n∑
j=1

a1jxj

∣∣∣∣∣∣
2

− 1

a11

∣∣∣∣∣∣
n∑
j=2

a1jxj

∣∣∣∣∣∣
2

+
n∑
i=2

n∑
j=2

aijxixj

haciendo uso de la ecuación 3.1.2, podemos escribir lo anterior como:

φ (~x) =
1

a11

∣∣∣∣∣∣
n∑
j=1

a1jxj

∣∣∣∣∣∣
2

+ ϕ (x2, . . . , xn)

Hacemos el cambio de variables:

y1 =

n∑
j=1

a1jxj , y2 = x2, . . . , yn = xn
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con lo que obtenemos:

φ (~x) =
1

a11
y2

1 + ϕ (y2, . . . , yn)

Por hipótesis de inducción, existe un cambio de coordenadas que permite expresar ϕ en forma
diagonal. Haciendo uso de ese cambio y de la definición de y1 obtendremos una forma diagonal en
la que expresar φ.

2. aii = 0 ∀i = 1, . . . , n: Supongamos que existe un aij con i 6= j tal que Re (aij) 6= 0. Si no fuese así,
entonces extraemos factor común i y obtenemos una forma cuadrática que ya satisface la condición
mencionada; a menos que sea A = (0) en cuyo caso φ ya sería diagonal. De esta forma, podemos
suponer sin pérdida de generalidad que es Re (a12) 6= 0; si no fuese así, reordenamos las variables
hasta que lo sea. Tomaremos el cambio de variables:

y1 = x1 + x2, y2 = x1 − x2, y3 = x3, . . . , yn = xn ⇔

⇔ x1 = y1 + y2, x2 = y1 − y2, x3 = y3, . . . , xn = yn

De esta forma:

φ (~x) =
n∑
i=1

n∑
j=1

aijxixj = a11︸︷︷︸
=0

(y1 + y2) (y1 + y2) + a12 (y1 + y2) (y1 − y2) +

+a21 (y1 − y2) (y1 + y2) + a22︸︷︷︸
=0

(y1 − y2) (y1 − y2) +

+

n∑
i=3

ai1yi (y1 + y2) +

n∑
j=3

a1j (y1 + y2) yj +

n∑
i=3

ai2yi (y1 − y2) +

+

n∑
j=3

a2j (y1 − y2) yj +

n∑
i=3

n∑
j=3

aijyiyj =

= a12 (y1y1 + y2y1 − y1y2 − y2y2) + a21 (y1y1 − y2y1 + y1y2 − y2y2) +

+ (y1 + y2)
n∑
i=3

ai1yi + (y1 + y2)
n∑
j=3

a1jyj +
n∑
i=3

n∑
j=3

aijyiyj

Como es a12 = a21, obtenemos:

φ (~x) = (a12 + a12)
(
y2

1 − y2
2

)
+ (a12 − a12) (y2y1 − y1y2) +

+ (y1 + y2)

n∑
i=3

ai1yi + (y1 + y2)

n∑
j=3

a1jyj +

n∑
i=3

n∑
j=3

aijyiyj =

= 2Re (a12)︸ ︷︷ ︸
∗

(
y2

1 − y2
2

)
+ 2Im (y2y1 − y1y2) +

+ (y1 + y2)
n∑
i=3

ai1yi + (y1 + y2)
n∑
j=3

a1jyj +
n∑
i=3

n∑
j=3

aijyiyj

donde el término marcado con ∗ es el coeficiente de y2
1 que es distinto de cero por hipótesis. En

consecuencia, podemos aplicar el punto 1.

Q.E.D.
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Proposición 33. Sea un sistema con n grados de libertad. Siempre existen coordenadas generalizadas orto-
gonales.

Demostración. La demostración se basa en que, en su forma más general, la energía cinética es una forma
cuadrática. Llamemos {qi}ni=1 a un conjunto de coordenadas generalizadas de nuestro sistema. Entonces,
sabemos que existe un matriz A = (aij) ∈ R(3,3) tal que:

T =

n∑
i=1

n∑
j=1

1

2
aij q̇iq̇j = q̇TAq̇

donde T indica «transpuesto».
Por el teorema de Gauss-Lagrange (ver lema 1 en la página 128), sabemos que dada una forma cuadrática

φ : R3 −→ R, existe una base B en R3 para la cual la expresión de A es diagonal. Si A es diagonal, entonces
tenemos:

T =
n∑
i=1

n∑
j=1

1

2
aij q̇iq̇j =

n∑
i=1

n∑
j=1

1

2
aijδij q̇iq̇j =

n∑
i=1

1

2
aiiq̇

2
i

Y, por la definición 25 en la página 128, las coordenadas {qi}ni=1 son ortogonales. Q.E.D.

Ejemplo 18 (Deducción de existencia de coordenadas ortogonales para n = 2). Supongamos que tenemos
un sistema con n = 2 partículas.

T =
1

2
a11q̇

2
1 + a12q̇1q̇2︸ ︷︷ ︸

∗

+
1

2
a22q̇

2
2

donde el término ∗ es el llamado término de acople. Ahora, vamos a usar el cambio de coordenadas:

q′1 = q1 +
a12

a11
q2

q′2 = q2

Estas coordenadas nos van a permitir escribir la energía cinética sin términos de acople. Despejando, tenemos:
q1 = q′1 −

a12

a11
q′2

q2 = q′2

⇒


q̇1 = q̇′1 −

a12

a11
q̇′2

q̇2 = q̇′2

Sustituyendo, llegamos a:

T =
1

2
a11

(
q̇′1 −

a12

a11
q̇′2

)2

+ a12

(
q̇′1 −

a12

a11
q̇′2

)
q̇′2 +

1

2
a22q̇

′ 2
2 =

=
1

2
a11

(
q̇′ 21 +

(
a12

a11

)2

q̇′ 22 − 2
a12

a11
q̇′1q̇
′
2

)
+ q̇′1q̇

′
2a12 −

a2
12

a11
q̇′ 22 +

1

2
a22q̇

′ 2
2 =

=
1

2
a11q̇

′ 2
1 +

1

2

a2
12

a11
q̇′ 22 − a12q̇

′
1q̇
′
2 + a12q̇

′
1q̇
′
2 −

a2
12

a11
q̇′ 22 +

1

2
a22q̇

′ 2
2 =

=
1

2
a11q̇

′ 2
1 +

1

2

[
a22 −

a2
12

a11

]
︸ ︷︷ ︸

=:a′22

q̇′ 22
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Definición 26. Sea un sistema de n grados de libertad. Diremos que unas coordenadas generalizadas {qi}ni=1

son ortonormales si la energía cinética del sistema puede expresarse como:

T =

n∑
i=1

1

2
q̇2
i

Proposición 34. Sea un sistema de n grados de libertad. Siempre existen coordenadas ortonormales.

Demostración. Por la proposición 33 en la página anterior, sabemos que existen coordenadas {qi}ni=1 tales que
permiten expresar T como sigue:

T =
n∑
i=1

1

2
aiiq̇

2
i

donde aii ≥ 0 ∀i = 1, . . . , n, ya que debe ser T ≥ 0 independientemente del valor de las {q̇i}ni=1. Por tanto,
podemos definir las coordenadas generalizadas:

ci :=
√
aiiqi ∀i = 1, . . . , n⇒

⇒ ċi =
√
aiiq̇i ∀i = 1, . . . , n

que permiten expresar la energía cinética como:

T =
n∑
i=1

1

2
aiiq̇

2
i =

n∑
i=1

1

2

√
aiiqi
√
aiiqi =

n∑
i=1

1

2
(
√
aiiqi)

2 =
n∑
i=1

1

2
ċ2
i

Por la definición 26, tenemos que las coordenadas {ci}ni=1 son ortonormales entre sí. Q.E.D.

Definición 27. Diremos que una oscilación es pequeña si es razonable aproximar su función energía potencial
y su función energía cinética asociada a segundo orden mediante un desarrollo de Taylor.

Ejemplo 19 (Péndulo doble). Tenemos un péndulo doble de longitudes L y l y de masas M y m como se
expone en la siguiente ilustración:

L

lM

m
ϕ

θ

Lθ̇

Lθ̇

Lϕ̇

Dado el sistema, diríase que lo más sencillo es utilizar coordenadas angulares. Así, tenemos:

xM = L sen θ, yM = L cos θ

xm = L sen θ + l senϕ, ym = L cos θ + l cosϕ
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Derivando, llegamos a:
ẋM = L cos θ θ̇, ẏM = −L sen θ θ̇

ẋm = L cos θ θ̇ + l cosϕ ϕ̇, ẏm = −L sen θ θ̇ − l senϕ ϕ̇

ẋ2
M + ẏ2

M = L2 cos2 θ θ̇2 + L2 sen2 θ θ̇2 = L2θ̇2

ẋ2
m + ẏ2

m = L2 cos2 θ θ̇2 + l2 cos2 ϕ ϕ̇2 + 2Ll cos θ cosϕ θ̇ϕ̇+

+L2 sen2 θ θ̇2 + l2 sen2 ϕ ϕ̇2 + 2Ll sen θ senϕ θ̇ϕ̇ =

= L2θ̇2 + l2ϕ̇2 + 2Llθ̇ϕ̇ cos (ϕ− θ)
En consecuencia, la energía cinética queda:

TM =
1

2
M
(
Lθ̇
)2

=
1

2
ML2θ̇2

Tm =
1

2
m
(
L2θ̇2 + l2ϕ̇2 + 2Llθ̇ϕ̇ cos (ϕ− θ)

)
T =

1

2
(M +m)L2θ̇2 +

1

2
ml2ϕ̇2 +mLlθ̇ϕ̇ cos (ϕ− θ)

Notemos que θ, ϕ no son ortogonales, porque hay un término cruzado.
Supondremos que las oscilaciones son pequeñas. De esta forma, por la definición 27 en la página anterior,
podemos hacer una oscilación a segundo orden de la energía cinética, obteniendo:

T ≈ 1

2
(M +m)L2θ̇2 +

1

2
ml2ϕ̇2 +mLlθ̇ϕ̇

(
1− (ϕ− θ)2

2

)
=

=
1

2
(M +m)L2θ̇2 +

1

2
ml2ϕ̇2 +mLlθ̇ϕ̇−mLlθ̇ϕ̇1

2

(
ϕ2 − 2ϕθ + θ2

)
=

=
1

2
(M +m)L2θ̇2 +

1

2
ml2ϕ̇2 +mLlθ̇ϕ̇︸ ︷︷ ︸

orden 2

− 1

2
mLlθ̇ϕ̇ϕ2︸ ︷︷ ︸
orden 4

+mLlθ̇ϕ̇θϕ︸ ︷︷ ︸
orden 4

− 1

2
mLlθ̇ϕ̇θ2︸ ︷︷ ︸
orden 4

Como estamos haciendo un desarrollo de Taylor a orden 2, despreciaremos todos los términos de orden 4. Así,
obtenemos:

T ≈ 1

2
(M +m)L2θ̇2 +mLlθ̇ϕ̇+

1

2
ml2ϕ̇2

Vamos a tomar como coordenadas generalizadas q1 := Lθ y q2 = lϕ. Nótese que en nuestro caso es:

a11 = (M +m) , a12 = m, a22 = m

Consideramos el cambio:
q′1 = q1 +

a12

a11
q2 = Lθ +

m

M +m
lϕ

q′2 = lϕ

Y también el cambio:
q′2 = q2 +

a12

a22
q1 = lϕ+

m

m
Lθ = lϕ+ Lθ = q1 + q2

q′1 = Lθ

Ambos son igualmente válidos, pero la segunda opción parece más sencilla. Utilizando esta segunda solución,
obtenemos:

T =
1

2
Mq̇′ 21 +

1

2
mq̇′ 22
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Ahora, podríamos definir unas nuevas coordendas generalizadas para que sean ortonormales:

q′′1 :=
√
Mq′1

q′′2 :=
√
mq′2

Así, obtendríamos:

T =
1

2
q̇′′ 21 +

1

2
q̇′′ 22

Q.E.F.

Proposición 35 (Ecuaciones del movimiento para pequeñas oscilaciones). Sea un sistema de n grados de li-
bertad sometido a pequeñas oscilaciones y sea V la función potencial asociada al sistema. Además, sean {qi}ni=1

coordenadas generalizadas ortogonales para dicho sistema que cumplen Q = ~0 en un punto de equilibrio del
sistema y que permiten expresar la energía cinética como:

T =
1

2

n∑
i=1

miiq̇
2
i

siendo mij = 0 ∀i 6= j. Es decir, la matriz M = (mij) es diagonal.
Entonces se satisface:

MQ̈ ≈ −KQ⇔


m11 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 mnn


q̈1

...
q̈n

 ≈ −
k11 · · · k1n

...
. . .

...
kn1 · · · knn


q1

...
qn


donde Q = (q1, . . . , qn)⇒ Q̇ = (q̇1, . . . , q̇n)⇒ Q̈ = (q̈1, . . . , q̈n) y K = (kij)

3
i,j=1 viene dada por:

kij =
∂2V

∂qi∂qj

(
Q = ~0

)
∀i, j = 1, 2, 3

Demostración. Por hipótesis, podemos expresar la energía cinética del sistema como:

T =
1

2

n∑
i=1

miiq̇
2
i

Consideremos el lagrangiano del sistema:

L = T − V =
1

2

n∑
i=1

miiq̇
2
i − V

Por el teorema 5 en la página 35, obtenemos las siguientes ecuaciones del movimiento:

∂L
∂qi

=
d

dt

(
∂L
∂q̇i

)
⇔ −∂V

∂qi
=

d

dt
(miiq̇i)⇔ miiq̈i = −∂V

∂qi
∀i = 1, . . . , n (3.1.4)

Como el sistema está sometido a pequeñas oscilaciones, por la definición 27 en la página 132, podemos
aproximar la función V a segundo orden, obteniendo:

V (Q) = V
(
Q = ~0

)
+

n∑
i=1

∂V

∂qi

(
Q = ~0

)
qi +

1

2

n∑
i=1

n∑
j=1

∂2V

∂qi∂qj

(
Q = ~0

)
qiqj + o

(
|Q|2

)
cuando Q→ ~0⇔
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⇔ V (Q) = V
(
Q = ~0

)
+ ~∇V

(
Q = ~0

)
·Q+

1

2

n∑
i=1

n∑
j=1

∂2V

∂qi∂qj

(
Q = ~0

)
qiqj + o

(
|Q|2

)
cuando Q→ ~0

Por hipótesis, el punto de equilibrio del sistema viene dado por Q = ~0. Por definición de punto de equilibrio,
sabemos que la fuerza total que actúa cuando el sistema se encuentra en esa posición es nula, luego se da
−~∇V

(
Q = ~0

)
= ~F

(
Q = ~0

)
= ~0. De esta forma, la ecuación anterior se simplifica a:

V (Q) = V
(
Q = ~0

)
+

1

2

n∑
i=1

n∑
j=1

∂2V

∂qi∂qj

(
Q = ~0

)
qiqj + o

(
|Q|2

)
cuando Q→ ~0

Usando la matriz K = (kij)
3
i,j=1 podemos reescribir lo anterior como:

V (Q) = V
(
Q = ~0

)
+

1

2

n∑
i=1

n∑
j=1

kijqiqj + o
(
|Q|2

)
cuando Q→ ~0

Hallemos las parciales de V aproximado con respecto a cada una de las coordenadas ql:

∂V

∂ql
≈ 1

2

n∑
i=1

n∑
j=1

∂

∂ql
(kijqiqj) =

=
1

2


∂

∂ql

(
kllq

2
l

)
+

n∑
j = 1
j 6= l

∂

∂ql
(kljqlqj) +

n∑
i = 1
i 6= l

∂

∂ql
(kilqiql) +

n∑
i = 1
i 6= l

n∑
j = 1
j 6= l

∂

∂ql
(kijqiqj)

 =

=
1

2

2kllql +

n∑
j = 1
j 6= l

kljqj +

n∑
i = 1
i 6= l

kilqi


donde lo anterior es válido ∀l = 1, . . . , n. Nótese que por la definición de la matriz K, como el potencial V
es C(2) (en caso contrario, no podríamos hacer su desarrollo de Taylor), es kij = kji ∀i, j = 1, 2, 3. Por tanto,
podemos reescribir lo anterior como:

∂V

∂ql
≈ 1

2

2kllql +

n∑
j = 1
j 6= l

kljqj + ql

n∑
i = 1
i 6= l

kliqi

 =
1

2

2kllql + 2

n∑
j = 1
j 6= l

kljqj

 =

= kllql +

n∑
j = 1
j 6= l

kljqj =

n∑
j=1

kljqj

siendo lo anterior válido ∀l = 1, . . . , n.
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Esto nos permite reescribir la ecuación 3.1.4 en la página 134 como:

miiq̈i ≈ −
n∑
j=1

kijqj ∀i = 1, . . . , n

La expresión anterior es equivalente a la del siguiente producto matricial:

MQ̈ ≈ −KQ

con lo que queda demostrado el enunciado. Q.E.D.

Corolario 22. Sea un sistema de n grados de libertad sometido a pequeñas oscilaciones y sea V la función
potencial asociada al sistema. Además, sean {qi}ni=1 coordenadas generalizadas ortonormales para dicho
sistema que cumplen Q = ~0 en un punto de equilibrio del sistema. Entonces se satisface:

Q̈ ≈ −KQ

donde Q = (q1, . . . , qn)⇒ Q̇ = (q̇1, . . . , q̇n)⇒ Q̈ = (q̈1, . . . , q̈n) y K = (kij)
3
i,j=1 viene dada por:

kij =
∂2V

∂qi∂qj

(
Q = ~0

)
∀i, j = 1, 2, 3

Nótese que este caso la matriz K es diferente de la expuesta en la proposición 35 en la página 134.

Demostración. Como las coordenadas {qi}ni=1 son ortonormales, en particular son ortogonales. Así, por la
proposición 35 en la página 134, obtenemos:

MQ̈ ≈ −KQ

Como {qi}ni=1 son ortonormales, será M = In, con lo que llegamos al enunciado. Q.E.D.

Ejemplo 20 (Ecuaciones del movimiento del péndulo doble).

L

l
M

mϕ

θ

(L− L cos θ) + (l − l cosϕ)
L− L cos θ

Vamos a continuar con el trabajo realizado en el ejemplo 3.1.4 en la página 134.
Cogiendo el origen del potencial en el punto de equilibrio, la masa M asciende una altura (L− L cos θ) y

la masa m asciende (L− L cos θ) + (l − l cosϕ). Así, tenemos:

VM = MgL (1− cos θ)
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Vm = mgL (1− cos θ) +mgl (1− cosϕ)

En consecuencia es:
V = VM + Vm = (M +m) gL (1− cos θ) +mgl (1− cosϕ)

Aproximando a segundo orden, obtenemos que:

V ≈ (M +m) gL

(
1−

[
1− θ2

2

])
+mgl

(
1−

[
1− ϕ2

2

])
=

= (M +m) gL
θ2

2
+mgl

ϕ2

2

Vamos a partir de las coordenadas utilizadas en el ejemplo 19 en la página 132: q1 =
√
MLθ y q2 =√

m (Lθ + lϕ), que son coordenadas generalizadas ortonormales. Despejando, obtenemos:

θ =
q1√
ML

q2 =
√
m

(
q1√
M

+ lϕ

)
⇔ q2 −

√
m

M
q1 =

√
mlϕ⇔ ϕ =

q2 −
√

m
M q1√

ml
=

q2√
m
− q1√

M

l

De esta forma, llegamos a:

V =
1

2
(M +m) gL

(
q1√
ML

)2

+
1

2
mgl

( q2√
m
− q1√

M

l

)2

=

=
1

2

M +m

M

g

L
q2

1 +
1

2
m
g

l

(
q2

2

m
+
q2

1

M
− 2q1q2√

Mm

)
=

=
1

2
(M +m)

g

ML
q2

1 +
1

2
m

g

Ml
q2

1 +
1

2

g

l
q2

2 −
m√
Mm

g

l
q1q2 =

=
1

2

g

M

[
M +m

L
+
m

l

]
q2

1 +
1

2

g

l
q2

2 −
√
m

M

g

l
q1q2

Como V es un polinomio en dos variables de segundo grado, el desarrollo de Taylor de un polinomio de grado
j a orden j coincide con sí mismo y las derivadas parciales de segundo orden de un polinomio de segundo
grado con constantes, podemos «leer» el valor de las mencionadas parciales directamente de la expresión de
V . Por consiguiente, tenemos:

V =
1

2

g

M

[
M +m

L
+
m

l

]
︸ ︷︷ ︸

=k11

q2
1 +

1

2

g

l
q2

2︸︷︷︸
=k22

−
√
m

M

g

l︸ ︷︷ ︸
=k12=k21

q1q2

k11 =
∂2V

∂q2
1

=
g

M

[
M +m

L
+
m

l

]
k22 =

∂2V

∂q2
2

=
g

l
q2

2

k12 = k21 =
∂2V

∂q1q2
= −

√
m

M

g

l

Por el corolario 22 en la página anterior, debe cumplirse:(
q̈1

q̈2

)
= −

( g
M

[
M+m
L + m

l

]
−
√

m
M

g
l

−
√

m
M

g
l

g
l

)(
q1

q2

)
Q.E.F.
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3.2. Modos normales de oscilación

Teorema 8. Sea un sistema de n grados de libertad sometido a pequeñas oscilaciones y sea V la función
potencial asociada al sistema. Además, sean {qi}ni=1 coordenadas generalizadas ortogonales para dicho sistema
que cumplen Q = (q1, . . . , qn) = ~0 en un punto de equilibrio estable del sistema. Consideremos las matrices
K y M dadas en la proposición 35 en la página 134. Supondremos que la matriz M es definida positiva
y llamaremos λ1, . . . , λn a los valores propios de M−1K (no necesariamente distintos entre sí). Entonces,
existen δi ∈ R y vi ∈ Vλi

(
M−1K

)
(donde con esto último denotamos el espacio propio de M−1K asociado al

autovalor λi) ∀i = 1, . . . , n tales que la solución general del movimiento del sistema puede aproximarse como:

Q (t) ≈
n∑
i=1

cos (ωit+ δi) vi

siendo ωi = +
√
λi y siendo {vi}ni=1 una base de vectores propios de M−1K.

Demostración. Como el punto de equilibrio es estable, la función potencial V tendrá en Q = ~0 un mínimo
estricto local. En consecuencia, por nuestros conocimientos de análisis, sabemos que el hessiano de V será una
matriz definida positiva. Por ende, todos sus autovalores serán positivos. Por otra parte, nótese que según la
proposición 35 en la página 134 es:

K =

k11 · · · k1n
...

. . .
...

kn1 · · · knn

 =


∂2V
∂q2

1
· · · ∂2V

∂q1∂qn
...

. . .
...

∂2V
∂qn∂q1

· · · ∂2V
∂q2

n

 = HV

Es decir, K coincide justo con el hessiano de V . Por tanto, los autovalores de K serán todos positivos.
Como estamos en el caso de oscilaciones pequeñas, estamos en disposición de hacer uso de la proposición 35

en la página 134 y, en consecuencia, debe cumplirse MQ̈ ≈ −KQ. Nuestro objetivo es, ahora, resolver la
ecuación diferencial anterior, que es lineal y de segundo orden. Para ello, primero debemos pasar la M al otro
lado:

MQ̈ ≈ −KQ⇔ Q̈ = −M−1KQ

Nótese que lo anterior está bien definido, dado que al serM definida positiva por hipótesis, es invertible. En lo
sucesivo llamaremos Y a la matriz M−1K. Ahora, necesitamos pasar al sistema de primer orden equivalente.
Con tal fin, definimos las variables:

xi := qi ∀i = 1, . . . , n

xn+i = q̇i ∀i = 1, . . . , n⇒ ẋn+i = q̈i ∀i = 1, . . . , n

De esta forma, el sistema de primer orden equivalente a la ecuación Q̈ ≈ −KQ queda:

Ẋ =

(
0 In
−Y 0

)
︸ ︷︷ ︸

=:A

X ⇔

⇔



ẋ1

ẋ2
...

ẋn−1

ẋn
ẋn+1

ẋn+2
...

ẋ2n−1

ẋ2n


=



0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 1 0
0 0 · · · 0 0 0 0 · · · 0 1

−y11 −y12 · · · −y1,n−1 −y1n 0 0 · · · 0 0
−y21 −y22 · · · −y2,n−1 −y2n 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
−yn−1,1 −yn−1,2 · · · −yn−1,n−1− yn−1,n 0 0 · · · 0 0
−yn1 −yn2 · · · −yn,n−1 −ynn 0 0 · · · 0 0





x1

x2
...

xn−1

xn
xn+1

xn+2
...

x2n−1

x2n


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Para proseguir, debemos calcular los autovalores de la matriz A:

|A− ωI| = 0⇔
∣∣∣∣ −ωIn In
−Y −ωIn

∣∣∣∣ = 0⇔
∣∣∣∣ ωIn In
Y −ωIn

∣∣∣∣ = 0

Multiplicamos cada columna n + i-ésima por ω y se la restamos a la columna i-ésima, haciendo esto ∀i =
1, . . . , n. Dicho de otra forma, mutliplicamos los bloques derechos de la matriz anterior por ω y se los restamos
a los izquierdos. Como dicha operación no altera el determinante, obtenemos:

|A− ωI| = 0⇔
∣∣∣∣ ωIn − ωIn In
Y + ω2In −ωIn

∣∣∣∣ =

∣∣∣∣ 0 In
Y + ω2In −ωIn

∣∣∣∣ = 0

A continuación, expandimos el determinante anterior por la primera fila n veces hasta que la primera fila de
la matriz sea la fila n+ 1-ésima. Es decir:∣∣∣∣ 0 In

Y + ω2In −ωIn

∣∣∣∣ = 0⇔

⇔

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 1 0
0 0 · · · 0 0 0 0 · · · 0 1

y11 + ω2 y12 · · · y1,n−1 y1n −ω 0 · · · 0 0
y21 y22 + ω2 · · · y2,n−1 y2n 0 −ω · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
yn−1,1 yn−1,2 · · · yn−1,n−1 + ω2 yn−1,n 0 0 · · · −ω 0
yn1 yn2 · · · yn,n−1 ynn + ω2 0 0 · · · 0 −ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
n× n n× n
n× n n× n

= 0

A continuación, expandimos el determinante anterior por la primera fila, obteniendo:∣∣∣∣ 0 In
Y + ω2In −ωIn

∣∣∣∣ = 0⇔

⇔

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0
0 0 · · · 0 0 0 · · · 0 1

y11 + ω2 y12 · · · y1,n−1 y1n 0 · · · 0 0
y21 y22 + ω2 · · · y2,n−1 y2n −ω · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

yn−1,1 yn−1,2 · · · yn−1,n−1 + ω2 yn−1,n 0 · · · −ω 0
yn1 yn2 · · · yn,n−1 ynn + ω2 0 · · · 0 −ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(n− 1)× n (n− 1)× (n− 1)
n× n n× (n− 1)

= 0

De nuevo, expandimos el determinante por la primera fila:∣∣∣∣ 0 In
Y + ω2In −ωIn

∣∣∣∣ = 0⇔
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⇔

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0
0 0 · · · 0 0 0 · · · 0 1

y11 + ω2 y12 · · · · · · y1,n−1 y1n 0 · · · 0 0
y21 y22 + ω2 · · · · · · y2,n−1 y2n 0 · · · 0 0
...

...
. . .

...
... −ω

...
...

. . .
...

...
...

. . .
...

...
yn−1,1 yn−1,2 · · · · · · yn−1,n−1 + ω2 yn−1,n 0 · · · −ω 0
yn1 yn2 · · · · · · yn,n−1 ynn + ω2 0 · · · 0 −ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(n− 2)× n (n− 2)× (n− 2)
n× n n× (n− 2)

= 0

Repitiendo este procedimiento n veces, llegamos a:∣∣∣∣ 0 In
Y + ω2In −ωIn

∣∣∣∣ = 0⇔ · · · ⇔

⇔

∣∣∣∣∣∣∣∣∣∣∣

y11 + ω2 y12 · · · y1,n−1 y1n

y21 y22 + ω2 · · · y2,n−1 y2n
...

...
. . .

...
...

yn−1,1 yn−1,2 · · · yn−1,n−1 + ω2 yn−1,n

yn1 yn2 · · · yn,n−1 ynn + ω2

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
n×n

= 0⇔
∣∣Y + ω2I

∣∣ = 0

donde debajo de cada matriz por cajas hemos indicado la dimensión de cada uno de sus bloques.
De esta forma, vemos que los valores propios de la matriz A son las raíces cuadradas de los opuestos de

los autovalores de la matriz Y , pues éstos últimos vienen dados por la ecuación |Y − λI| = 0. Dicho de otra
forma, por cada valor propio λ de la matriz Y , obtenemos dos valores propios ω = +

√
−λ y ω = −

√
−λ de la

matriz A. Recordemos que anteriormente hemos argumentado que K era definida positiva. Como el producto
de matrices definidas positivas es definida positiva y M−1 era definida positiva (por serlo M), tenemos que
Y también será definida positiva; por ende, todos los autovalores de Y serán positivos; o sea, será siempre
ω2 < 0. En consecuencia, los ω serán siempre números imaginarios puros. De hecho, sabemos que por cada
valor propio λ de la matriz Y , ω = +i

√
λ y ω = −i

√
λ serán valores propios de A.

Nuestro objetivo ahora es ver que la matriz A es diagonalizable. Para ello, partimos de que sabemos que
K es diagonalizable, ya que es simétrica. De esta forma, Y = M−1K también será diagonalizable. Por tanto,
sean λ1, . . . , λr con r ≤ n los autovalores distintos de la matriz Y ; entonces el polinomio mínimo de Y vendrá
dado por:

Pmı́n,Y (Y ) =

r∏
i=1

(Y − λiIn) (3.2.1)

Es decir, aparecerá cada autovalor distinto sólo una vez. Ahora, estudiemos:

P =

r∏
i=1

(
A− i

√
λiI2n

)(
A+ i

√
λiI2n

)
=

r∏
i=1

(
A2 + λiI2n

)
(3.2.2)

Ahora, calculemos cuánto vale A2:

A2 =

(
0 In
−Y 0

)(
0 In
−Y 0

)
=

( −Y 0

0 −Y

)
(3.2.3)
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De esta forma, sustituyendo en la ecuación 3.2.2 en la página anterior, obtenemos:

P =
r∏
i=1

[( −Y 0

0 −Y

)
+

(
λiIn 0

0 λiIn

)]
=

r∏
i=1

−
(
Y − λiIn 0

0 Y − λiIn

)
=

= (−1)r
r∏
i=1

(
Y − λiIn 0

0 Y − λiIn

)
= (−1)r


r∏
i=1

[Y − λiIn] 0

0
r∏
i=1

[Y − λiIn]


donde la expresión

r∏
i=1

[Y − λiIn] es justo el polinomio mínimo de Y (por la ecuación 3.2.1 en la página

anterior) evaluado en Y , por lo que es nulo. Es decir, tenemos:

P =

r∏
i=1

(
A− i

√
λiI2n

)(
A+ i

√
λiI2n

)
= (0)

Por consiguiente, la expresión anterior interpretada como un polinomio en A es el polinomio mínimo de A.
Como en el polinomio mínimo de A no hay ningún autovalor repetido, todos los factores del polinomio están
presentes con multiplicidad uno y, por consiguiente, la matriz A es diagonalizable.

Aplicando nuestros conocimientos de ecuaciones diferenciales, obtenemos que la solución general de la
ecuación Ẋ = AX viene dada por:

X (t) =
2r∑
j=1

eωjtvj

donde vj ∈ Vωj (A), ya que el número de autovalores distintos de A es el doble que el de Y . Podemos reescribir
lo anterior como:

X (t) =
r∑
j=1

(
ei
√
λjtuj + e−i

√
λjtwj

)
(3.2.4)

donde uj ∈ V
i
√
λj

(A) y wj ∈ V−i
√
λj

(A). Como X (t) ∈ R ∀t ∈ R y las exponenciales correspondientes a
autovalores distintos son linealmente independientes entre sí, cada uno de sus sumandos del sumatorio anterior
debe ser real, es decir, debe darse:

ei
√
λjtuj + e−i

√
λjtwj = ei

√
λjtuj + e−i

√
λjtwj ∀j = 1, . . . , 2r ⇔

⇔ ei
√
λjtuj + e−i

√
λjtvj = e−i

√
λjtuj + ei

√
λjtwj ⇔

⇔
{

ei
√
λjtuj = ei

√
λitwj

e−i
√
λjtwj = e−i

√
λituj

⇔
{
uj = wj
wj = uj

donde el último paso se debe a que las exponenciales son linealmente independientes entre sí, siendo válido el
argumento anterior ∀j = 1, . . . , r.

Descompondremos uj y wj en su parte real y su parte compleja. En consecuencia, definimos:

aj := uj + uj ∀j = 1, . . . , r

bj :=
1

i
(uj − uj) ∀j = 1, . . . , r
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De esta forma, podemos expresar la solución dada en la ecuación 3.2.4 en la página anterior como:

X (t) =
r∑
j=1

(
ei
√
λjt (aj + ibj) + e−i

√
λjt (aj − ibj)

)
=

=
r∑
j=1

[
aj

(
ei
√
λjt + e−i

√
λjt
)

+ ibj

(
ei
√
λjt − e−i

√
λjt
)]

=

=
r∑
j=1

[
2aj cos

(√
λjt
)
− 2bj sen

(√
λjt
)]

Bien, a continuación, veamos que aj , bj ∈ ker
(
A2 + λjI2n

)
. Por definición de aj y de bj , ambos toman

valores en ker
(
A− i

√
λjI2n

)
+ ker

(
A+ i

√
λjI2n

)
y es:

ker
(
A− i

√
λjI2n

)
+ ker

(
A+ i

√
λjI2n

)
= ker

[(
A− i

√
λjI2n

)(
A+ i

√
λjI2n

)]
=

= ker
[
A2 + λjI2n

]
Luego, efectivamente, aj , bj ∈ ker

(
A2 + λjI2n

)
. Además, como era:

A2 + λjI2n =

( −Y 0

0 −Y

)
+

(
λiIn 0

0 λiIn

)
= −

(
Y − λiIn 0

0 Y − λiIn

)
por lo visto en la ecuación 3.2.3 en la página 140, necesariamente, tanto las primeras n componentes de aj y
bj como sus últimas n componentes entendidas como vectores de Rn son vectores propios de Y .

Muy bien, sabemos que la solución de Q̈ = −M−1KQ vendrá dada por las primeras n componentes de la
solución X (t). Es decir, será:

Q (t) ≈
r∑
j=1

[
2αj cos

(√
λjt
)
− 2βj sen

(√
λjt
)]

(3.2.5)

donde αj = (aj,1, . . . , aj,n) y βj = (bj,1, . . . , bj,n). Por lo que acabamos de comentar en el párrafo anterior,
sabemos que αj , βj ∈ Vλj (Y ). Ahora mismo, tenemos la solución expresada como combinación lineal de senos
y cosenos y queremos expresarla como combinación lineal de cosenos con desfase. Para ello, consideremos el
polinomio característico de Y : PY (λ) = (λ− λ1)m1 . . . (λ− λr)mr siendo λ1, . . . , λr los autovalores distintos
de Y y m1, . . . ,mr sus respectivas multiplicidades en el polinomio característico. Como Y es diagonalizable
(por lo argumentado anteriormente), sabemos que el espacio propio asociado al autovalor λj tendrá dimensión
mj ; es decir, será dimVλj (Y ) = mj . En consecuencia, tomando una base para cada uno de los espacios propios
de Y , podemos expresar αj y βj como:

αj =

mj∑
k=1

yj,kµj,k ∀j = 1, . . . , r

βj =

mj∑
k=1

zj,kµj,k ∀j = 1, . . . , r

donde yj,k, zj,k ∈ R y {µj,k}mj

k=1 forma una base de Vλj (Y ). Sustituyendo en la expresión 3.2.5, obtenemos:

Q (t) ≈
r∑
j=1

[
2

(mj∑
k=1

yj,kµj,k

)
cos
(√

λjt
)
− 2

(mj∑
k=1

zj,kµj,k

)
sen
(√

λjt
)]

=
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=
r∑
j=1

mj∑
k=1

[
2yj,k cos

(√
λjt
)
− 2zj,k sen

(√
λjt
)]

︸ ︷︷ ︸
∈R

µj,k

Ahora, podemos aplicar la equivalencia conocida entre la solución de una oscilación armónica expresada como
combinación lineal de un seno y un coseno y la solución expresada como un coseno con un desfase. De esta
manera, obtenemos que existen Bj,k, φj,k ∈ R ∀k = 1, . . . ,mj ∧ ∀j = 1, . . . , r tales que:

Q (t) ≈
r∑
j=1

mj∑
k=1

Bj,k cos
(√

λjt+ φj,k

)
µj,k

Como es necesariamente
r∑
j=1

mj = n, podemos reescribir el doble sumatorio anterior en función de un único

índice. De forma que la expresión anterior es equivalente a:

Q (t) ≈
n∑
i=1

cos
(√

λit+ δi

)
vi

donde vi ∈ Vλi (Y ) y los λi no son necesariamente distintos entre sí. Además, por construcción, los vi forman
una base de vectores propios de Y . Q.E.D.

Corolario 23. Sea un sistema de n grados de libertad sometido a pequeñas oscilaciones y sea V la función
potencial asociada al sistema. Además, sean {qi}ni=1 coordenadas generalizadas ortonormales para dicho
sistema que cumplen Q = (q1, . . . , qn) = ~0 en un punto de equilibrio estable del sistema. Consideremos la
matriz K dada en el corolario 22 en la página 136 y llamemos λ1, . . . , λn a los valores propios de K (no
necesariamente distintos entre sí). Entonces, existen δi ∈ R y vi ∈ Vλi (K) (donde con esto último denotamos
el espacio propio de K asociado al autovalor λi) ∀i = 1, . . . , n tales que la solución general del movimiento
del sistema puede aproximarse como:

Q (t) ≈
n∑
i=1

cos (ωit+ δi) vi

siendo ωi = +
√
λi, siendo {vi}ni=1 una base de vectores propios de K.

Demostración. El resultado se obtiene trivialmente al aplicar el teorema 8 en la página 138 tomando M = In
ya que las coordenadas {qi}ni=1 son ortonormales. Q.E.D.

Definición 28. Cada uno de de los sumandos que aparecen en el sumatorio de la expresión de Q (t) dada en
el teorema 8 en la página 138 reciben el nombre de modo.

Observación 30. Cuando en la expresión de la ecuación dada en el teorema 8 en la página 138 todos los
sumandos son nulos menos un modo, entonces las coordenadas q1, . . . , qn oscilan con la misma frecuencia,
aunque no necesariamente con las mismas amplitudes.

Como la solución general es una combinación arbitraria de modos (según expuesto en el teorema 8 en
la página 138), estudiar el comportamiento del sistema dado por cada modo resulta útil para entender el
funcionamiento del sistema en su totalidad.

Proposición 36 (Ecuación de amplitudes). Consideramos un modo (el j-ésimo) de los que aparecen en la
expresión de Q (t) en el teorema 8 en la página 138:

Qj (t) ≈ cos (ωt+ δ) v
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donde v ∈ Vω2 (K). Consideremos v = (A1, . . . , An), de forma que Ai es la amplitud de oscilación de la
coordenada qi. Entonces se cumple la ecuación:

ω2Ai =
n∑
j=1

kijAj

Demostración. Como v es un vector propio de K asociado al valor propio ω2, debe ser:

Kv = ω2v ⇔

k11 · · · k1n
...

. . .
...

kn1 · · · knn


A1

...
An

 = ω2

A1
...
An

⇔ ω2Ai =
n∑
j=1

kijAj

Q.E.D.

Ejemplo 21. Tenemos dos partículas iguales de masa m, sin rozamiento, acopladas con tres muelles iguales
entre sí con constante k como se muestra en la figura:

m2m1

k11 k12 k22

x2x1

Nuestra intención va a ser aplicar el corolario 23 en la página anterior. Para ello, primero tenemos que
hallar unas coordenadas ortonormales con las que describir nuestro sistema. Con tal fin, debemos estudiar la
energía cinética:

T =
1

2
mẋ2

1 +
1

2
mẋ2

2

Por la definición 25 en la página 128, las coordenadas {x1, x2} ya son ortogonales, por tanto, únicamente
tenemos que normalizarlas:

q1 :=
√
mx1 ⇔ x1 =

q1√
m
, q2 :=

√
mx2 ⇔ x2 =

q2√
m

(3.2.6)

De esta forma, podemos expresar la energía cinética como:

T =
1

2
q2

1 +
1

2
q2

2
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A continuación, vamos con la energía potencial:

V =
1

2
kx2

1 +
1

2
k (x2 − x1)2 +

1

2
kx2

2

En función de las coordenadas q1 y q2, el potencial queda:

V =
1

2

k

m
q2

1 +
1

2
k

(
q2√
m
− q1√

m

)2

+
1

2

k

m
q2

2 =

=
1

2

k

m
q2

1 +
1

2

k

m
(q2 − q1)2 +

1

2

k

m
q2

2

Como V ya es un polinomio de segundo grado, no necesitaríamos hallar las parciales para obtener la matriz
K. Sin embargo, para evitarnos el trabajo de expandir los cuadrados y juntar los términos, vamos a derivar
en su lugar. De esta manera:

k11 =
∂2V

∂q2
1

=
∂

∂q1

[
k

m
q1 +

k

m
(q2 − q1) (−1)

]
=

k

m
+
k

m
=

2k

m

k22 =
∂2V

∂q2
2

=
∂

∂q2

[
k

m
q1 +

k

m
(q2 − q1)

]
=

k

m
+
k

m
=

2k

m

k12 = k21 =
∂2V

∂q1∂q2
=

∂

∂q1

[
k

m
(q2 − q1)

]
= − k

m

De esta forma, la matriz K queda:

K =

(
2k
m − k

m

− k
m

2k
m

)
Ahora debemos hallar los autovalores de la matriz K:

∣∣K − ω2I
∣∣ = 0⇔

∣∣∣∣2km − ω2 − k
m

− k
m

2k
m − ω2

∣∣∣∣ = 0⇔

⇔
(

2k

m
− ω2

)2

−
(
k

m

)2

= 0⇔
(

2k

m
− ω2 − k

m

)(
2k

m
− ω2 +

k

m

)
= 0⇔

⇔
(
k

m
− ω2

)(
3k

m
− ω2

)
= 0⇔ ω2 =


k

m

3k

m

De donde obtenemos que las frecuencias de oscilación son:
ω1 =

√
k

m

ω2 =

√
3k

m

A continuación, debemos hallar una base de vectores propios. Para el valor propio ω2
1 = k

m , tenemos:(
K − k

m
I2
)(

a
b

)
= 0⇔

(
k
m − k

m

− k
m

k
m

)(
a
b

)
= 0⇔
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{
k
ma− k

mb = 0

− k
ma+ k

mb = 0
⇒
(
a
b

)
=

(
α
α

)
∀α ∈ C

De esta forma, aplicando el corolario 23 en la página 143, obtenemos el primer modo:

Q1 (t) = A1

(
1
1

)
cos (ω1t+ δ1)

donde A1, δ1 ∈ R. Así, q1 y q2 oscilan en fase. Haciendo el cambio de vuelta a las coordenadas {x1, x2} según
dado en la ecuación 3.2.6 en la página 144, obtenemos:

X1 (t) =
A1√
m︸︷︷︸

=:B1

(
1
1

)
cos (ω1t+ δ1) = B1

(
1
1

)
cos (ω1t+ δ1)

Este modo recibe el nombre de modo simétrico.

x
1
(t

)

t

x
2
(t

)

Actuemos de forma análoga para obtener el segundo modo, el correspondiente al valor propio ω2
2 = 3k

m .(
K − 3k

m
I2
)(

a
b

)
= 0⇔

(
− k
m − k

m

− k
m − k

m

)(
a
b

)
= 0⇔

{
k
ma+ k

mb = 0

+ k
ma+ k

mb = 0
⇒
(
a
b

)
=

(
β
−β

)
∀β ∈ C
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Aplicando el corolario 23 en la página 143, obtenemos el segundo modo:

Q2 (t) = A2

(
1
−1

)
cos (ω2t+ δ2)

donde A2, δ2 ∈ R. Así, q1 y q2 oscilan en desfase. Haciendo el cambio de vuelta a las coordenadas {x1, x2}
según dado en la ecuación 3.2.6 en la página 144, obtenemos:

X2 (t) =
A2√
m︸︷︷︸

=:B2

(
1
−1

)
cos (ω2t+ δ2) = B2

(
1
−1

)
cos (ω2t+ δ2)

Este modo recibe el nombre de modo antisimétrico.

x
1
(t

)

t

x
2
(t

)

Así, tenemos dos soluciones (dos modos normales):

X1 (t) = B1

(
1
1

)
cos (ω1t+ δ1)

X2 (t) = B2

(
1
−1

)
cos (ω2t+ δ2)
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Por ende, la solución general, según el corolario 23 en la página 143, vendrá dada por:

X (t) = X1 (t) +X2 (t) =

= B1

(
1
1

)
cos (ω1t+ δ1) +B2

(
1
−1

)
cos (ω2t+ δ2)

siendo B1, B2, δ1, δ2 ∈ R constantes arbitrarias que dependen de las condiciones iniciales.

Q.E.F.

3.3. Osciladores débilmente acoplados

Muchas veces en física nos encontraremos con un sistema formado por dos partículas oscilantes que están
débilmente acopladas. Por ejemplo, dos partículas sometidas a fuerzas de Van der Waals cumplen esta con-
dición. Para visualizar esto, podemos imaginarnos un sistema con dos masas m y tres muelles de constantes
k1 = k = k2 y k12 � k.

m2m1

k11 k12 k22

x2x1

Por la segunda ley de Newton, obtenemos las ecuaciones:{
mẍ1 = −kx1 + k12 (x2 − x1)
mẍ2 = −kx2 − k12 (−x1 + x2)

⇔
{
mẍ1 = − (k + k12)x1 + k12x2

mẍ2 = − (k + k12)x2 + k12x1
⇔

⇔MẌ = −
(
k + k12 −k12

−k12 k + k12

)
X

donde M =

(
m 0
0 m

)
. Por analogía con la expresión dada por la proposición 35 en la página 134, debe ser:

K =

(
k + k12 −k12

−k12 k + k12

)
Por el teorema 8 en la página 138, para hallar las frecuencias de oscilación del sistema, debemos hallar los
valores propios de la matriz Y = M−1K:

Y = M−1K =
1

m

(
k + k12 −k12

−k12 k + k12

)
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De forma que los valores propios de Y serán los mismos que los de K pero multiplicados por 1
m . Así:

|K − λI| = 0⇔
∣∣∣∣k + k12 − λ −k12

−k12 k + k12 − λ

∣∣∣∣ = 0⇔

⇔ (k + k12 − λ)2 − k2
12 = 0⇔ (k + k12 − λ− k12) (k + k12 − λ+ k12) = 0⇔

⇔ (k − λ) (k + 2k12 − λ) = 0⇔ λ =

{
k

k + 2k12

De esta forma, los valores propios de Y serán:

ω2 =


k

m

k + 2k12

m

Por consiguiente, las frecuencias de oscilación quedan:

ω1 =

√
k

m
, ω2 =

√
k + 2k12

m

donde ω1 se corresponde con el modo simétrico y ω2 se corresponde con el modo antisimétrico (como veremos
ahora). Como k12 � k, tenemos que ω1 y ω2 serán muy parecidas. Esto motiva que trabajemos con la
frecuencia central ω0:

ω0 :=
ω1 + ω2

2

Ahora, expresaremos las frecuencias ω1 y ω2 en función de ω0. Para ello, sabemos que debe existir ε > 0 tal
que:

ω1 = ω0 − ε, ω2 = ω0 + ε

A continuación, para poder hallar los modos, según el teorema 8 en la página 138, debemos encontrar una
base de vectores propios de Y = M−1K . En nuestro caso, los vectores propios de Y también serán vectores
propios de K y viceversa; luego podemos simplemente hallar los autovectores de K:

(K − kI)
(
a
b

)
= (0)⇔

(
k12 −k12

−k12 k12

)(
a
b

)
=

(
0
0

)
⇔
{
k12a− k12b = 0
−k12a+ k12b = 0

⇔

⇔
(
a
b

)
=

(
α
α

)
con α ∈ C.

(K − (k + 2k12) I)
(
a
b

)
= (0)⇔

(
−k12 −k12

−k12 −k12

)(
a
b

)
=

(
0
0

)
⇔
{
−k12a− k12b = 0
−k12a− k12b = 0

⇔

⇔
(
a
b

)
=

(
β
−β

)
con β ∈ C.

De esta forma, aplicando el teorema 8 en la página 138, obtenemos que los modos serán:

X1 (t) = C1

(
1
1

)
cos [(ω0 − ε) t+ δ1]
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X2 (t) = C2

(
1
−1

)
cos [(ω0 + ε) t+ δ2]

con C1, C2, δ1, δ2 ∈ R. Por el teorema 8 en la página 138, la solución general queda de la forma:

X (t) = X1 (t) +X2 (t) = C1

(
1
1

)
cos [(ω0 − ε) t+ δ1] + C2

(
1
−1

)
cos [(ω0 + ε) t+ δ2] =

= C1

(
1
1

)
cos (ω0t+ δ1 − εt) + C2

(
1
−1

)
cos (ω0t+ δ2 + εt)

Supondremos nulo el desfase inicial δ1 = 0 = δ2:

X (t) = C1

(
1
1

)
cos (ω0t− εt) + C2

(
1
−1

)
cos (ω0t+ εt)

Por la fórmula del coseno de la suma cos (α+ β) = cosα cosβ − senα senβ, obtenemos:

X (t) = C1

(
1
1

)
[cos (ω0t) cos (−εt)− sen (ω0t) sen (−εt)] +

+C2

(
1
−1

)
[cos (ω0t) cos (εt)− sen (ω0t) sen (εt)] =

X (t) =

(
C1 [cos (ω0t) cos (εt) + sen (ω0t) sen (εt) + cos (ω0t) cos (εt)− sen (ω0t) sen (εt)]
C2 [cos (ω0t) cos (−εt) + sen (ω0t) sen (εt)− cos (ω0t) cos (εt) + sen (ω0t) sen (εt)]

)
=

=

(
2C1 cos (ω0t) cos (εt)
2C2 sen (ω0t) sen (εt)

)
Ahora, supondremos C1 = C2 y llamaremos A := 2C1 = 2C2. De esta forma, podemos expresar la solución
como:

X (t) = A

(
cos (ω0t) cos (εt)
sen (ω0t) sen (εt)

)
Notemos que es ε � ω0. Esto hace que nuestra solución pueda entenderse como una oscilación rápida (el
término con ω0) cuya amplitud está modulada por una oscilación lenta (los términos con ε).

Ahora vamos a suponer que en t = 0 se da x1 = A y x2 = 0 con ẋ1 = 0 y ẋ2 = 0. Para t muy pequeños,
va a ser aproximadamente:

x1 (t) ≈ A cos (ω0t) , x2 (t) ≈ 0

Luego, en t ≈ π
2ε se dará:

x1 (t) ≈ 0, x2 (t) ≈ A sen (ω0t)

Es decir, ambos osciladores se están transfiriendo la energía de uno a otro, de manera que uno permanece
estático mientras el otro oscila. Veamos las gráficas de x1 (t) y x2 (t):
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x
1
(t

)

t

x
2
(t

)

Puede verse una animación al respecto en el siguiente vídeo1.

3.4. Propiedades para la base de autovectores

Proposición 37. Sea un sistema de n grados de libertad sometido a pequeñas oscilaciones y sea V la función
potencial asociada al sistema. Además, sean {qi}ni=1 coordenadas generalizadas ortonormales para dicho siste-
ma que cumplen Q = ~0 en un punto de equilibrio estable del sistema. Si existe una base de vectores propios de
K (donde consideramos K la matriz dada en el corolario 22 en la página 136) que sea ortonormal, entonces
las coordenadas generalizadas {ci}ni=1 dadas por C = PQ (donde P es la matriz del cambio entre la base
canónica y la base que en la que K es diagonal) son ortonormales; es decir, satisfacen:

T =

n∑
i=1

1

2
ċ2
i

1https://www.youtube.com/watch?v=LwKNaFmNjAo
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Además, para estas coordenadas {ci}ni=1 los modos se corresponden con la oscilación armónica de una y sólo
una de las coordenadas cj. Es decir, el modo j-ésimo viene dado por:

Cj (t) =



0
...
0

a cos (ωt+ δ)
0
...
0


donde a, δ ∈ R y ω2 es un valor propio de K.

Por otra parte, en función de las coordenadas {ci}ni=1, la energía potencial adopta la forma:

V =
1

2

n∑
i=1

ω2
i c

2
i

donde ω2
1, . . . , ω

2
n son los valores propios de la matriz K, es decir, los cuadrados de las frecuencias de oscilación.

Por último, el lagrangiano del sistema expresado en función de las coordenadas {ci}ni=1 es separable en n
lagrangianos independientes.

Demostración. Como las coordenadas {qi}ni=1 son ortonormales, por la definición 26 en la página 132, podemos
expresar la energía cinética como:

T =
n∑
i=1

1

2
q̇2
i =

1

2

n∑
i=1

q̇2
i =

1

2

〈
Q̇, Q̇

〉
donde con 〈〉 denotamos producto escalar. Por otra parte, por conocimientos de álgebra lineal es:

C = PQ⇔ Q = P−1C ⇒ Q̇ = P−1Ċ

Sustituyendo en la expresión para T , tenemos:

T =
1

2

〈
P−1Ċ, P−1Ċ

〉
Si la base de vectores propios es ortonormal (respecto al producto escalar canónico), entonces, sabemos que
el cambio de base entre la base de vectores propios de K y la base canónica vendrá dado por una matriz
ortogonal, por lo que P−1 será ortogonal. Ahora, recordemos que una matriz ortogonal no es más que la
representación coordenada de una isometría y una isometría preserva el producto escalar. Por consiguiente,
será:

T =
1

2

〈
P−1Ċ, P−1Ċ

〉
=

1

2

〈
Ċ, Ċ

〉
=

1

2

n∑
i=1

ċ2
i =

n∑
i=1

1

2
ċ2
i

Y, por la definición 26 en la página 132, las coordenadas {ci}ni=1 son ortonormales.
Consideremos ahora, el modo j-ésimo de oscilación. Por la definición 28 en la página 143 y el corolario 23

en la página 143, sabemos que dicho modo puede expresarse como:

Qj (t) = cos (ωt+ δ) v

donde ω2 es un autovalor deK, δ ∈ R y v ∈ Vω2 (K). Para pasar a las coordenadas {ci}ni=1 debemos multiplicar
la expresión anterior por P (ya que P era la matriz del cambio entre la base canónica (la de las {qi}ni=1) y la
base en la que K es diagonal):

Cj (t) = PQj (t) = P cos (ωt+ δ) v = cos (ωt+ δ)Pv
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Como estamos considerando el modo j-ésimo, v será proporcional al vector j-ésimo de la base de vectores
propios de K; llamaremos a ∈ R a dicha constante de proporcionalidad. De esta forma, en su base de auto-
vectores, v debe ser proporcional al vector j-ésimo de la base canónica con constante de proporcionalidad a.
Ahora bien, dado que Pv es justo la expresión de v en base de vectores propios, tenemos:

Cj (t) =



0
...
0

a cos (ωt+ δ)
0
...
0


Vamos con la energía potencial V . Como estamos en el caso de pequeñas oscilaciones, estamos tomando la

función energía potencial como un polinomio de Taylor de segundo grado, cuyos términos lineales y constantes
son nulos. Por consiguiente, es:

V =
1

2

n∑
i=1

n∑
j=1

∂2V

∂ci∂cj
cicj

Por otra parte, recordando la definición de la matriz K dada en el corolario 22 en la página 136, podemos
expresar la energía potencial V como:

V =
1

2

n∑
i=1

n∑
j=1

kijcicj

Como K es diagonal en la base en la que están expresadas las {ci}ni=1, llegamos a:

V =
1

2

n∑
i=1

kiic
2
i

En base diagonal, necesariamente los kii son los autovalores de K. Por consiguiente:

V =
1

2

n∑
i=1

ω2
i c

2
i

Por último consideremos el lagrangiano del sistema. Por lo argumentado antes, sabemos que será:

T =
n∑
i=1

1

2
ċ2
i

De esta forma, el lagrangiano queda:

L = T − V =
n∑
i=1

1

2
ċ2
i −

1

2

n∑
i=1

ω2
i c

2
i =

n∑
i=1

(
1

2
ċ2
i −

1

2
ω2
i c

2
i

)
︸ ︷︷ ︸

=:Li

=
n∑
i=1

Li

donde cada Li = F! (ci, ċi). Es decir, hemos obtenido n lagragianos independientes unos de otros. Q.E.D.

Observación 31. Un condición suficiente aunque no necesaria para que se satisfagan las hipótesis de la pro-
posición 37 en la página 151 es los valores propios de K sean todos distintos entre sí. Ya que, en ese caso,
al ser la matriz K simétrica, sabemos que autovalores distintos se corresponden con vectores propios que son
ortogonales entre sí. Y, si todos los valores propios son distintos entre sí, entonces todos los vectores propios
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serán ortogonales entre sí y, por consiguiente, la base de vectores propios deK será ortogonal. Una vez tenemos
una base ortogonal, resulta trivial obtener una base ortonormal.

En particular, si consideramos un sistema con dos grados de libertad y coordenadas generalizadas {x1, x2}
acopladas, por la solución del problema de dos cuerpos, sabemos que las coordenadas x1 + x2 y x1 − x2

transforman el problema en dos problemas de una partícula. La proposición 37 en la página 151 es una
generalización del problema de dos cuerpos para el caso de oscilaciones pequeñas.

Ejemplo 22. Vamos a dar un ejemplo de la aplicación de la proposición 37 en la página 151.
Tenemos un sistema con 2 masas iguales m y 3 muelles de constante k. Por la segunda ley de Newton,

obtenemos las ecuaciones del movimiento: {
mẍ1 = −2kx1 + kx2

mẍ2 = kx1 − 2kx2

Sumando y restando las ecuaciones anteriores (como se hace con el problema de dos cuerpos), llegamos a:

m (ẍ1 + ẍ2) = (k − 2k)x1 + (k − 2k)x2 = −k (x1 + x2)

m (ẍ1 − ẍ2) = (−2k − k)x1 + (k + 2k)x2 = −3k (x1 − x2)

Definimos las coordenadas:
q1 :=

1

2m
(x1 + x2)

q2 :=
1

2m
(x1 − x2)

En función de estas, las ecuaciones del movimiento quedan:
q̈1 = − k

m
q1

q̈2 = −3k

m
q2

Comparando la expresión anterior con la dada en el corolario 22 en la página 136, deducimos que:(
q̈1

q̈2

)
= −

(
k
m 0

0 3k
m

)
︸ ︷︷ ︸

=K

(
q1

q2

)

Por lo que la matriz K es diagonal en la base en la que se expresan {q1, q2}. Según lo explicado en la
proposición 37 en la página 151, la diagonal de la matriz K deben ser los cuadrados de las frecuencias de
oscilación; de donde deducimos:

ω1 =

√
k

m
, ω2 =

√
3k

m

También por la proposición 37 en la página 151, deducimos que (q1 (t) , 0) y (0, q2 (t)) son los modos de
oscilación expresados en base de autovectores. Es más, por definición de q1 (t) y q2 (t) se da:(

x1 (t)
x2 (t)

)
=

(
1
2 (q1 (t) + q2 (t))
1
2 (q1 (t)− q2 (t))

)
=

1

2

(
1
1

)
q1 (t) +

1

2

(
1
−1

)
q2 (t)

Por el corolario 23 en la página 143, deducimos que
(

1
1

)
y
(

1
−1

)
son vectores propios de K expresados en

base canónica que forman una base de vectores propios de K.
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Por último consideremos el lagrangiano:

T =
1

2
q̇2

1 +
1

2
q̇2

2

V =
1

2

k

m
q2

1 +
1

2

3k

m
q2

2 =
1

2
ω2

1q
2
1 +

1

2
ω2

2q
2
2

De forma que el lagrangiano queda:

L =
1

2
q̇2

1 +
1

2
q̇2

2 −
1

2
ω2

1q
2
1 −

1

2
ω2

2q
2
2 =

1

2

(
q̇2

1 − ω2
1q

2
1

)
+

1

2

(
q̇2

2 − ω2
2q

2
2

)
Por lo que el langrangiano es separable en dos lagrangianos correspondientes a dos osciladores armónicos sin
ningún término de acople. De esta forma, hemos comprobado para n = 2, lo que ya conocíamos para el caso
general según dado por la proposición 37 en la página 151.

3.5. Problemas

Ejercicio 15 (Problema 3.3). Una masa m cuelga de un muelle de constante elástica k y masa despreciable
y, de ella, otro muelle y masa idénticos a los primeros. Calcula el lagrangiano del sistema, utilizando como
coordenadas generalizadas los desplazamientos verticales de las masas, respecto a la posición que tienen cuando
los muelles están sin estirar. Obtén la posición de equilibrio y las frecuencias y los modos normales de las
oscilaciones verticales.

Figura 3.1: Sistema del problema

Solución. Comencemos definiendo como x1 a la posición de la partícula más cercana al punto de anclaje y
x2 a la otra, según esto, es facil ver que:

T =
1

2
mẋ2

1 +
1

2
mẋ2

2

V = −mgx1 −mg(x1 + x2) +
1

2
k(x1 − l0)2 +

1

2
k[x2 − (x1 + l0)]2

Podemos definir unas nuevas coordenadas que simplificarán las anteriores expresiones:

qi ≡
√
mxi i = 1, 2

Así pues, las expresiones para la energía cinética y potencial tendrán las siguientes formas:

T =
1

2
q̇2

1 +
1

2
q̇2

2

V = −√mg(q1 + q2) +
k

2

[(
q1√
m
− l0

)2

+

(
q2 − q1√

m
− l0

)2
]
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Por lo tanto, el lagrangiano del sistema tendrá una expresión:

L = T − V

Podemos ahora emplear las ecuaciones de Euler-Lagrange d
dt

(
∂L
∂q̇

)
− ∂L

∂q = 0 para encontrar las ecuaciones del
movimiento del sistema:

d

dt

(
∂L
∂q̇i

)
= q̈i

∂L
∂q1

= −√mg +
k

2

[
2

(
q1√
m
− l0

)
1√
m
− 2

(
q2 − q1√

m
− l0

)
1√
m

]
=

=
k

m

(
2q1 − q2 −

m
√
mg

k

)
∂L
∂q2

= −√mg +
k

2

[
2

(
q2 − q1√

m
− l0

)
1√
m

]
=

k

m

(
q2 − q1 −

√
ml0 −

m
√
mg

k

)

∴

 q̈1 = k
m

(
2q1 − q2 − m

√
mg
k

)
q̈2 = k

m

(
q2 − q1 −

√
ml0 − m

√
mg
k

)
Podemos nuevamente hacer un cambio de coordenadas que simplifiquen estas expresiones (haciendo que no
tengan términos constantes), este cambio de variables será pues, una traslación:

q′1 ≡ q1 + a q′2 ≡ q2 + b

con a, b constantes que cumplirán:{
2a− b = −m

√
mg
k

−a+ b = −√ml0 − m
√
mg
k

→

 a = −√m
(
l0 + 2mg

k

)
b = −√m

(
2l0 + 3mg

k

)
Así pues, las ecuaciones del movimiento serán:

q̈′1 = k
m (2q′1 − q′2) q̈′2 = k

m (q′2 − q′1)

Las posiciones de equilibrio del sistema se darán cuando q̈′1 = q̈′2 = 0, lo cual deja el siguiente sistema de
ecuaciones: {

0 = k
m (2q′1 − q′2)

0 = k
m (q′2 − q′1)

→ q′1 = q′2 = 0

Ahora bien, puesto que por definición q′1 = q1 + a y q′2 = q2 + b tendremos que las posiciones de equilibrio
serán:

q1

∣∣
equilibrio

= −a =
√
m
(
l0 + 2mg

k

)
q2

∣∣
equilibrio

= −b =
√
m
(

2l0 + 3mg
k

)
Podemos expresar las ecuaciones del movimiento en forma matricial, de la siguiente forma:(

q̈′1
q̈′2

)
=

(
2k
m − k

m

− k
m

k
m

)(
q′1
q′2

)
Sabemos por teoría que las frecuencias normales de oscilación del sistema se obtendrán como la solución

de:

det(K − ω2I) = 0→
∣∣∣∣2km − ω2 − k

m

− k
m

k
m − ω2

∣∣∣∣ = 0→
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(
2k

m
− ω2

)(
k

m
− ω2

)
−
(
− k
m

)2

= 0→ 2
k2

m2
− ω2 2k

m
− ω2 k

m
+ ω4 − k2

m2
= 0→

→ ω4 − ω2 3k

m
+
k2

m2
= 0→ ω2 = 3±

√
5

2
k
m

Así pues, las dos frecuencias normales del sistema serán:

ω2
1 =

3−
√

5

2

k

m
ω2

2 =
3 +
√

5

2

k

m

Podemos ahora comenzar a calcular los modos normales de oscilación. Comenzando con el modo relacionado
con ω1: (

2k
m − ω2

1 − k
m

− k
m

k
m − ω2

1

)(
a1

a2

)
=

(
0
0

)
→
(

1+
√

5
2

k
m − k

m

− k
m

−1+
√

5
2

k
m

)(
a1

a2

)
=

(
0
0

)
→

→ a2 =
1 +
√

5

2
a1 → ~v1 = a

(
1

1+
√

5
2

)
Y el modo relacionado con ω2:(

2k
m − ω2

2 − k
m

− k
m

k
m − ω2

2

)(
b1
b2

)
=

(
0
0

)
→
(

1−
√

5
2

k
m − k

m

− k
m

−1−
√

5
2

k
m

)(
b1
b2

)
=

(
0
0

)
→

→ b2 =
1−
√

5

2
b1 → ~vb = b

(
1

−1−
√

5
2

)
Así pues, por lo visto en teoría, tendremos que los movimientos del sistema estarán dados por la expresión
siguiente: (

q′1(t)
q′2(t)

)
= a

(
1

1+
√

5
2

)
cos (ω1t+ δ1) + b

(
1

−1−
√

5
2

)
cos (ω2t+ δ2)

Deshaciendo cambio de variables de q′i a qi:(
q1(t)
q2(t)

)
= a

(
1

1+
√

5
2

)
cos (ω1t+ δ1) + b

(
1

−1−
√

5
2

)
cos (ω2t+ δ2) +

√
m

(
l0 + 2mg

k

2l0 + 3mg
k

)
Y volviendo a las coordenadas originales xi:(

x1(t)
x2(t)

)
= a

(
1

1+
√

5
2

)
cos (ω1t+ δ1) + b

(
1

−1−
√

5
2

)
cos (ω2t+ δ2) +

(
l0 + 2mg

k

2l0 + 3mg
k

)
Q.E.F.

Ejercicio 16 (Problema 3.16). Dos partículas de masa m están ensartadas en sendas guías parabólicas
verticales. Si xi es la separación de cada partícula respecto al centro de su parábola, la altura de cada
una es yi = k

2mgx
2
i , donde k es una constante y g es la aceleración de la gravedad. Un muelle ideal de

constante k′ y longitud natural a une ambas partículas. Suponiendo que la distancia vertical entre ambas
partículas se mantiene pequeña, y teniendo en cuenta la gravedad, determine: a) la posición de equilibrio, b)
el lagrangiano cerca de dicha posición y c) las frecuencias normales; d) discuta cualitativamente qué sucede
cuando inicialmente sólo se separa una de las partículas de la posición de equilibrio, cumpliéndose que k′ � k.

Solución.
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Apartado a:

Vg = mgy1 +mgy2 = mg
k

2mg

(
x2

1 + x2
2

)
=
k

2

(
x2

1 + x2
2

)
Es como si tuviéramos dos muelles con orígenes en x = −a

2 y x = a
2 .

Vm =
1

2
k′
[√

(x2 + a− x1)2 + (y2 − y1)2 − a
]2

Podemos suponer (x2 + a− x1)2 � (y2 − y1)2, obteniendo:

Vm ≈
1

2
k′ [|x2 + a− x1| − a]2 =

1

2
k′ [x2 + a− x1 − a]2 =

1

2
k′ (x2 − x1)2

V = Vm + Vg =
k

2

(
x2

1 + x2
2

)
+
k′

2

(
x2

1 + x2
2 − 2x1x2

)
=

1

2

(
k + k′

) (
x2

1 + x2
2

)
+ k′x1x2

~F = −~∇V = 0⇔ ~∇V = 0⇔ dV = 0

dV = 0⇔
{
∂V
∂x1

= 0
∂V
∂x2

= 0

0 =
∂V

∂x1
=
(
k + k′

)
x1 + k′x2 = kx1 + k′ (x1 + x2)

0 =
∂V

∂x2
=
(
k + k′

)
x2 + k′x1 = kx2 + k′ (x1 + x2)

Restando, obtenemos:
0 = k (x1 − x2)⇔ x1 = x2

Sustituyendo en alguna de ellas:
2k′x1 = 0⇔ x1 = 0⇒ x2 = 0

Solución de equilibrio x1 = 0, x2 = 0.

Apartado b:

x1, x2, y1 =
k

2mg
x2

1, y2 =
k

2mg
x2

2

T =
1

2
mx2

1 +
1

2
mx2

2

V =
1

2

(
k + k′

) (
x2

1 + x2
2

)
+ k′x1x2

L = T − V =

=
1

2
mx2

1 +
1

2
mx2

2 −
1

2

(
k + k′

) (
x2

1 + x2
2

)
− k′x1x2
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Apartado c: Tenemos que ortonormalizar las coordenadas:

q1 =
√
mx1, q2 =

√
mx2

q1 = 0⇔ x1 = 0, q2 = 0⇔ x2 = 0

x1 =
q1√
m
, x2 =

q2√
m

T =
1

2
q2

1 +
1

2
q2

2

V =
1

2

(
k + k′

)(q2
1

m
+
q2

2

m

)
+ k′

q1√
m

q2√
m

=
1

2

k + k′

m

(
q2

1 + q2
2

)
+
k′

m
q1q2

Podríamos extraer el valor de las parciales directamente de aquí, pues es un polinomio y el desarrollo de
Taylor de un polinomio es el propio polinomio.

k11 =

[
∂2V

∂q2
1

]
(0,0)

=

[
∂V

∂q1

(
k + k′

m
q1 +

k′

m
q2

)]
(0,0)

=

[
k + k′

m

]
(0,0)

=
k + k′

m

k22 =

[
∂2V

∂q2
2

]
(0,0)

=

[
∂V

∂q2

(
k + k′

m
q2 +

k′

m
q1

)]
(0,0)

=

[
k + k′

m

]
(0,0)

=
k + k′

m

k12 = k21 =

[
∂2V

∂q1∂q2

]
(0,0)

=

[
∂V

∂q1

(
k + k′

m
q2 +

k′

m
q1

)]
(0,0)

=

[
k′

m

]
(0,0)

=
k′

m

K =

(
k+k′

m
k′

m
k′

m
k+k′

m

)
=

1

m

(
k + k′ k′

k′ k + k′

)
ω2 =

1

m
λ

0 =

∣∣∣∣k + k′ − λ k′

k′ k + k′ − λ

∣∣∣∣ =
1

m

[(
k + k′ − λ

)2 − k′ 2]⇔
⇔ 0 =

(
k + k′ − λ− k′

) (
k + k′ − λ+ k′

)
= (k − λ)

(
k + 2k′ − λ

)
⇔

⇔ λ =

{
k + 2k′

k
⇔ ω2 =

{
k+2k′

m
k
m

⇔ ω =


√

k+2k′

m√
k
m

Hallamos los autovectores:

(K − kI)
(
a
b

)
= (0)⇔

(
k′ k′

k′ k′

)(
a
b

)
=

(
0
0

)
⇔
{
k′a+ k′b = 0
k′a+ k′b = 0

⇔ a = −b

Vk =

〈(
1
−1

)〉
[
K −

(
k + 2k′

)
I
](a

b

)
= (0)⇔

(
−k′ k′

k′ −k′
)(

a
b

)
=

(
0
0

)
⇔
{
−k′a+ k′b = 0
k′a− k′b = 0

⇔ a = b

Vk+2k′ =

〈(
1
1

)〉

q (t) = A

(
1
1

)
cos

(√
k + 2k′

m
t+ φ

)
+B

(
1
−1

)
cos

(√
k

m
t+ ψ

)

q (t) =

(
1
1

)[
α sen

(√
k + 2k′

m
t

)
+ β cos

(√
k + 2k′

m
t

)]
+

(
1
−1

)[
γ sen

(√
k

m
t

)
+ δ cos

(√
k

m
t

)]
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Apartado d: Como es k′ � k, es k + 2k′ ≈ k. Así:

q (t) ≈

(α+ γ) sen

(√
k
m t

)
+ (β + δ) cos

(√
k
m t

)
(α− γ) sen

(√
k
m t

)
+ (β − δ) cos

(√
k
m t

)


X (t) ≈ 1√
m

(α+ γ) sen

(√
k
m t

)
+ (β + δ) cos

(√
k
m t

)
(α− γ) sen

(√
k
m t

)
+ (β − δ) cos

(√
k
m t

)


Tenemos las condiciones iniciales x2 (0) = 0 y ẋ2 (0) = 0.

0 = x2 (0) = β − δ ⇔ β = δ

0 = ẋ2 (0) =

√
k

m
(α− γ)⇔ α = γ

De forma que es x2 (t) = 0 ∀t ∈ R.

Q.E.F.
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Capítulo 4

Oscilaciones mecánicas

4.1. Oscilaciones de partículas en una cuerda

Proposición 38. Consideremos un sistema de n partículas de masa m situadas sobre una cuerda sin masa y
elástica como viene descrito en la ilustración siguiente.

y1
y2

yn

lll

Llamaremos y1, . . . , yn a los desplazamientos transversales de cada partícula con respecto a su posición de
equilibrio y denotaremos con l a la distancia longitudinal (es decir, en horizontal) que hay entre cada una de
las partículas. Asimismo, supondremos constante el módulo de la tensión de la cuerda, que denotaremos con
F . Además, consideraremos que los extremos de la cuerda están fijos en la posición de equilibrio, de forma
que es y0 = yn+1 = 0. Supondremos, de forma adicional, que las partículas únicamente oscilan en vertical
(transversalmente), o sea, que no hay ningún desplazamiento horizontal (longitudinal). Entonces, la energía
potencial del sistema, siempre que se de yj+1 − yj � l ∀j = 0, . . . , n, puede aproximarse como:

V ≈ F

2l

n∑
j=0

(yj+1 − yj)2

161
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Además, se satisface el siguiente sistema de ecuaciones diferenciales:

ÿ1
...
ÿn

 = −



2ω2
0 −ω2

0 0 · · · · · · · · · · · · 0
−ω2

0 2ω2
0 −ω2

0 0 · · · · · · · · · 0
0 −ω2

0 2ω2
0 −ω2

0 0 · · · · · · 0
...

...
0 . . . . . . 0 −ω2

0 2ω2
0 −ω2

0 0
0 . . . . . . . . . 0 −ω2

0 2ω2
0 −ω2

0

0 · · · · · · · · · · · · 0 −ω2
0 2ω2

0



y1
...
yn



donde ω2
0 = F

ml .

Demostración. Primero, consideremos la energía cinética:

T =
1

2
m
(
ẏ2

1 + ẏ2
2 + · · ·+ ẏ2

n

)
Nótese que estas coordenadas son ortogonales.

La forma de hallar la energía potencial del sistema es, en este caso, aplicar su definición:

VB − VA = −WA→B

Es decir, la diferencia de potencial entre los puntos B y A es igual al opuesto al trabajo necesario para ir de A
a B. En nuestro caso, la única fuerza que hace trabajo es la tensión F . Por ahora, consideremos un segmento
de cuerda l delimitado por las partículas yj+1 e yj . El trabajo realizado por la tensión será:

W(j+1,j) = −Fδl (4.1.1)

siendo δl el alargamiento de la cuerda que une ambas partículas. Nótese que el signo menos es debido a que
la tensión tiende a reducir la distancia entre la partículas. Esto puede verse mejor con el siguiente dibujo:

yj yj + 1

l

l + δl
yj+1 − yj

De esta forma, por el teorema de Pitágoras, tenemos:

(l + δl)2 = l2 + (yj+1 − yj)2 ⇔

⇔ l + δl =

√
l2 + (yj+1 − yj)2 =

√√√√l2

(
1 +

(yj+1 − yj)2

l2

)
⇔
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⇔ l + δl = l

√
1 +

(yj+1 − yj)2

l2
(4.1.2)

Como es yj+1−yj � l, podemos hacer un desarrollo de Taylor de la expresión anterior cuando (yj+1−yj)2

l2
→

0. Es decir, queremos hacer un desarrollo de Taylor a primer orden de la función:

f (x) =
√

1 + x⇒ f ′ (x) =
1

2
√

1 + x

De esta forma, por el teorema de Taylor-Young:

√
1 + x = f (0) + f ′ (0)x = 1 +

1

2
x cuando x→ 0

Aplicando este desarrollo a la expresión 4.1.2, obtenemos:

l + δl ≈ l
(

1 +
(yj+1 − yj)2

2l2

)
⇔ δl ≈ (yj+1 − yj)2

2l

A continuación, sustituyendo en la ecuación 4.1.1 en la página anterior, llegamos a:

W(j+1,j) ≈ −
F

2l
(yj+1 − yj)2

Ahora, aplicamos la definición de energía potencial, obteniendo:

V = −
n∑
j=0

W(j+1,j) ≈
n∑
j=0

F

2l
(yj+1 − yj)2

Para obtener las ecuaciones del movimiento, aplicamos la segunda ley de Newton, sabiendo que la fuerza
que actúa sobre la partícula j-ésima es justo:

Fj = −∂V
∂yj

Como el movimiento de las partículas sólo puede darse en la dirección vertical, aplicando la segunda ley de
Newton llegamos a:

mÿj = −∂V
∂yj
⇔ ÿj = − 1

m

∂V

∂yj
(4.1.3)

Ahora, determinemos ∂V
∂yj

. Al ser la derivada una aplicación lineal:

∂V

∂yj
=

n∑
i=0

F

2l

∂

∂yj
(yi+1 − yi)2 (4.1.4)

Dado que es j 6= 0 ∧ j 6= n + 1 (esos índices no representan partículas), cada sumando de la expresión 4.1.4
únicamente será no nulo cuando sea i+ 1 = j o i = j. De esta forma, obtenemos:

∂V

∂yj
=
F

2l

[
∂

∂yj
(yj − yj−1)2 +

∂

∂yj
(yj+1 − yj)2

]
=

=
F

2l
[2 (yj − yj−1) + 2 (yj+1 − yj) (−1)] =

=
F

l
[yj − yj−1 − yj+1 + yj ] =

F

l
(−yj−1 + 2yj − yj+1)
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Sustituyendo en la ecuación 4.1.3 en la página anterior, obtenemos:

ÿj = − F

ml
(−yj−1 + 2yj − yj+1)

Dado que es y0 = yn+1 = 0, obtenemos las siguientes ecuaciones diferenciales:

ÿ1 = − F

ml
(2y1 − y2)

ÿ2 = − F

ml
(−y1 + 2y2 − y3)

...

ÿn−1 = − F

ml
(−yn−2 + 2yn−1 − yn)

ÿn = − F

ml
(−yn−1 + 2yn)

El sistema de ecuaciones diferenciales anterior, puede ser escrito matricialmente como:

ÿ1
...
ÿn

 = −



2ω2
0 −ω2

0 0 · · · · · · · · · · · · 0
−ω2

0 2ω2
0 −ω2

0 0 · · · · · · · · · 0
0 −ω2

0 2ω2
0 −ω2

0 0 · · · · · · 0
...

...
0 . . . . . . 0 −ω2

0 2ω2
0 −ω2

0 0
0 . . . . . . . . . 0 −ω2

0 2ω2
0 −ω2

0

0 · · · · · · · · · · · · 0 −ω2
0 2ω2

0



y1
...
yn



donde ω2
0 = F

ml , que tiene unidades de frecuencia al cuadrado. Q.E.D.

Observación 32. Nótese que la proposición 38 en la página 161 nos dice que un cuerda formada por n partículas
es equivalente a un sistema de los estudiados en el teorema 8 en la página 138. Es decir, que tendremos que
hallar los valores propios y los vectores propios de la matriz que aparece en la proposición 38 en la página 161
para hallar la solución. A continuación, representamos todos los modos posibles para n = 1, 3, 2, 4.

ω= 1.00 ω0n= 1 ω= 3.41 ω0n= 3
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ω= 2.00 ω0n= 3 ω= 0.586 ω0n= 3

ω= 3.00 ω0n= 2 ω= 1.00 ω0n= 2

ω= 3.62 ω0n= 4 ω= 2.62 ω0n= 4

ω= 0.382 ω0n= 4 ω= 1.38 ω0n= 4
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Pueden verse todos los modos posibles correspondientes a n = 1, . . . , 10 en el siguiente vídeo1.

4.2. Ecuaciones de Lagrange en una cuerda tensa

Lema 2 (Lema fundamental del cálculo de variaciones). Sea Ω un abierto de Rn y sea f : Ω −→ R una
función continua en Ω. Si para toda función h : Ω −→ R de clase C(∞) con soporte compacto se da:∫

Ω
f (x)h (x) = 0

Entonces, f es idénticamente nula: f = 0.

Lema 3 (Primera identidad de Green). Sea Ω un abierto de Rn y sean ϕ,ψ : Ω −→ R dos funciones de clase
C(2). Entonces: ∫

Ω

(
~∇ϕ · ~∇ψ

)
=

∫
∂Ω
ψ
(
~∇ϕ · n̂

)
−
∫

Ω
ψ∇2ϕ

donde n̂ indica el vector normal a ∂Ω y con ∂Ω indicamos la frontera de Ω.

Teorema 9 (Ecuación de Euler-Lagrange para medios continuos). Sea [t0, tf ] ⊂ R y Ω un abierto de Rn que
contiene el volumen de estudio (para n = 3), el área de estudio (para n = 2) o la longitud de estudio (para
n = 1). Además, sea:

y : [t0, tf ]× Ω −→ R
(t, ~x) −→ y (t, ~x)

una función de clase C(1) y consideremos la densidad lagrangiana L
(
y, ∂y∂t ,

~∇~xy, t, ~x
)
(por unidad de volumen,

longitud o área, dependiendo del caso) de un sistema físico, donde con ~∇~xy denotamos el gradiente de y
restringido a las componentes de ~x. Entonces, la función y que hace que la integral:

F =

∫ tf

t0

∫
Ω
L
(
y,
∂y

∂t
, ~∇~xy, t, ~x

)
dn~x dt

sea estacionaria satisface:

∂L
∂y
− ∂

∂t

 ∂L
∂
(
∂y
∂t

)
− n∑

i=1

∂

∂xi

 ∂L
∂
(
∂y
∂xi

)
 = 0

Demostración. Para simplificarnos el estudio, vamos a realizar un cambio de variables z0 = t, zi = xi ∀i =
1, . . . , n. Asimismo, llamaremos Γ := [t0, tf ] × Ω ⊆ Rn+1. De esta forma, será ~z ∈ Rn+1. Mediante este
cambio, podemos agrupar las dependencias de L respecto de ∂y

∂t y ~∇~xy =
(
∂y
∂x1

, . . . ∂y
∂xn

)
en un único término

~∇y =
(
∂y
∂z0

, ∂y∂z1 , . . . ,
∂y
∂zn

)
=
(
∂y
∂t ,

∂y
∂x1

, . . . ∂y
∂xn

)
y las dependencias respecto a t y ~x = (x1, . . . , xn) en ~z =

(z0, z1, . . . , zn) = (t, x1, . . . , xn). De esta forma, el funcional F queda:

F =

∫
Γ
L
(
y, ~∇y, ~z

)
Nuestro objetivo es hallar qué condición debe cumplir y para que F sea estacionaria. Para ello, supondremos
que y hace que la integral F sea estacionaria y trabajaremos con la función:

g (~z) = y (~z) + εη (~z) (4.2.1)
1https://youtu.be/TIzrO2EeGDk
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donde ε ∈ R y η : Γ −→ R es cualquier función arbitraria de clase C(∞) que satisface:

η (~z) = 0 ∀~z ∈ ∂Γ (4.2.2)

donde con ∂Γ denotamos la frontera de Γ. Derivando obtenemos:

~∇g (~z) = ~∇y (~z) + ε~∇η (~z) (4.2.3)

En función de g, el funcional F queda:

F =

∫
Γ
L
(
g, ~∇g, ~z

)
Sabemos que

[
dF
dε

]
ε=0

= 0, ya que, por nuestras suposiciones, ε = 0⇒ g = y hace la integral F estacionaria.
De esta forma, nuestro objetivo va a ser calcular dF

dε . Suponiendo suficientemente buenas propiedades para L,
por el teorema de Leibniz de derivación bajo signo integral, llegamos a:

dF

dε
=

∫
Γ

[
∂L
∂g

dg

dε
+ ~∇~∇gL ·

d

dε
~∇g + ~∇~zL ·

d~z

dε

]
(4.2.4)

donde:

~∇~∇gL =

 ∂L
∂
(
∂g
∂z0

) , ∂L
∂
(
∂g
∂z1

) , . . . , ∂L
∂
(
∂g
∂zn

)


d

dε
~∇g =

(
d

dε

(
∂g

∂z0

)
,

d

dε

(
∂g

∂z1

)
, . . . ,

d

dε

(
∂g

∂zn

))
~∇~zL =

(
∂L
∂z0

, . . .
∂L
∂z1

, . . . ,
∂L
∂zn

)
d~z

dε
=

(
dz0

dε
,
dz1

dε
, . . . ,

dzn
dε

)
De las ecuaciones 4.2.1 en la página anterior y 4.2.3 deducimos:

dg

dε
= η,

d

dε
~∇g = ~∇η

Además, como ~z = (t, x1, . . . , xn) no depende de ε, es d~z
dε = ~0. Sustituyendo en la expresión 4.2.4, obtenemos:

dF

dε
=

∫
Γ

[
∂L
∂g
η + ~∇~∇gL · ~∇η

]
=

∫
Γ

∂L
∂g
η +

∫
Γ

(
~∇~∇gL · ~∇η

)
Por la primera identidad de Green (ver lema 3 en la página anterior) tomando ϕ = L y ψ = η, obtenemos:

dF

dε
=

∫
Γ

∂L
∂g
η +

∫
∂Γ
η~∇~∇gL −

∫
Γ
η
(
~∇ · ~∇~∇gL

)
Por la ecuación 4.2.2, η se anula sobre todo punto de ∂Γ, luego dicha integral es nula. De esta forma, obtenemos:

dF

dε
=

∫
Γ

∂L
∂g
η −

∫
Γ
η
(
~∇ · ~∇~∇gL

)
=

∫
Γ

(
∂L
∂g
− ~∇ · ~∇~∇gL

)
η

A continuación, recordemos que cuando ε = 0, g = y y la integral F es estacionaria. Por tanto, deberá ser:[
dF

dε

]
ε=0

= 0⇔
[∫

Γ

(
∂L
∂g
− ~∇ · ~∇~∇gL

)
η

]
ε=0

= 0
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Por la ecuación 4.2.1 en la página 166, sabemos que g (ε = 0) = y. Así, obtenemos:[
dF

dε

]
ε=0

= 0⇔
∫

Γ

(
∂L
∂y
− ~∇ · ~∇~∇yL

)
η = 0

Por último, como la igualdad anterior debe cumplirse para cualquier forma funcional de η y como η es
C(∞), podemos aplicar el lema fundamental del cálculo de variaciones (ver lema 2 en la página 166), obteniendo
que, necesariamente, se da:

∂L
∂y
− ~∇ · ~∇~∇yL = 0

Para dar cima y cabo a esta demostración, únicamente tenemos que deshacer el cambio de variable hecho
anteriormente. Así tenemos:

0 =
∂L
∂y
− ~∇ · ~∇~∇yL =

∂L
∂y
−
(
∂

∂z0
,
∂

∂z1
, . . . ,

∂

∂zn

)
·

 ∂L
∂
(
∂y
∂z0

) , ∂L
∂
(
∂y
∂z1

) , . . . , ∂L
∂
(
∂y
∂zn

)
 =

=
∂L
∂y
−
(
∂

∂t
,
∂

∂x1
, . . . ,

∂

∂xn

)
·

 ∂L
∂
(
∂y
∂t

) , ∂L
∂
(
∂y
∂x1

) , . . . , ∂L
∂
(
∂y
∂xn

)
 =

=
∂L
∂y
− ∂

∂t

 ∂L
∂
(
∂y
∂t

)
− n∑

i=1

∂

∂xi

 ∂L
∂
(
∂y
∂xi

)


con lo que llegamos al enunciado. Q.E.D.

Proposición 39. Sea una cuerda considerada como un medio continuo de densidad lineal de masa µ constante.
Sea y (x, t) la función que describe el desplazamiento transversal de cada punto x de la cuerda. Si suponemos
que cada uno de los diferenciales de cuerda (que forman la cuerda) únicamente puede desplazarse en el eje
vertical (transversalmente), entonces y (x, t) satisface la ecuación de ondas en una dimensión:

∂2y

∂t2
=
F

µ

∂2y

∂x2

siendo c2 = F
µ el cuadrado de la velocidad de propagación de la onda en el medio.

Demostración. En el caso discreto, según la proposición 38 en la página 161, la energía potencial venía dada
por:

V ≈ F

2l

n∑
j=0

(yj+1 − yj)2

Consideremos la energía potencial por unidad de longitud, que denotaremos con V, que aporta uno de los
sumandos anteriores:

V =
V

l
=

F

2l2
(yj+1 − yj)2

Vamos a utilizar el cambio de notación ∆y := yj+1 − yj y ∆x := l (recordamos que l era la distancia entre
dos partículas sucesivas de la cuerda discreta). Así, obtenemos:

V =
F

2 (∆x)2 (∆y)2 =
F

2

(∆y)2

(∆x)2 =
F

2

(
∆y

∆x

)2

Si hacemos tender ∆y y ∆x a cero, obtenemos el límite de un cociente incremental, que es justo una derivada:

V =
F

2

(
∂y

∂x

)2

(4.2.5)
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De esta forma, hemos obtenido la densidad de energía potencial V. Para hallar la energía potencial total
únicamente tendríamos que hacer:

V =

∫
C
Vdx

donde con C denotamos el conjunto de puntos de la cuerda. Por otra parte, la densidad de energía cinética
por unidad de longitud queda:

T =
1

2
µ

(
∂y

∂t

)2

(4.2.6)

de forma que:

T =

∫
C
T dx

Mediante las ecuaciones 4.2.5 en la página anterior y 4.2.6, vemos que la densidad lagrangiana del sistema
tiene la expresión:

L = T − V =
1

2
µ

(
∂y

∂t

)2

− F

2

(
∂y

∂x

)2

Por el teorema 9 en la página 166, debe ser:

∂L
∂y
− ∂

∂t

 ∂L
∂
(
∂y
∂t

)
− ∂

∂x

 ∂L
∂
(
∂y
∂x

)
 = 0⇔ −µ ∂

∂t

(
∂y

∂t

)
+ F

∂

∂x

(
∂y

∂x

)
= 0⇔

⇔ µ
∂2y

∂t2
= F

∂2y

∂x2
⇔ ∂2y

∂t2
=
F

µ

∂2y

∂x2

que es la ecuación de ondas unidimensional correspondiente a ondas que se propagan con velocidad c =√
F
µ . Q.E.D.

Corolario 24. Sea una cuerda considerada como un medio continuo de densidad lineal de masa µ constante.
Sea y (x, t) la función que describe el desplazamiento transversal de cada punto x de la cuerda. Supondremos
que cada uno de los diferenciales de cuerda (que forman la cuerda) únicamente puede desplazarse en el eje
vertical (transversalmente). Entonces, la densidad de energía mecánica por unidad de longitud E = T + V no
se conserva, en general. Es más, se satisface la relación:

dE
dt

= F
∂

∂x

(
∂y

∂x

∂y

∂t

)
siendo F la tensión de la cuerda.

No obstante, la energía mecánica total E =
∫
C Edx sí que se conserva, donde con C denotamos el conjunto

de los puntos de la cuerda.

Demostración. Tenemos:

E = T + V =
1

2
µ

(
∂y

∂t

)2

+
1

2
F

(
∂y

∂x

)2

A continuación, derivamos con respecto al tiempo, obteniendo:

dE
dt

= µ
∂y

∂t

∂2y

∂t2
+ F

∂y

∂x

∂

∂t

(
∂y

∂x

)
Suponiendo que la solución y es C(2), entonces:

dE
dt

= µ
∂2y

∂t2
∂y

∂t
+ F

∂y

∂x

∂

∂x

(
∂y

∂t

)
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Ahora, dado que por la proposición 39 en la página 168 se da:

∂2y

∂t2
=
F

µ

∂2y

∂x2
⇔ µ

∂2y

∂t2
= F

∂2y

∂x2

sustituyendo en la ecuación que teníamos llegamos a:

dE
dt

= F
∂2y

∂x2

∂y

∂t
+ F

∂y

∂x

∂

∂x

(
∂y

∂t

)
= F

[
∂2y

∂x2

∂y

∂t
+
∂y

∂x

∂

∂x

(
∂y

∂t

)]
Por la regla del producto (pensada en sentido inverso), obtenemos:

dE
dt

= F
∂

∂x

(
∂y

∂x

∂y

∂t

)
Y, la expresión anterior es, en general, distinta de cero.

Ahora, consideremos la energía total E:

E =

∫
C
Edx

donde con C denotamos los puntos de la cuerda. Suponiendo suficientemente buenas propiedades para y, por
el teorema de derivación bajo signo integral, obtenemos:

dE

dt
=

d

dt

(∫
C
Edx

)
=

∫
C

dE
dt

dx =

∫
C
F
∂

∂x

(
∂y

∂x

∂y

∂t

)
dx

Ahora, consideraremos x = 0 un extremo de la cuerda y x = l el otro extremo. Dado que los extremos no se
mueven, debe ser ∂y

∂t (x = 0) = 0 = ∂y
∂t (x = l). De esta forma, la integral anterior queda:

dE

dt
=

∫ l

0
F
∂

∂x

(
∂y

∂x

∂y

∂t

)
dx = F

∫ l

0

∂

∂x

(
∂y

∂x

∂y

∂t

)
dx

Por la regla de Barrow, obtenemos:

dE

dt
= F

[
∂y

∂x

∂y

∂t

]l
0

= F (0− 0) = 0

De esta manera, la energía total de la cuerda sí que se conserva. Q.E.D.

Proposición 40. La solución general de la ecuación de ondas presente en la proposición 39 en la página 168
puede ser expresada como:

y (t, x) = f (x+ ct) + g (x− ct)
siendo f, g : R −→ R dos funciones arbitrarias. Imponiendo que los extremos de la cuerda estén fijos, la
solución puede simplificarse a:

y (t, x) = f (x+ ct)− f (−x− ct)
siendo f : R −→ R una función arbitraria de una variable con periodo 2l, siendo l la longitud (en horizontal)
de la cuerda.

Demostración. Tenemos la ecuación diferencial en derivadas parciales presentada en la proposición 39 en la
página 168:

∂2y

∂t2
= c2 ∂

2y

∂x2
(4.2.7)

Vamos a hacer el cambio de variable:
ξ = x− ct, η = x+ ct
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Ahora, debemos ver cómo queda la ecuación diferencial con el cambio de variable. Para ello, resulta útil el
siguiente diagrama:

x
t

}
← y →


ξ →

{
x
t

η →
{
x
t

Usando el diagrama, vemos que deben darse las siguientes igualdades:

∂y

∂x
=
∂y

∂ξ

∂ξ

∂x
+
∂y

∂η

∂η

∂x

∂y

∂t
=
∂y

∂ξ

∂ξ

∂t
+
∂y

∂η

∂η

∂t

A continuación, debemos hallar el valor de todas las derivadas parciales que aparecen:

∂ξ

∂x
= 1,

∂ξ

∂t
= −c, ∂η

∂x
= 1,

∂η

∂t
= c

De esta forma, las ecuaciones quedan:
∂y

∂x
=
∂y

∂ξ
+
∂y

∂η

∂y

∂t
= −c∂y

∂ξ
+
∂y

∂η
c = c

(
∂y

∂η
− ∂y

∂ξ

)
Derivando otra vez, llegamos a:

∂2y

∂x2
=
∂2y

∂ξ2

∂ξ

∂x
+

∂2y

∂η∂ξ

∂η

∂x
+

∂2y

∂ξ∂η

∂ξ

∂x
+
∂2y

∂η2

∂η

∂x
=
∂2y

∂ξ2
+ 2

∂2y

∂η∂ξ
+
∂2y

∂η2

∂2y

∂t2
= c

(
∂2y

∂ξ∂η

∂ξ

∂t
+
∂2y

∂η2

∂η

∂t
− ∂2y

∂ξ2

∂ξ

∂t
− ∂2y

∂η∂ξ

∂η

∂t

)
=

= c

(
∂2y

∂ξ∂η
(−c) +

∂2y

∂η2
c− ∂2y

∂ξ2
(−c)− ∂2y

∂η∂ξ
c

)
= c2

(
∂2y

∂ξ2
+
∂2y

∂η2
− 2

∂2y

∂η∂ξ

)
Sustituyendo en la ecuación diferencial 4.2.7 en la página anterior, llegamos a:

c2

(
∂2y

∂ξ2
+
∂2y

∂η2
− 2

∂2y

∂η∂ξ

)
= c2

(
∂2y

∂ξ2
+ 2

∂2y

∂η∂ξ
+
∂2y

∂η2

)
⇔

⇔ 0 = 4
∂2y

∂η∂ξ
⇔ ∂2y

∂η∂ξ
= 0

Claramente, la solución general de la ecuación diferencial anterior es:

y (ξ, η) = f (ξ) + g (η)

donde f, g son dos funciones arbitrarias de una variable real. Deshaciendo el cambio, obtenemos que:

y (t, x) = f (x− ct) + g (x+ ct)

Ahora, consideraremos x = 0 y x = l los extremos de la cuerda. Entonces, como éstos están fijos, debe
cumplirse:

y (t, 0) = 0⇔ f (−ct) + g (ct) = 0⇔ g (ct) = −f (−ct) ∀t ∈ R
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Tomando µ = ct, obtenemos:
g (µ) = −f (−µ) ∀µ ∈ R

Por tanto, como g y f son funciones de una variable, lo anterior debe darse siempre. Así, podemos expresar
y como:

y (t, x) = f (x− ct)− f (−x− ct)
Por otra parte, evaluando en x = l, obtenemos:

0 = y (t, l) = f (l − ct)− f (−l − ct)⇔ f (l − ct) = f (−l − ct)⇔

⇔ f (2l − ct− l) = f (−ct− l) ∀t ∈ R

Llamando µ = −ct− l, obtenemos:
f (2l + µ) = f (µ) ∀µ ∈ R

De esta forma, f es una función periódica con periodo 2l. Q.E.D.

Corolario 25 (Propagación de una perturbación). Consideremos una cuerda tensa de longitud infinita (es
decir, que sus extremos se encuentran muy lejos de nuestro intervalo de estudio). En t = 0, producimos una
perturbación en la cuerda que hace que su forma venga dada por una función conocida y0 (x). Entonces, el
desplazamiento transversal de la cuerda de un punto x de la cuerda para cualquier instante t viene dado por:

y (t, x) =
1

2
y0 (x− ct) +

1

2
y0 (x+ ct)

Es decir, la perturbación inicial y0 se propaga en ambas direcciones con velocidad c y amplitud 1
2 de la inicial.

Demostración. Consideramos la solución general dada en la proposición 40 en la página 170:

y (t, x) = f (x− ct) + g (x+ ct) (4.2.8)

Cuando es t = 0, por hipótesis, se da:

y0 (x) = y (0, x) = f (x) + g (x) ∀x ∈ R (4.2.9)

donde la igualdad anterior se satisface, de esta forma, para todo el dominio de f . Examinemos ahora la parcial
con respecto al tiempo. Recordemos que es f es una función de ξ = x− ct y g una función de η = x+ ct. De
esta forma, por la regla de la cadena, obtenemos:

∂y

∂t
(t, x) =

df

dξ
(x− ct) (−c) +

dg

dη
(x+ ct) c

Como partimos del reposo, debe ser ∂y
∂t (0, x) = 0 ∀x ∈ R. Así:

0 =
∂y

∂t
(0, x) = −cdf

dξ
(x) + c

dg

dη
(x)⇔ df

dξ
(x) =

dg

dη
(x) ∀x ∈ R

Es decir, las derivadas de f y g coinciden. Por tanto, por el teorema fundamental del cálculo integral, tenemos:

f (µ) = g (µ) +K ∀µ ∈ R (4.2.10)

Combinando las ecuaciones 4.2.9 y 4.2.10, obtenemos:

y0 (µ) = 2g (µ) +K ⇔ g (µ) =
y0 (µ)−K

2
(4.2.11)
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Por otra parte, combinando las ecuaciones 4.2.8 en la página anterior y 4.2.10 en la página anterior,
obtenemos:

y (t, x) = g (x− ct) +K + g (x+ ct)

Haciendo uso de la ecuación 4.2.11 en la página anterior, llegamos a:

y (t, x) =
y0 (x− ct)−K

2
+K +

y0 (x+ ct)−K
2

=

=
1

2
y0 (x− ct)− K

2
+K +

1

2
y0 (x+ ct)− K

2
=

=
1

2
y0 (x− ct) +

1

2
y0 (x+ ct)

Q.E.D.

4.3. Modos normales en una cuerda tensa

Proposición 41. Suponiendo dependencia armónica con respecto al tiempo, la solución general de la ecuación
de ondas dada para una cuerda con extremos fijos en la proposición 40 en la página 170 puede expresarse como:

y (t, x) =

∞∑
n=1

An sen
(
n
π

l
x
)

cos
(
n
πc

l
t
)

donde c es la velocidad de propagación en la cuerda, l es la longitud de la cuerda y {An}∞n=1 es una sucesión
de constantes (números reales) que dependen de las condiciones iniciales.

Demostración. Vamos a buscar soluciones de la forma:

y (t, x) = A (x) cos (ωt)

donde A : R −→ R es una función de una variable y ω es un parámetro a determinar. Derivando, obtenemos:

∂y

∂t
(t, x) = −ωA (x) sen (ωt)

∂2y

∂t2
(t, x) = −ω2A (x) cos (ωt)

∂y

∂x
(t, x) =

dA

dx
(x) cos (ωt)

∂2y

∂x2
=

d2A

dx2
(x) cos (ωt)

Sustituyendo en la ecuación de ondas (ver proposición 39 en la página 168), llegamos a:

−ω2A (x) cos (ωt) = c2 d2A

dx2
(x) cos (ωt)

Suponiendo que cos (ωt) no se anula, llegamos a:

−ω2A (x) = c2 d2A

dx2
(x)⇔ −ω

2

c2
A (x) =

d2A

dx2
(x)⇔ d2A

dx2
(x) +

ω2

c2
A (x) = 0

que es la ecuación diferencial de un oscilador armónico simple. Llamando:

k2 :=
ω2

c2
⇔ k =

ω

c
(4.3.1)
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la solución general de la ecuación diferencial anterior es:

A (x) = a cos (kx) + b sen (kx)

donde a, b ∈ R son constantes que dependen de las condiciones iniciales.
A continuación, imponiendo las condiciones dadas por los extremos de la cuerda A (0) = A (l) = 0,

obtenemos:
A (x = 0) = 0⇔ a cos (0) + b sen (0)⇔ a = 0

A (x = l) = 0⇔ b sen (kl) = 0
b 6=0⇐⇒ sen (kl) = 0⇔ kl = nπ ∀n ∈ Z⇔

⇔ k = n
π

l

Como la cuerda no puede tener longitud nula (n = 0) ni amplitud negativa (n < 0), únicamente tienen sentido
físico las soluciones con n > 0. Por otra parte, el parámetro b dependerá de las condiciones iniciales. A partir
de este momento, llamaremos An al valor del parámetro b para un valor de n específico.

Por la ecuación 4.3.1 en la página anterior, debe ser:

n
π

l
=
ω

c
⇔ ω = n

πc

l

De esta forma, hemos obtenido que:

yn (t, x) = An sen
(
n
π

l
x
)

cos
(
n
πc

l
t
)

es una solución de la ecuación de ondas (ver proposición 39 en la página 168).
Veamos, ahora, que para cada valor de n, las funciones yn son linealmente independientes entre sí. Para

ello, tenemos que ver que la única solución de la ecuación:

yn (t, x) + ym (t, x) = 0 ∀ (t, x) ∈ R2

es que sea An = Am = 0, considerando n 6= m. Podemos escribir la ecuación anterior como:

An sen
(
n
π

l
x
)

cos
(
n
πc

l
t
)

+Am sen
(
m
π

l
x
)

cos
(
m
πc

l
t
)

= 0 ∀ (t, x) ∈ R2

Si es An = Am = 0, entonces la ecuación se cumple. Si sólo fuese An = 0, entonces para que la ecuación
se cumpliera para cualquier (t, x) ∈ R2 debería ser Am = 0. Análogamente sucede si suponemos Am = 0.
Por tanto, supongamos que es An, Am 6= 0 y veamos que llegamos a contradicción. De esta forma, podemos
reescribir la ecuación anterior como:

An sen
(
n
π

l
x
)

cos
(
n
πc

l
t
)

= −Am sen
(
m
π

l
x
)

cos
(
m
πc

l
t
)
∀ (t, x) ∈ R2 (4.3.2)

Evaluando en t = 0, obtenemos:

An sen
(
n
π

l
x
)

= −Am sen
(
m
π

l
x
)

= 0 ∀x ∈ R⇔ cte =
An
Am

= − sen
(
nπl x

)
sen
(
mπ

l x
) =: g (x)

Es decir, lo anterior sólo puede darse si es dg
dx (x) = 0 ∀x ∈ R. Calculando dicha derivada, obtenemos:

dg

dx
(x) = −cos

(
nπl x

)
nπl sen

(
mπ

l x
)
− sen

(
nπl x

)
cos
(
mπ

l x
)
mπ

l

sen2
(
mπ

l x
)

Si consideramos x = l
nπ , entonces tenemos:

dg

dx

(
2l

n

)
= −n

π
l cos

(
nπl

2l
n

)
sen
(
mπ

l
2l
n

)
−mπ

l sen
(
nπl

2l
n

)
cos
(
mπ

l
2l
n

)
sen2

(
mπ

l
2l
n

) =
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= −n
π
l

=1︷ ︸︸ ︷
cos (2π) sen

(
2πmn

)
−mπ

l

=0︷ ︸︸ ︷
sen (2π) cos

(
2πmn

)
sen2

(
2πmn

) = − nπl
sen
(
2πmn

) 6= 0

Luego, no es dg
dx (x) = 0 ∀x ∈ R. Por consiguiente, es imposible que se dé la ecuación 4.3.2 en la página anterior

si es An, Am 6= 0.
De esta forma, efectivamente las soluciones obtenidas yn (t, x) son linealmente independientes entre sí.

Dado que la derivada es lineal, una combinación lineal de soluciones sigue siendo solución. Por tanto:

y (t, x) =
∞∑
n=1

yn (t, x) =
∞∑
n=1

An sen
(
n
π

l
x
)

cos
(
n
πc

l
t
)

será solución de la ecuación de ondas dada en la proposición 39 en la página 168. Dicho de otra forma, las
funciones

{
sen
(
nπl x

)
cos
(
nπcl t

)}∞
n=1

forman una base de un espacio vectorial de dimensión infinita (el espacio
vectorial de las soluciones). Como no es posible llegar a una dimensión superior a infinito, necesariamente la
suma infinita de todas las yn será la solución general. Q.E.D.

Definición 29. Cada uno de los sumandos que aparecen en la expresión de la proposición 41 en la página 173
recibe el nombre de modo normal.

Además, llamamos frecuencia angular ωn del modo normal al factor que multiplica a la t en el coseno:

ωn := n
πc

l

Denominamos número de ondas kn del modo normal al factor que multiplica a la x en el seno:

kn := n
π

l

Adicionalmente, llamamos longitud de onda λn del modo normal a:

λn :=
2π

kn
=

2π

nπl
=

2l

n

El modo correspondiente a n = 1 recibe el nombre de modo fundamental y su frecuencia angular
temporal asociada:

ω1 =
πc

l

recibe el nombre de frecuencia fundamental.
El resto de modos correspondientes a n > 1 reciben el nombre de armónicos.

Observación 33. Nótese que por la definición de frecuencia fundamental dada en la definición 29, todo el
resto de frecuencias son múltiplos de la fundamental. De hecho, la frecuencia n-ésima es n veces la frecuencia
fundamental. Puede verse la forma de la solución de los modos normales en las siguientes ilustraciones:

n= 1n= 1n= 1n= 1n= 1n= 1 n= 2n= 2n= 2n= 2n= 2n= 2
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n= 3n= 3n= 3n= 3n= 3n= 3 n= 4n= 4n= 4n= 4n= 4n= 4

n= 5n= 5n= 5n= 5n= 5n= 5 n= 6n= 6n= 6n= 6n= 6n= 6

n= 7n= 7n= 7n= 7n= 7n= 7 n= 8n= 8n= 8n= 8n= 8n= 8

así como en este vídeo2.

Corolario 26. La frecuencia fundamental de una cuerda puede expresarse como:

ω1 = π

√
F

Ml

siendo F la tensión de la cuerda, M su masa y l su longitud.

Demostración. Combinando la definición de frecuencia fundamental dada en la definición 29 en la página
anterior con la expresión para la velocidad de propagación dada en la proposición 39 en la página 168,
obtenemos:

ω1 =
πc

l
=
π

l

√
F

µ
=

π√
l

√
F

µl
=

π√
l

√
F

M
= π

√
F

Ml

Q.E.D.

Observación 34. Fijándonos en la expresión dada por el corolario 26 vemos que:

Si aumenta la tensión, la frecuencia fundamental aumenta.

Si la masa aumenta, la frecuencia fundamental disminuye.

Si aumentamos la longitud, la frecuencia fundamental disminuye.

Esto último es la razón por la que instrumentos de cuerda más grandes como el contrabajo (que tienen sus
cuerdas más largas) suenen más graves que aquellos que son más pequeños como el violín (que tienen sus
cuerdas más cortas).

Observación 35 (Percepción humana). Nuestro cerebro interpreta el modo fundamental de una vibración como
el tono, mientras que el resto de armónicos son interpretados como el timbre. De manera que, en función del
reparto de energía entre los armónicos, nuestro cerebro discierne qué instrumento ha producido el sonido.

2https://www.youtube.com/watch?v=wcswpyIFpJ4
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4.4. Ondas longitudinales

Proposición 42. Sea un medio continuo tridimensional que puede asemejarse a un cilindro de sección cons-
tante A despreciable en comparación con la longitud del cilindro. Si el medio sufre una perturbación (que
viene dada por una función ψ (t, z)) en la dirección del eje longitudinal del cilindro, entonces ésta se propaga
satisfaciendo la ecuación de ondas:

∂2ψ

∂t2
=
E

ρ

∂2ψ

∂z2

con velocidad c =
√

E
ρ ; siendo ρ la densidad volumétrica de masa del medio (que suponemos constante) y

siendo E el módulo de Young del medio, el módulo de cizalladura del medio o el módulo de compresibilidad
del medio, dependiendo de la naturaleza de la perturbación.

Demostración. Consideremos un cilindro de sección A y llamaremos Z al eje perpendicular a su sección.
Ahora, nos centraremos en un segmento cilíndrico de espesor dz (cuando se encuentra en equilibrio) y área A
que sometemos a una perturbación.

ψ(t, z)

A

ψ(t, z + dz)

z z + dz

Debido a esta perturbación, los segmentos cilíndricos sufrirán una traslación o un alargamiento. Ambos
efectos necesitarán de una fuerza para tener lugar, en concreto, el alargamiento se verá debido a fuerzas de
igual módulo y sentido opuesto que actúen sobre el segmento cilíndrico, mientras que la traslación se deberá
a una fuerza neta no nula sobre el centro de masas del segmento cilíndrico. En un instante t, el extremo
izquierdo de nuestro segmento se encuentra en la posición z + ψ (t, z) y el extremo derecho se encuentra en
z+ dz+ψ (t, z + dz). En dicho instante t, por la ley de Young, la fuerza que actúa sobre la cara izquierda del
segmento cilíndrico satisface:

1

A
F (t, z) = E

∆l

l
⇔ F (t, z) = AE

∆l

l
(4.4.1)

donde A es la sección del cilindro, E es el módulo de Young, l es la longitud «de equilibrio» de nuestro
segmento cilíndrico (en nuestro caso es l = dz) y ∆l es el alargamiento de nuestro segmento cilíndrico. En
nuestro caso ∆l viene dado por la resta de la perturbación en z + dz y la perturbación en z a tiempo t:

∆l = ψ (t, z + dz)− ψ (t, z)

Usando la definición de derivada parcial, podemos escribir lo anterior como:

∆l =
∂ψ

∂z
(t, z) dz

Sustituyendo en la ecuación 4.4.1, obtenemos:

F (t, z) = AE
∂ψ
∂z (t, z) dz

dz
= AE

∂ψ

∂z
(t, z) (4.4.2)
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que es la fuerza que actúa sobre la «tapa izquierda» de nuestro segmento cilíndrico.
Ahora bien, la fuerza neta que actúa sobre el centro de masas de nuestro segmento cilíndrico será:

Fneta = F (t, z + dz)− F (t, z)

De nuevo, podemos escribir lo anterior a través de la definición de derivada parcial como:

Fneta =
∂F

∂z
(t, z) dz

Derivando en la ecuación 4.4.2 en la página anterior, podemos obtener la expresión de ∂F
∂z (t, z). Así:

Fneta =
∂

∂z

(
AE

∂ψ

∂z
(t, z)

)
dz = AE

∂2ψ

∂z2
(t, z) dz (4.4.3)

A continuación, por la segunda ley de Newton aplicada al centro de masas de nuestro segmento cilíndrico,
llegamos a:

Fneta = m
∂2ψ

∂t2
(t, z)

donde la masa del segmento vendrá dada por m = ρAdz. Sustituyendo el valor de la masa y lo obtenido en la
ecuación 4.4.3 llegamos a:

AE
∂2ψ

∂z2
(t, z) dz = ρAdz

∂2ψ

∂t2
(t, z)⇔

⇔ E
∂2ψ

∂z2
(t, z) = ρ

∂2ψ

∂t2
(t, z)⇔ ∂2ψ

∂t2
(t, z) =

E

ρ

∂2ψ

∂z2
(t, z)

De esta forma, hemos llegado a una ecuación de ondas, con velocidad de propagación c =
√

E
ρ . Q.E.D.

Observación 36. Nótese que la velocidad de propagación de las ondas longitudinales obtenida en la proposi-
ción 42 en la página anterior no depende de la sección del material, ni de su longitud. Únicamente depende
de sus propiedades físicas. De esta forma, todo el desarrollo hecho para ondas transversales servirá también
para ondas longitudinales.

Ejemplo 23. Tenemos una varilla de acero con densidad ρ = 8000 kg
m3 y E = 2 · 1011 N

m2 . Haciendo uso de
la proposición 42 en la página anterior, obtenemos una velocidad de propagación c ≈ 5 km

s . En general, E
es siempre muy grande (del orden del dato de este ejemplo). Esto hace que la velocidad de propagación de
ondas longitudinales sea mucho más rápida que la velocidad de propagación de las ondas transversales. Esto
se debe a que la velocidad de propagación longitudinal está relacionada con E mientras que la velocidad de
propagación transversal está relacionada con la tensión.

Si la rigidez de un medio aumenta, entonces también aumenta la velocidad de propagación de las ondas
longitudinales.

4.5. Ondas en una columna de gas

Proposición 43. Sea una superficie tridimensional susceptible de asemejarse a una superficie cilíndrica de
altura mucho mayor que su radio. Si su interior está relleno de un gas de densidad volúmica de masa ρ
constante y con un módulo de compresibilidad κ, entonces cualquier perturbación ψP (t, z) en la presión del
gas en el interior del «tubo» satisface la ecuación de ondas:

∂2ψP
∂t2

=
1

κρ

∂2ψP
∂z2

siendo c =
√

1
κρ la velocidad de propagación de las ondas en el gas.
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Demostración. Al igual que en la demostración de la proposición 42 en la página 177 vamos a considerar un
segmento cilíndrico de sección A y espesor dz en un instante t. La diferencia es que ahora relacionaremos la
perturbación con la fuerza a través de la ecuación de compresibilidad de un gas:

ψP (t, z) = −1

κ

∆V

V
(4.5.1)

que indica la perturbación en presión existente en el extremo izquierdo de nuestro segmento cilíndrico. En
nuestro caso es V = Adz y ∆V vendrá dado por la resta entre el volumen tras la perturbación y el volumen
en la posición de equilibrio V .

ψ(t, z)

A

ψ(t, z + dz)

z z + dz

Así:
∆V = A [z + dz + ψ (t, z + dz)− (z + ψ (t, z))]−Adz =

= A [dz + ψ (t, z + dz)− ψ (t, z)]−Adz = A [ψ (t, z + dz)− ψ (t, z)]

Podemos expresar lo anterior en función de la derivada parcial de ψ con respecto a z:

∆V = A
∂ψ

∂z
(t, z) dz

Sustituyendo en la ecuación 4.5.1, llegamos a:

ψP (t, z) = −1

κ

A∂ψ
∂z (t, z) dz

Adz
= −1

κ

∂ψ

∂z
(t, z) (4.5.2)

que, recordemos, es la perturbación en presión en la «tapa» izquierda del segmento cilíndrico.
No obstante, para poder aplicar la segunda ley de Newton, debemos deducir cuál es la variación total en

presión en nuestro segmento cilíndrico. Dado que la fuerza debe ir de la zona de mayor presión a la de menor
presión, será:

Fneta = A [P (t, z)− P (t, z + dz)]

pues así la fuerza irá en la dirección +z si es P (t, z) > P (t, z + dz) e irá en la dirección −z si es P (t, z) <
P (t, z + dz). Llamando P0 a la presión de equilibrio, obtenemos que P (t, z) = P0 + ψP (t, z) para todo z del
cilindro. Así, tenemos:

Fneta = A [P0 + ψP (t, z)− P0 − ψP (t, z + dz)] = A [ψP (t, z)− ψP (t, z + dz)]

De nuevo, podemos expresar lo anterior en función de la derivada parcial de ψP con respecto a z. Así:

Fneta = −A∂ψP
∂z

dz
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Sustituyendo ψP por la expresión dada en la ecuación 4.5.2 en la página anterior, llegamos a:

Fneta = −A ∂

∂z

(
−1

κ

∂ψ

∂z
(t, z)

)
dz =

A

κ

∂2ψ

∂z2
(t, z) dz

A continuación, aplicando la segunda ley de Newton, obtenemos:

A

κ

∂2ψ

∂z2
(t, z) dz = Fneta = m

∂2ψ

∂t2
(t, z)

donde m es la masa de nuestro segmento cilíndrico. Como m = ρAdz, sustituyendo, llegamos a:

A

κ

∂2ψ

∂z2
(t, z) dz = ρAdz

∂2ψ

∂t2
(t, z)⇔ ∂2ψ

∂t2
(t, z) =

1

κρ

∂2ψ

∂z2
(t, z)

con lo que llegamos a una ecuación de ondas para la perturbación de los desplazamientos, pero no para la
perturbación en la presión. La velocidad de propagación de estas ondas es justo c =

√
1
κρ . Derivando a ambos

lados en la ecuación anterior con respecto a z, llegamos a:

∂

∂z

(
∂2ψ

∂t2

)
=

1

κρ

∂

∂z

(
∂2ψ

∂z2

)
Suponiendo que las funciones empleadas son al menos C(3), por el teorema de Schwarz, podemos intercambiar
el orden de derivación. Así:

∂2

∂t2

(
∂ψ

∂z

)
=

1

κρ

∂2

∂z2

(
∂ψ

∂z

)
Multiplicando a ambos lados por − 1

κ , obtenemos:(
−1

κ

)
∂2

∂t2

(
∂ψ

∂z

)
=

1

κρ

(
−1

κ

)
∂2

∂z2

(
∂ψ

∂z

)
⇔

⇔ ∂2

∂t2

(
−1

κ

∂ψ

∂z

)
=

1

κρ

∂2

∂z2

(
−1

κ

∂ψ

∂z

)
Ahora, por la ecuación 4.5.2 en la página anterior, tenemos:

∂2ψP
∂t2

=
1

κρ

∂2ψP
∂z2

Es decir, las perturbaciones en presión también se propagan como una onda y su velocidad de propagación es
la misma que la de las perturbaciones en la posición de las «tapas» de los segmentos cilíndricos. Q.E.D.

4.5.1. Velocidad del sonido

En la proposición 43 en la página 178, vemos que la velocidad de propagación depende del módulo de
compresibilidad del gas. Existen dos tipos de compresiones en un gas: a temperatura constante (isotermo)
o sin intercambio de calor con el exterior (adiabático). Para que el proceso fuese isotermo, tendría que ser
muy lento y, claramente, esto no es el caso con las ondas de sonido, por ejemplo. Las ondas sonoras cuadran
mucho más con un proceso adiabático, ya que los cambios en presión son tan rápidos que no hay cambio en
la temperatura media del aire. En un gas, la compresibilidad adiabática viene dada por la expresión:

1

κ
= γP
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siendo γ el coeficiente de dilatación adiabática del gas. De esta forma, aplicando la ley de los gases ideales,
obtenemos que la velocidad de propagación de una onda longitudinal en un gas debe satisfacer:

c2 =
1

κρ
=
γP

ρ
=
γnRT

ρV

donde n es el número de moles del gas, T es su temperatura, V es su volumen, ρ es su densidad y R es la
constante universal de los gases ideales. Tomando n = m

M donde M es la masa molar, y ρ = m
V , llegamos a:

c2 =
γRT

M

Por ejemplo, para el aire a temperatura ambiente, se tiene:

T = 300 K, γ = 1,4, R = 8,3
J

mol ·K ,M = 0,029
Kg

mol

con lo que obtenemos una velocidad de propagación de:

c ≈ 347
m

s

Recordemos que el rango de frecuencias audible para el ser humano es 20 Hz-20 KHz. Usando la fórmula
c = λν, obtenemos que el rango de longitudes de onda que somos capaces de oír es 17,5 mm-17 m.

4.5.2. Ondas estacionarias en columnas de gas

Proposición 44. Sea un tubo de radio despreciable en comparación con su longitud. Supondremos que todas
las soluciones presentan dependencia armónica con respecto al tiempo. Además:

Si el tubo está cerrado por ambos extremos, la solución general de la ecuación de ondas presente en la
proposición 43 en la página 178 puede expresarse como la suma de infinitos modos normales:

ψP (t, z) =
∞∑
n=1

An cos
(
n
π

l
z
)

cos
(
n
πc

l
t
)

siendo l la longitud del tubo, c la velocidad de propagación y {An}∞n=1 una serie de constantes que
dependen de las condiciones iniciales. Al igual que en el caso de la cuerda tensa, la frecuencia fundamental
viene dada por:

ω1 =
πc

l
y el resto de frecuencias son múltiplos de la fundamental:

ωn = nω1

Si el tubo está abierto por ambos lados, la solución general de la ecuación de ondas presente en la
proposición 43 en la página 178 coincide con la de una cuerda tensa (ver proposición 41 en la página 173).
Es decir, la solución general es la suma de infinitos modos normales:

ψP (t, z) =
∞∑
n=1

An sen
(
n
π

l
z
)

cos
(
n
πc

l
t
)

siendo l la longitud del tubo, c la velocidad de propagación y {An}∞n=1 una serie de constantes que
dependen de las condiciones iniciales. Al igual que en el caso de la cuerda tensa, la frecuencia fundamental
viene dada por:

ω1 =
πc

l
y el resto de frecuencias son múltiplos de la fundamental:

ωn = nω1
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Si el tubo está cerrado por un extremo (supondremos sin pérdida de generalidad que es en z = 0) y
abierto por otro (supondremos sin pérdida de generalidad que es en z = l), entonces la solución general
de la ecuación de ondas presente en la proposición 43 en la página 178 puede expresarse como la suma
de infinitos modos normales:

ψP (t, z) =
∞∑
n=1

An cos
( π

2l
(2n− 1) z

)
cos
(πc

2l
(2n− 1) t

)
Además, en este caso la frecuencia fundamental viene dada por:

ω1 =
πc

2l

y el resto de frecuencias vienen relacionadas con la fundamental de la siguiente forma:

ωn = (2n− 1)ω1

En todos los casos anteriores la perturbación en la presión ψP (t, x) está desfasada π
2 respecto a la perturbación

en la posición ψ (t, x) de cada segmento cilíndrico. En otras palabras, donde la perturbación en presión es
máxima allí la perturbación en posición es mínima y viceversa.

Demostración.

Si el tubo está cerrado en ambos extremos, entonces en dichos puntos los segmentos cilíndricos no
podrán desplazarse; luego la perturbación en la posición de los segmentos cilíndricos en los extremos
del tubo debe ser nula. Formalmente, este problema coincide con el planteado en la cuerda tensa (ver
proposición 41 en la página 173). De esta forma, la solución general de ψ (t, z) será:

ψ (t, z) =
∞∑
n=1

Bn sen
(
n
π

l
z
)

cos
(
n
πc

l
t
)

Para obtener la expresión de la onda de presión aplicamos la ecuación 4.5.2 en la página 179:

ψP (t, z) = −1

κ

∂ψ

∂z
(t, z) =

∞∑
n=1

−1

κ
Bnn

π

l︸ ︷︷ ︸
=:An

cos
(
n
π

l
z
)

cos
(
n
πc

l
t
)

=

=
∞∑
n=1

An cos
(
n
π

l
z
)

cos
(
n
πc

l
t
)

En este caso, se hereda la frecuencia fundamental y su relación con las otras frecuencias de la solución
dada en la proposición 41 en la página 173.
Nótese que entre la onda de perturbación en presión y la onda de perturbación en posición hay un
desfase de justo π

2 , pues cosx está desfasado π
2 con respecto a senx.

Si el tubo está abierto en ambos extremos, entonces la presión del gas en esos puntos será (por condiciones
de frontera) la que haya fuera del tubo; en otras palabras, la perturbación en presión en los extremos
del tubo debe ser nula. De esta forma, nos encontramos en una situación análoga a la cuerda tensa (sólo
que ahora con la onda de presión, en vez de con la de posición). De esta forma, por la proposición 41 en
la página 173, la solución general de la onda de presión vendrá dada por:

ψP (t, z) =

∞∑
n=1

An sen
(
n
π

l
z
)

cos
(
n
πc

l
t
)
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De nuevo, se hereda la frecuencia fundamental y su relación con las otras frecuencias de la solución dada
en la proposición 41 en la página 173.
Para obtener la perturbación en posición de los segmentos cilíndricos, aplicando la ecuación 4.5.2 en la
página 179 sería menester integrar:

ψ (t, z) = −1

κ

∂ψ

∂z
(t, z)⇔ ψ (t, z) =

∫
−κ∂ψ

∂z
dz + C =

=

∞∑
n=1

κAn
nπl

cos
(
n
π

l
z
)

cos
(
n
πc

l
t
)

+ C

Dado que los valores de ψ deben situarse en un entorno simétrico del cero (por cómo se ha construido
la función ψ, ver la demostración de la proposición 43 en la página 178), obtenemos que la constante de
integración es nula C = 0.
De esta forma, vemos que justo hay un desfase de π

2 entre ψ y ψP .

Si el tubo está abierto por un extremo y cerrado por otro, entonces la perturbación en posición debe ser
nula en el extremo cerrado, mientras que la perturbación en presión debe ser nula en el extremo abierto.
Trabajemos con la perturbación en posición ψ (t, z). Vamos a buscar soluciones de la forma:

ψ (t, z) = A (z) cos (ωt)

donde A : R −→ R es una función de una variable y ω es un parámetro a determinar. Derivando,
obtenemos:

∂ψ

∂t
(t, z) = −ωA (z) sen (ωt)

∂2ψ

∂t2
(t, z) = −ω2A (z) cos (ωt)

∂ψ

∂z
(t, x) =

dA

dz
(z) cos (ωt)

∂2ψ

∂z2
=

d2A

dz2
(z) cos (ωt)

Sustituyendo en la ecuación de ondas (ver proposición 43 en la página 178), llegamos a:

−ω2A (z) cos (ωt) = c2 d2A

dz2
(z) cos (ωt)

Suponiendo que cos (ωt) no se anula, llegamos a:

−ω2A (z) = c2 d2A

dz2
(z)⇔ −ω

2

c2
A (z) =

d2A

dz2
(z)⇔ d2A

dz2
(z) +

ω2

c2
A (z) = 0

que es la ecuación diferencial de un oscilador armónico simple. Llamando:

k2 :=
ω2

c2
⇔ k =

ω

c
(4.5.3)

la solución general de la ecuación diferencial anterior es:

A (z) = a cos (kz) + b sen (kz)

donde a, b ∈ R son constantes que dependen de las condiciones iniciales. De esta forma, por ahora,
nuestra solución tiene la forma:

ψ (t, z) = [a cos (kz) + b sen (kz)] cos (ωt)
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Aplicando la ecuación 4.5.2 en la página 179, podemos obtener la onda en presión:

ψP (t, z) = ψP (t, z) = −1

κ

∂ψ

∂z
(t, z) =

= −1

κ
[−ka sen (kz) + bk cos (kz)] cos (ωt) =

=
1

κ
[ka sen (kz)− bk cos (kz)] cos (ωt)

A continuación imponemos las condiciones mencionadas anteriormente:

ψ (t, 0) = 0 ∀t ∈ R⇔ a cos (k · 0) + b sen (k · 0) = 0⇔ a = 0

ψP (t, l) = 0 ∀t ∈ R⇔ ka sen (kl)− bk cos (kl) = 0

Como es a = 0 por la primera ecuación, la segunda ecuación se reduce a:

bk cos (kl) = 0⇔ kl = −π
2

+ nπ ∀n ∈ Z⇔

⇔ kl =
π

2
(2n− 1) ∀n ∈ Z⇔ k =

π

2l
(2n− 1) ∀n ∈ Z

Como es cosx = cos (−x), podemos escoger k > 0, de forma que será n > 0. De esta forma, teniendo en
cuenta la ecuación 4.5.3 en la página anterior, nuestra solución adquiere la forma:

ψP (t, z) = −1

κ
b
π

2l
(2n− 1)︸ ︷︷ ︸

=:An

cos
( π

2l
(2n− 1) z

)
cos
(πc

2l
(2n− 1) t

)
=

= An cos
( π

2l
(2n− 1) z

)
cos
(πc

2l
(2n− 1) t

)
donde será An necesariamente positiva.
Ahora bien, como

{
cos
(
π
2l (2n− 1) z

)
cos (ωt)

}∞
n=1

son linealmente independientes entre sí, la solución
general vendrá dada por una combinación lineal infinita de ellas; o sea, la solución general de la pertur-
bación en presión queda:

ψP (t, z) =

∞∑
n=1

An cos
( π

2l
(2n− 1) z

)
cos
(πc

2l
(2n− 1) t

)
Por último, en este caso, también, la perturbación en presión y la perturbación en posición de los
segmentos cilíndricos está desfasada π

2 , por el mismo razonamiento hecho anteriormente en los otros dos
apartados.

Q.E.D.

Observación 37. Los modos fundamentales de las perturbaciones en presión, en el caso de ambos extremos
del tubo cerrados, tienen la siguiente forma:
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ψ(x, t) ∝ sin(kx) ψp(x, t) ∝ cos(kx)

λ = 2L

λ = L

λ = 2
3L

Sin embargo, en el caso de un tubo abierto por un extremo y cerrado por el otro, obtenemos:

ψ(x, t)

λ1 = 4L

λ2 = λ1

3

L

4.6. Propagación de energía en cuerdas

Definición 30. Llamamos potencia de una onda en un punto a la función: P : R× C −→ R
(t, x) −→ P (t, x)

(donde

con C denotamos al conjunto de puntos de la cuerda) a menos la (única) primitiva con constante de integración
nula de la variación con respecto al tiempo de la densidad de energía por unidad de longitud dada en el corolario
24 en la página 169:

P (t, x) := −F ∂y
∂x

(t, x)
∂y

∂t
(t, x)

siendo F la tensión de la cuerda.
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Observación 38. Con la definición 30 en la página anterior, calcular el flujo neto de energía entre dos puntos
x1 y x2 en un instante t consiste únicamente en hacer la resta de las potencias:

Flujo de energía (t, x1, x2) = P (t, x2)− P (t, x1)

Proposición 45. Consideremos una onda viajera (una perturbación que puede ser escrita a través de la
ecuación y (t, x) = f (x∓ ct), donde f : R −→ R es una función de una variable). La densidad de energía
cinética por unidad de longitud T y la densidad de energía potencial por unidad de longitud V coinciden en
todo punto y todo instante temporal:

V (t, x) = T (t, x) ∀t ∈ R ∧ ∀x ∈ C

donde con C denotamos el conjunto de puntos de la cuerda. Por tanto, se satisface la relación:

E (t, x) = 2V (t, x) = 2T (t, x) ∀t ∈ R ∧ ∀x ∈ C

donde E es la densidad de energía mecánica por unidad de longitud. Por último, la potencia viene dada por la
expresión:

P (t, x) = ±cE
Es decir, el flujo de energía es positivo si la onda se propaga de izquierda a derecha y negativo en caso contrario.

Demostración. Sabemos que las densidades de energía cinética y potencial vienen dadas por:

V =
1

2
F

(
∂y

∂x

)2

T =
1

2
µ

(
∂y

∂t

)2

donde µ es la densidad de masa por unidad de longitud. Como en nuestro caso es:

y (t, x) = f (x∓ ct)

Considerando que f es una función de ξ, derivando, tenemos:

∂y

∂t
(t, x) =

df

dξ
(x∓ ct) (∓c) = ∓cdf

dξ
(x∓ ct) (4.6.1)

∂y

∂x
(t, x) =

df

dξ
(x∓ ct) (4.6.2)

Sustituyendo, las densidades de energía potencial y de energía cinética por unidad de longitud quedan:

V =
1

2
F

(
df

dξ

)2

T =
1

2
µ

(
∓cdf

dξ

)2

=
1

2
µc2

(
df

dξ

)2

Por la proposición 39 en la página 168, es c2 = F
µ . Sustituyendo en la densidad de energía cinética por unidad

de longitud, tenemos:

T =
1

2
µ
F

µ

(
df

dξ

)2

=
1

2
F

(
df

dξ

)2

= V
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Luego, efectivamente, se da T = V. Por definición de densidad de energía mecánica por unidad de longitud,
tenemos:

E = T + V = 2T = 2V = F

(
df

dξ

)2

(4.6.3)

dado que es T = V.
Por último, por la definición 45 en la página anterior, tenemos:

P = −F ∂y
∂x

∂y

∂t

y sustituyendo por los valores obtenidos en las ecuaciones 4.6.1 en la página anterior y 4.6.2 en la página
anterior, obtenemos:

P = −F
(

df

dξ

)(
∓cdf

dξ

)
= ±cF

(
df

dξ

)2

= ±cE

donde el último paso se debe a la ecuación 4.6.3. Q.E.D.

Proposición 46. Consideremos una onda viajera armónica:

y (t, x) = A cos (ωt− kx)

Tanto la densidad de energía mecánica E como la potencia P se propagan como una onda (es decir, satisfacen
la misma ecuación de ondas que y (t, x)). Además, la potencia media viene dada por la expresión:

〈P 〉 = c 〈E〉 =
1

2
µcA2ω2

donde E es la densidad de energía mecánica por unidad de longitud.

Demostración. Por la proposición 45 en la página anterior, tenemos:

E = 2T = 2
1

2
µ

(
∂y

∂t

)2

= µ

(
∂

∂t
[A cos (ωt− kx)]

)2

=

= µ (−Aω sen (ωt− kx))2 = µA2ω2 sen2 (ωt− kx) (4.6.4)

Ahora, comprobemos que E satisface la ecuación de ondas dada en la proposición 39 en la página 168. Para
ello, derivamos:

∂E
∂t

= µA2ω22 sen (ωt− kx) cos (ωt− kx)ω = µA2ω3 sen (2 [ωt− kx])

∂2E
∂t2

= µA2ω3 cos (2 [ωt− kx]) 2ω = 2µA2ω4 cos (2 [ωt− kx])

∂E
∂x

= µA2ω22 sen (ωt− kx) cos (ωt− kx) (−k) = −µkA2ω2 sen (2 [ωt− kx])

∂2E
∂x2

= −µkA2ω2 cos (2 [ωt− kx]) (−2k) = 2µk2A2ω2 cos (2 [ωt− kx])

Estudiemos el cociente:
∂2E
∂t2

∂2E
∂x2

=
2µA2ω4 cos (2 [ωt− kx])

2µk2A2ω2 cos (2 [ωt− kx])
=
ω2

k2
⇔

⇔ ∂2E
∂t2

=
ω2

k2︸︷︷︸
=c2

∂2E
∂x2
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Como, además, era c2 = F
µ , obtenemos:

∂2E
∂t2

=
F

µ

∂2E
∂x2

de forma que llegamos a la misma ecuación de ondas que cumple la función y (t, x) (ver proposición 39 en la
página 168.

A continuación, multiplicando a ambos lados por la velocidad de propagación c, obtenemos:

c
∂2E
∂t2

= c
F

µ

∂2E
∂x2

⇔ ∂2 (cE)

∂t2
=
F

µ

∂2 (cE)

∂t2

Por la proposición 45 en la página 186 es P = cE (pues en nuestro caso la onda se propaga en el sentido
positivo del eje X. Así:

∂2P

∂t2
=
F

µ

∂2P

∂t2

y, por ende, la potencia también satisface la ecuación de ondas planteada en la proposición 39 en la página 168.
Por último, por la proposición 45 en la página 186 haciendo uso de la ecuación 4.6.4 en la página anterior,

llegamos a:
P = cE = cµA2ω2 sen2 (ωt− kx)

A continuación, hagamos el promedio a un periodo de la función sen2 ξ siendo ξ = ωt− kx.

〈P 〉 =
〈
µcA2ω2 sen2 (ωt− kx)

〉
= µcA2ω2

〈
sen2 (ωt− kx)

〉
=

= µcA2ω2 1

T

∫ T

0
sen2 ξdξ︸ ︷︷ ︸

= 1
2

=
1

2
µcA2ω2

Q.E.D.

Proposición 47. Consideremos una onda estacionaria armónica (un modo normal) en una cuerda tensa:

y (t, x) = A sen (kx) cos (ωt)

Se cumple la igualdad:

〈E〉 =
1

4
µA2ω2

donde con 〈〉 indicamos el promedio temporal y E representa la densidad de energía mecánica por unidad de
longitud. La igualdad sin el promedio temporal no es cierta.

Demostración. Calculemos las densidades de energía cinética y de energía potencial por unidad de longitud:

T =
1

2
µ

(
∂y

∂t

)2

=
1

2
µ

(
∂

∂t
[A sen (kx) cos (ωt)]

)2

=

=
1

2
µ (A sen (kx) sen (ωt) (−ω))2 =

1

2
µA2ω2 sen2 (kx) sen2 (ωt)

V =
1

2
F

(
∂y

∂x

)2

=
1

2
F

(
∂

∂x
[A sen (kx) cos (ωt)]

)
=

=
1

2
F (A cos (kx) k cos (ωt))2 =

1

2
FA2k2 cos2 (kx) cos2 (ωt)
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Haciendo los promedios temporales (recordando 1
T

∫ T
0 sen2 ξdξ = 1

2 = 1
T

∫ T
0 cos2 ξdξ), se tiene:

〈T 〉 =
1

4
µA2ω2 sen2 (kx)

〈V〉 =
1

4
FA2k2 cos2 (kx)

Por la ecuación 4.3.1 en la página 173 es k2 = ω2

c2
y por la proposición 39 en la página 168 es Fµ = c2 ⇔ F = µc2.

Sustituyendo, se tiene:

〈V〉 =
1

4
µc2A2ω

2

c2
cos2 (kx) =

1

4
µA2ω2 cos2 (kx)

Por último, sumando 〈T 〉 y 〈V〉 obtenemos el promedio temporal de la densidad de energía mecánica por
unidad de longitud 〈E〉:

〈E〉 = 〈T 〉+ 〈V〉 =
1

4
µA2ω2 sen2 (kx) +

1

4
µA2ω2 cos2 (kx) =

=
1

4
µA2ω2

Q.E.D.

4.7. Problemas

Ejercicio 17 (Problema 4.7). La cuerda un de un violín tiene una masa por unidad de longitud de 4,0 ·
10−4[kg/m], y se afina a una frecuencia de 660[Hz]. Si la longitud de la cuerda es de 0,33[m], calcula la tensión
de la cuerda cuando está afinada.

Solución. En un violín, los dos extremos de la cuerda permanecen fijos, por lo tanto, en sus diferentes modos
fundamentales, la longitud de onda de las vibraciones en la cuerda vendrá dada por la relación:

λ =
2L

n
∀n ∈ N

A su vez, conocemos que la relación entre la velocidad de propagación de la onda y la frecuencia de la misma:

v = λf

Debido a que la cuerda es un medio continuo y elástico, la velocidad de propagación en la cuerda vendrá
determinada por la densidad lineal de masa y la tensión a la que se encuentre sometida, siendo esta expresión:

v =

√
F

µ

A partir de estas tres expresiones podemos deducir una relación entre los datos ofrecidos en el enunciado
y la tensión a la que se encuentra sometida la cuerda:√

F

µ
=

2L

n
f → F = µ

(
2L

n

)2

f2

Sustituyendo en esta expresión los datos ofrecidos por el enunciado, obtendremos que la tensión de la cuerda
será:

F = (4,0 · 10−4)

[
2(0,33)

n

]2

(660)2 ≈ 75,90

n
[N]

Suponiendo que la cuerda se encuentra vibrando en su armónico fundamental, tendremos un valor de n = 1,
haciendo que la tensión de la cuerda sea:

F ≈ 75,90[N]

Q.E.F.

Licencia: Creative Commons 189

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Capítulo 5

Relatividad especial

5.1. Introducción

La Mecánica Clásica se basa en la dinámica de Newton, que vio la luz con el «Philosophiæ Naturalis
Principia Mathematica» en el año 1687. Desde su publicación hasta finales del siglo XIX, la Mecánica Clásica
fue capaz de explicar con éxito todos los problemas planteados. En todas las situaciones en las que parecía que
la mecánica clásica fallaba, poco después se descubría que había un factor (que complicaba la teoría) que no
se había tenido en cuenta y, tras tenerlo en cuenta, la mecánica clásica se cumplía. De esta forma, los físicos
adquirieron tanta confianza en la mecánica de Newton que todo el resto de teorías de la física se desarrollaron
mediante símiles mecánicos.

Fruto de estas teorías, surgieron las ecuaciones de Maxwell a finales del siglo XIX, así como el concepto
de «campo» de Faraday. Como sabemos, existe una solución ondulatoria de las ecuaciones de Maxwell, cuya
velocidad de propagación en el vacío es:

c =
1√
ε0µ0

Por otra parte, también en el siglo XIX, Foucault llevó a cabo una medición de la velocidad de la luz y cons-
tató que su resultado coincidía bastante bien con la velocidad de propagación de las ondas electromagnéticas.
De este hecho se dedujo que la luz era una onda electromagnética.

Pero aceptar que la luz era una onda electromagnética planteaba otros problemas para la física de la época:
En el siglo XIX se pensaba que toda onda necesitaba un medio para propagarse. Por ello, necesariamente debía
existir una sustancia que impregnase todo el universo conocido para que fuese posible la propagación de la
luz. A esta sustancia se la llamó «éter».

Siguiendo el símil con las ondas mecánicas, se dedujo que como c era muy alta, el éter debería tener un
módulo de Young muy alto y una densidad muy baja. Esto, planteaba, a su vez, más complicaciones por lo
siguiente: Si el éter impregnaba todo el universo, por muy baja que fuese su densidad volumétrica de masa,
éste tendría que interaccionar gravitatoriamente con la materia y, a través de dicha interacción, tendríamos
que haber sido capaces de detectar indirectamente su presencia; pero nunca se había tenido constancia de este
hecho. Es decir, pareciera que es ρ = 0.

Además de todo lo anterior, la existencia del éter significaba que éste sería un sistema de referencia
absoluto, pues en él la velocidad de la luz sería siempre c, mientras que en el resto de sistemas de referencia
dicha velocidad variaría. A finales del siglo XIX y principios del XX se empezaron a diseñar unos experimentos
para poder estudiar la existencia del éter.

En este contexto histórico es donde apareció la Teoría de la Relatividad Especial de Einstein (publicada en
1905), que se centra en sistemas en los que no interviene la gravedad. Diez años después, Einstein publicaría
la Relatividad General (1915), que ya tendría en cuenta efectos gravitatorios.
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5.1.1. Transformación de Galileo unidimensional

En física clásica, suponemos que el espacio y el tiempo están separados, que son independientes. Es decir,
suponemos que el tiempo es absoluto y que, simplemente, fluye. Consideremos dos sistemas de referencia, uno
quieto y otro que se desplaza en el eje X respecto al primero con velocidad v. Suponemos que en t = 0, el
origen de ambos sistemas de referencia coincide O ≡ O′.

S

S′

X

Y

X ′

Y ′

vt

vt

x

x′

Podemos ver esta situación de la siguiente manera. Tenemos un observador estático que está parado en
el andén de una estación y otro observador que está en un tren que se mueve con velocidad v en el sentido
positivo del eje X. Supongamos que existe una partícula que está en una posición x′ según O′ y x según O.
Trivialmente, a través del dibujo, obtenemos la siguiente transformación de coordenadas entre O y O′:

x′ = x− vt
y′ = y
z′ = z
t′ = t

Además, derivando obtenemos la relación entre velocidades:
ẋ′ = ẋ− v
ẏ′ = ẏ
ż′ = ż

A continuación, imaginemos dos rayos de luz viajando en direcciones opuestas tales que el observador O
ve a ambos moverse con una velocidad c.

S

S′

v

|ẋ| = c

|ẋ′| = c− v
|ẋ| = c
|ẋ′| = c+ v
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Sin embargo, el observador O′ vería a los rayos moverse con diferente velocidad: vería un rayo con velocidad
v+ c y otro con velocidad v− c. De esta forma, si la transformación de Galileo es cierta, las leyes de Maxwell
únicamente se cumplen para el observador O, pero no para O′. En otras palabras, el observador O sería un
sistema de referencia privilegiado (el del éter).

5.1.1.1. Invarianza galileana de las leyes de Newton

Las leyes de Newton están íntimamente unidas a la transformación de Galileo, porque las leyes de Newton
son invariantes respecto a transformaciones de Galileo. Vamos a ver esto con algo más de detalle:

Supongamos que tenemos un sistema de referencia S, donde sabemos que se cumple la segunda ley de
Newton. Ahora consideremos un sistema S′ que se mueve a velocidad constante v con respecto a S; queremos
ver si también se satisface ~F = m~a para el sistema S′. Claramente, S y S′ medirán la misma masa m = m′.
Vamos con la aceleración:

~r ′ = ~r − ~vt⇒ ~̇r ′ = ~̇r − ~v ⇒ ~̈r ′ = ~̈r

luego ambas aceleraciones son iguales. De esta forma, obtenemos:

~F ′ = m′~̈r ′ = m~̈r = ~F

Es decir, la segunda ley de Newton no cambia bajo transformaciones de Galileo; dicho de forma más técnica, la
segunda ley de Newton es invariante bajo la transformación de Galileo. Esto implica que ningún experimento
clásico es capaz de discernir entre un sistema de referencia que se encuentre quieto y un sistema de referencia
en movimiento a velocidad constante.

Por tanto, esto les planteaba a los físicos de finales del siglo XIX el siguiente problema: echar por tierra la
transformación de Galileo significaba también echar por tierra las leyes de Newton. Por eso, a muchos físicos
les parecía más razonable que existiera el éter y que las ecuaciones de Maxwell únicamente fueran válidas en
un sistema de referencia, el del éter.

5.1.1.2. Experimento de Michelson-Morley

Este experimento tuvo lugar en 1887 en Estados Unidos. El objetivo de este experimento era comprobar
la existencia del éter. La premisa era que existía el éter y que era un sistema de referencia privilegiado; es
decir, que él está en reposo absoluto y todo lo demás se mueve con respecto al éter. La idea para su detección
es que en ciertos procesos debería existir un «viento aparente de éter».
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Tierra

Sol

c

c′

”Viento del éter”

Por ejemplo, si la Tierra se encuentra justo en el punto de la órbita en el que la trayectoria de la Tierra
es paralela al flujo del éter, al disparar un rayo de luz en direcciones opuestas, deberían observarse diferencias
en la velocidad de propagación. La situación es análoga a una barca que intenta cruzar de una orilla a otra
de un río:

Vagua
c

Para la realización de este experimento, se hizo uso del interferómetro de Michelson. Éste consiste en un
una lámina semitransparente posicionada a 45o con respecto a la luz procedente de una fuente. Detrás de la
lámina, en la dirección de reflexión y en la dirección de transmisión, hay un espejo. Detrás del lado restante
del espejo, se encuentra un detector. Es decir, se da el siguiente esquema:
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Espejo

Espejo

lámina semitransparente detector

Si el éter no existiese, entonces la trayectoria que seguiría la luz sería justo la descrita en la ilustración
anterior. Sin embargo, si existe un cierto «viento del éter», cuando los rayos de luz se desplacen en vertical
(según el dibujo) se verán desplazados lateralmente por el viento del éter y llegarán al detector en otro lugar.

Espejo

lámina semitransparente detector

”Viento del éter”

En resumen, como la fuente de luz utilizada no sería un láser sino que lanzaría varios rayos paralelos, si
existiese el éter, esperaríamos ver un cierto patrón de interferencias.

sin éter con éter
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Si los dos haces fueran paralelos (no existe el viento del éter) entonces esperamos ver un patrón de
interferencias homogéneo (todo blanco, todo negro, todo gris). Sin embargo, si los haces no son paralelos,
esperamos ver «franjas» constructivas y destructivas. El número de franjas nos dirá precisamente el ángulo de
inclinación. Es más, si ahora giramos el interferómetro un ángulo de 90o esperamos observar el mismo patrón
de interferencia, intercambiando franjas constructivas y destructivas.

El resultado del experimento fue que no se apreciaba el viento del éter. Es decir, la luz parece llevar igual
velocidad en las direcciones perpendiculares del interferómetro. Por tanto, da la sensación de que no existe
el llamado viento del éter. A consecuencia de esto, se propusieron varias teorías que intentaban explicar el
resultado, pero ninguna logró hacerlo de forma satisfactoria. Este experimento, por tanto, parece hacernos ver
que no existe un sistema de referencia absoluto. Además, este experimento parece indicar que la velocidad de
la luz c es independiente del movimiento de la fuente y del observador.

Este experimento se siguió repitiendo a lo largo de 30 años con la esperanza de encontrar el éter; todo fue
en vano, claro.

5.2. Postulados de la Relatividad

A la vista de los resultados del experimento de Michelson-Morley, una de las siguientes situaciones debía
ser cierta:

Las ecuaciones de Maxwell no son válidas en todos los sistemas de referencia.

Las ecuaciones de Maxwell deben tener la misma forma en todos los sistemas inerciales. Entonces, la
transformación de Galileo no sería correcta.

En 1904, Lorentz encuentra matemáticamente una transformación que deja invariante las ecuaciones de Max-
well. También en 1904, Poincaré sugiere que si no hay sistemas de referencia privilegiados, entonces las leyes
fundamentales de la física deberían ser las mismas en todo sistema de referencia; es decir, deberían ser inva-
riantes. Esto es lo que se conoce como principio de la Relatividad.

En 1905, Albert Einstein publica dos artículos en los que expone su Teoría de la Relatividad Especial, en
los que llega a los mismos resultados que Lorentz y Poincaré, al parecer, de forma independiente. En estos
artículos Einstein estable los siguientes postulados:

Postulado 4 (Principio de la relatividad). Las leyes de la física son invariantes bajo sistemas de referencia
que se mueven con velocidad relativa constante.

Postulado 5 (Principio de constancia de la velocidad de la luz). La velocidad de la luz c en el vacío es la
misma para todos los sistemas de referencia inerciales.

5.3. Dilatación de tiempos

En relatividad, no vamos a a hablar de puntos en el espacio, sino de sucesos que tienen lugar en una región
en el espacio y en un intervalo de tiempo. Dicho de otra forma, los sucesos son espacio-temporales. A partir
de ahora, siempre vamos a estar trabajando con dos observadores S y S′ con una velocidad relativa entre ellos
v.

Definición 31. Llamaremos coordenadas de un suceso según visto por un observador O a un vector
(x, y, z, t) ∈ R4 que refleja las coordenadas espaciales y temporales correspondientes a un evento.

Definición 32. Diremos que un observador O mide el tiempo propio entre dos sucesos (x1, y1, z1, t1) ,
(x2, y2, z2, t2) si para dicho observador O es x1 = x2, y1 = y2, z1 = z2. Denotaremos el tiempo propio como
∆t0 := t2 − t1.
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Proposición 48. El tiempo transcurrido entre dos sucesos medidos por cualquier observador S es siempre
mayor o igual al tiempo medido por el observador que mide el tiempo propio S′. Además, el tiempo medido
por ambos observadores está relacionado por la expresión:

∆t =
1√

1− v2

c2

∆t0

siendo v la velocidad relativa entre los observadores S y S′.

Demostración. En nuestras circunstancias actuales, no podemos estar seguros ni siquiera de cómo medimos
el tiempo. Por ello, nos construimos un reloj «imaginario» que se base en la velocidad de la luz c, que no
depende del observador por el postulado 5 en la página anterior. Dicho instrumento recibe el nombre de «reloj
de luz» y funciona de la siguiente forma.

emisor/detector luz

h

espejo

”tic” ”tac”

Reloj de luz

∆t = 2h
c

La fuente de luz produce un pulso de luz (suena un «tic») que se propaga a velocidad c para cualquier
observador inercial. Después, el pulso de luz llega a un espejo, donde se ve reflejado y se vuelve a dirigir hacia
abajo, acabando en un fotodiodo (produciéndose un «tac»). De esta forma, el observador sabe que en ese
tiempo, la luz ha recorrido una distancia 2h, siendo h la distancia entre el emisor/receptor y el espejo.

Colocamos este reloj en un vagón, donde se encuentra el observador S′, que va a medir el tiempo propio,
ya que para él tanto el tic como el tac tienen lugar en la misma posición espacial.
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S

v

X

Y

X ′

Y ′

h ∆t′ = 2h
cS′

Como hemos dicho antes, para el observador S′, la distancia recorrida por cada pulso de luz del reloj será
2h. Por el postulado 5 en la página 195, la luz ha recorrido esta distancia con velocidad c. En consecuencia,
será:

∆t0 = ∆t′ =
2h

c
(5.3.1)

A continuación, veamos cómo ve la situación el observador S (el que está quieto en el andén). Cuando
se emite el pulso de luz, para el observador S, el vagón se encuentra en una determinada posición y cuando
el pulso de luz llega al techo, el vagón se ha desplazado en horizontal una cierta cantidad. Del mismo modo,
cuando el pulso de luz llega al fotoreceptor, el vagón también se ha desplazado cierta distancia. Gráficamente,
tenemos:

v v

h

v

”tic” ”tac”

A

B

CD

Desde el punto de vista del observador S, la luz recorre los dos catetos de un triángulo isósceles de vértices
A,B,C. Llamaremos ∆t al tiempo medido por S.
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A

B

D

c∆t
2

h

v∆t
2

La altura del triángulo anterior es claramente h por la construcción del reloj de luz, mientras que la base
será la distancia recorrida por el tren en un tiempo ∆t

2 . Por otra parte, por el postulado 5 en la página 195, la
hipotenusa será la distancia recorrida por la luz en ∆t

2 . En consecuencia, aplicando el teorema de Pitágoras,
llegamos a: (

c
∆t

2

)2

= h2 +

(
v

∆t

2

)2

⇔ c2 (∆t)2

4
= h2 + v2 (∆t)2

4
⇔

⇔ c2 (∆t)2 = 4h2 + v2 (∆t)2 ⇔
(
c2 − v2

)
(∆t)2 = 4h2 ⇔

⇔ (∆t)2 =
4h2

c2 − v2
⇔ ∆t =

2h√
c2 − v2

=
2h

c

1
1
c

√
c2 − v2

=

=
2h

c

1√
c2−v2

c2

=
2h

c

1√
1− v2

c2

Por la ecuación 5.3.1 en la página anterior, tenemos:

∆t =
1√

1− v2

c2

∆t0

con lo que llegamos al enunciado. Además, el término 1√
1− v2

c2

es creciente en v, y su mínimo valor se alcanza

para v = 0, que es 1. Por tanto, siempre es ∆t ≥ ∆t0.
Q.E.D.

Corolario 27. Consideremos el tiempo transcurrido entre dos sucesos. S′ mide el tiempo propio, mientras
que S es otro observador cualquiera que se mueve a velocidad relativa v � c con respecto a S′. Entonces:

∆t ≈ ∆t0

De hecho, el error absoluto cometido en esta aproximación es siempre menor que 1
2

∆t0(
1− v2

c2

) 3
2

v2

c2
.
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Demostración. El resultado se obtiene al hacer un desarrollo de Taylor en v2

c2
a orden cero de la expresión

dada en la proposición 48 en la página 196 en torno a v2

c2
= 0. Así, tenemos:

∆t =

 ∆t0√
1− v2

c2


v2

c2
=0

= ∆t0 cuando
v2

c2
→ 0

Además, obtenemos una acotación del error cometido dada por el resto de Lagrange. Sabemos que es:

∣∣∣∣R1

(
v2

c2

)∣∣∣∣ =

∣∣∣∣∣∣
 d (∆t)

d
(
v2

c2

)
 (ξ)

v2

c2

∣∣∣∣∣∣
para algún ξ ∈

(
0, v

2

c2

)
. Hallemos explícitamente la derivada anterior:

d (∆t)

d
(
v2

c2

) = −1

2

∆t0(
1− v2

c2

) 3
2

(−1) =
1

2

∆t0(
1− v2

c2

) 3
2

Así, tenemos: ∣∣∣∣R1

(
v2

c2

)∣∣∣∣ =
1

2

∆t0

(1− ξ) 3
2

v2

c2

Como la función ∆t0

(1−ξ)
3
2
es una función creciente en ξ, podemos acotar lo anterior por:

∣∣∣∣R1

(
v2

c2

)∣∣∣∣ ≤ 1

2

∆t0(
1− v2

c2

) 3
2

v2

c2

con lo que llegamos al enunciado. Q.E.D.

Observación 39. El corolario 27 en la página anterior nos dice que para velocidades v ≤ c
10 , el error relativo

cometido al usar la transformación de Galileo es siempre aproximadamente menor del 0,5 %. Veámoslo; como
la función 1

2
∆t0(

1− v2

c2

) 3
2

v2

c2
es una función creciente en v2

c2
, el error cometido para una velocidad inferior a c

10 será

necesariamente inferior al cometido para v = c
10 . Por tanto, evaluemos únicamente este caso límite. El error

relativo es:

1

2

1(
1− 1

100

) 3
2

1

100
=

1

200

1(
99
100

) 3
2

≈ 1

200
= 0,005

De hecho, la gráfica de la expresión dada en la proposición 48 en la página 196 en escala logarítmica es:
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0.0100 0.100 1.00

v
c

1.00

10.0

100

∆t
∆t0

Relatividad Especial
Mecánica Clásica

Como podemos observar, los efectos relativistas resultan completamente despreciables para velocidades
inferiores a c

10 , pero altamente apreciables para velocidades cercanas a la de la luz.

Ejemplo 24. Tenemos un cohete que se mueve a una velocidad v = 300 m
s . con respecto de la Tierra.

Llamaremos S′ al observador que viaja con el cohete. S′ enciende un flash en intervalos de 1 hora. ¿Cuál es
el ∆t medido por el observador S en la superficie de la Tierra?

En nuestro caso, el observador S′ mide el tiempo propio, pues para él el cohete no se desplaza entre cada
vez que enciende y apaga sus luces. Conocemos ∆t′ = 1 hora y tenemos:

v

c
=

3 · 102

3 · 108
= 10−6

De esta forma, por la proposición 48 en la página 196, el tiempo medido por el observador S en la Tierra es:

∆t =
∆t′√

1− 10−12
≈
(

1 +
1

2
10−12

)
horas = 1 hora + 1,8 ns

Un experimento similar a este ejercicio se ha llevado a cabo varias veces a lo largo del siglo XX. En una de
estas ocasiones, se usó un reloj atómico en la Tierra, otro en un avión volando hacia el oeste y otro en un
avión volando hacia el este. Los resultados obtenidos fueron los siguientes:

Esperado Experimetal
Este −40 ns −59 ns

Oeste 275 ns 273 ns

donde la diferencia entre los valores correspondientes a «Este» y a «Oeste» se debe a los efectos gravita-
torios de la Relatividad General, que quedan fuera del alcance de este curso.
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5.4. Contracción de longitudes

Definición 33. Llamaremos longitud propia de un objeto a la longitud medida por un observador que esté
en reposo junto al objeto. Denominaremos l0 a la longitud propia.

Proposición 49. Sea un objeto de longitud propia l0 y llamemos S′ al observador que mide dicha longitud
propia. La longitud medida por cualquier otro observador S, que se desplaza a velocidad constante v con
respecto a S′, es siempre menor que la medida por S′ y, además, ambas longitudes vienen relacionadas por la
expresión:

l =

√
1− v2

c2
l0

Demostración. Consideremos la siguiente situación:

S

v

S′

L

Vamos a medir la longitud del tren de la figura según lo ve S (desde el andén) y S′ (en el tren). En nuestro
caso, claramente S′ mide la longitud propia del tren, pues para él el tren se encuentra en reposo.

Por otra parte, el observador S ve como pasa el tren por delante de él. Para él, la cabecera y la cola del
tren pasan por delante de él en la misma posición espacial (justo delante de él), luego el observador S mide
el tiempo propio transcurrido entre dichos dos sucesos (que la cabecera y que la cola pasen delante de él).

De esta forma, el observador S medirá un tiempo propio ∆t0 con el que calculará una longitud l = v∆t0,
mientra que el observador S′ medirá un tiempo ∆t′ con el que calculará la longitud propia l0 = v∆t′. Por la
proposición 48 en la página 196, sabemos que la relación entre ∆t0 y ∆t′ satisface la expresión:

∆t′ =
1√

1− v2

c2

∆t0

Sustituyendo, tenemos que:

l0 = v
1√

1− v2

c2

∆t0

Por otra parte, podemos expresar ∆t0 en función de la longitud medida por S: ∆t0 = l
v . Así, sustituyendo,

llegamos a:

l0 = v
1√

1− v2

c2

l

v
⇔ l =

√
1− v2

c2
l0
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con lo que llegamos al enunciando. Por otra parte, como
√

1− v2

c2
es una función decreciente en v, la longitud

medida por S será siempre menor o igual que la longitud propia l0. Q.E.D.

5.5. Transformación de Lorentz unidimensional

5.5.1. Transformación directa

Proposición 50 (Transformación de Lorentz). Sean S y S′ dos observadores tales que el observador S′ se
desplaza con una velocidad relativa v en el eje X con respecto de S. Sean (x, y, z, t) las coordenadas de un suceso
según O y sean (x′, y′, z′, t′) las coordenadas del mismo suceso visto por O′. Ambos vectores de coordenadas
vienen relacionados por: 

x′ =
1√

1− v2

c2

(x− vt)

y′ = y
z′ = z

t′ =
1√

1− v2

c2

(
t− vx

c2

)
Demostración. Tenemos que dos observadores S y S′ observan un suceso P ′. El origen del observador S se
encuentra en O, mientras que el origen del observador S′ se sitúa en O′.

O
O′ X

Y Y ′
~v

vt
x′

x

O′P ′

1. Como la velocidad relativa entre ambos observadores únicamente tiene componente X es vy = vz = 0 y,
por consiguiente, es y = y′ y z = z′.

2. Consideremos la longitud O′P ′. Para el observador S:

O′P ′ = x− vt

Desde S′, tenemos:
O′P ′ = x′
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Ahora, notemos que x′ es una longitud propia para S′, ya que x′ no depende de ninguna velocidad, es
decir, podemos considerar que en este instante S′ se encuentra en reposo con respecto a P ′. De esta
forma, podemos aplicar la proposición 49 en la página 201, obteniendo:

x− vt =

√
1− v2

c2
x′ ⇔ x′ =

1√
1− v2

c2

(x− vt) (5.5.1)

3. Consideramos que en t = 0 es t = t′ = 0. Conforme el tiempo progresa t > 0, S′ se aleja con respecto a
S con velocidad v a lo largo de la dirección positiva del eje X. Supongamos que en t = 0 se emite un
pulso de luz.

X

Y

Z

ct

El observador S ve un frente de ondas esférico de radio ct. Por el postulado 5 en la página 195, S′ también
verá un frente de ondas esféricas con radio ct′. Es decir, los puntos del frente de ondas describen, para
ambos observadores, esferas. Para el observador S dicho frente de ondas vendrá dado por la ecuación:

x2 + y2 + z2 = c2t2

Mientras que el frente de ondas del observador S′ satisface:

x′ 2 + y′ 2 + z′ 2 = c2t′ 2

Nos fijamos en el punto de corte de ambos frentes de ondas con la parte positiva del eje OX. Dichos
puntos son:

x = ct x′ = ct′

Ahora bien, por la ecuación 5.5.1, conocemos una relación entre x y x′. De esta forma, debe ser:

ct′ = x′ =
1√

1− v2

c2

(x− vt)⇔ t′ =
1√

1− v2

c2

(
x

c
− vt

c

)
=

= t′ =
1√

1− v2

c2

 xt

ct︸︷︷︸
=x

− v

=x︷︸︸︷
ct

c2

 =
1√

1− v2

c2

(
t− vx

c2

)
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De esta forma, hemos llegado al enunciado:

x′ =
1√

1− v2

c2

(x− vt)

y′ = y

z′ = z

t′ =
1√

1− v2

c2

(
t− vx

c2

)

Q.E.D.

Observación 40 (Simultaneidad). En física clásica, dos sucesos simultáneos para un observador S, también lo
serán para otro observador S′. Sin embargo, en física relativista, lo anterior no es cierto. Consideramos dos
sucesos con coordenadas (x1, y1, z1, t1) y (x2, y2, z2, t2) para el observador S tales que t1 = t2. Aplicando la
transformación de Lorentz dada en la proposición 50 en la página 202, obtenemos los tiempos medidos por el
observador S′:

t′1 =
1√

1− v2

c2

(
t1 −

v

c2
x1

)

t′2 =
1√

1− v2

c2

(
t2 −

v

c2
x2

)

t′1 − t′2 =
1√

1− v2

c2

(
t1 −

v

c2
x1 − t2 +

v

c2
x2

)
Como es t1 = t2, obtenemos:

t′1 − t′2 =
1√

1− v2

c2

[ v
c2

(x2 − x1)
]

Como, en general será x2 6= x1, tenemos que es t′1 6= t′2. Luego, la simultaneidad no se preserva.
De hecho, en la fórmula:

t′ =
1√

1− v2

c2

(
t− v

c2
x
)

el término 1√
1− v2

c2

puede interpretarse como un cambio de escala y v
c2

puede verse como un término de fase.

Ejemplo 25. Emitimos un pulso de desde el centro de un cohete.

A B

L

cc
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El observador S′ (el que va montado en el cohete) ve la longitud propia del cohete. Como S′ ve A y B
en reposo, el tiempo que tardarán ambos rayos de luz en llegar a los extremos del cohete coincide; en otras
palabras, es t′A = t′B. Sin embargo, para el observador S (que se encuentra fuera del cohete), tanto A como B
llevan una cierta velocidad v.

A B

L

v v A B

A B A B

tA tB

En consecuencia, para S el frente de ondas alcanzará el punto A antes que el punto B. Es decir, es tA < tB.
Por ende, la simultaneidad es un efecto relativo que depende del observador.

Proposición 51. La transformación de Lorentz dada en la proposición 51 es una aplicación lineal.

Demostración. Denotaremos a la transformación de Lorentz con:

L : R4 −→ R4

(x, y, z, t) −→



x′ =
1√

1− v2

c2

(x− vt)

y′ = y
z′ = z

t′ =
1√

1− v2

c2

(
t− vx

c2

)
Para ver si L es una aplicación lineal, debemos comprobar que:

L (λ (x1, y1, z1, t1) + µ (x2, y2, z2, t2))
?
= λL ((x1, y1, z1, t1)) + µL ((x2, y2, z2, t2))

Para ello, partiremos del lado izquierdo e intentaremos llegar al derecho:

L (λ (x1, y1, z1, t1) + µ (x2, y2, z2, t2)) =

=

 1√
1− v2

c2

[λx1 + µx2 − v (λt1 + µt2)] , λy1 + µy2, λz1 + µz2,

1√
1− v2

c2

[
λt1 + µt2 −

v (λx1 + µx2)

c2

] =
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=

 1√
1− v2

c2

[λx1 − λvt1 + µx2 − µvt2] , λy1 + µy2, λz1 + µz2,

1√
1− v2

c2

[
λt1 − λ

vx1

c2
+ µt2 − µ

vx2

c2

] =

=

 1√
1− v2

c2

λ [x1 − vt1] , λy1, λz1,
1√

1− v2

c2

λ
[
t1 −

vx1

c2

]+

+

 1√
1− v2

c2

µ [x2 − vt2] , µy2, µz2,
1√

1− v2

c2

µ
[
t2 −

vx2

c2

] =

= λ

 1√
1− v2

c2

[x1 − vt1] , y1, z1,
1√

1− v2

c2

[
t1 −

vx1

c2

]+

+µ

 1√
1− v2

c2

[x2 − vt2] , y2, z2,
1√

1− v2

c2

[
t2 −

vx2

c2

] =

= λL ((x1, y1, z1, t1)) + µL ((x2, y2, z2, t2))

Luego, efectivamente, la transformación de Lorentz es una aplicación lineal. Q.E.D.

5.5.2. Transformación inversa

Corolario 28 (Transformación de Lorentz inversa). Sean S y S′ dos observadores tales que el observador
S′ se desplaza con una velocidad relativa v en el eje X con respecto de S. Sean (x, y, z, t) las coordenadas
de un suceso según O y sean (x′, y′, z′, t′) las coordenadas del mismo suceso visto por O′. Ambos vectores de
coordenadas vienen relacionados por: 

x =
1√

1− v2

c2

(
x′ + vt′

)
y = y′

z = z′

t =
1√

1− v2

c2

(
t′ +

v

c2
x′
)

Demostración. Partimos de las expresiones dadas en la proposición 50 en la página 202:

x′ =
1√

1− v2

c2

(x− vt)

y′ = y

z′ = z
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t′ =
1√

1− v2

c2

(
t− vx

c2

)
Ahora, únicamente hay que despejar x en función de x′ y t en función de t′. Vamos con la primera ecuación:

x′ =
1√

1− v2

c2

(x− vt)⇔
√

1− v2

c2
x′ = x− vt⇔ x =

√
1− v2

c2
x′ + vt (5.5.2)

De la última, obtenemos:

t′ =
1√

1− v2

c2

(
t− vx

c2

)
⇔
√

1− v2

c2
t′ = t− vx

c2

Sustituyendo x por el valor obtenido en la ecuación 5.5.2, llegamos a:√
1− v2

c2
t′ = t− v

c2

(√
1− v2

c2
x′ + vt

)
⇔

⇔
√

1− v2

c2
t′ = t−

√
1− v2

c2

v

c2
x′ − v2

c2
t⇔

⇔
√

1− v2

c2
t′ +

√
1− v2

c2

v

c2
x′ = t− v2

c2
t⇔

⇔
√

1− v2

c2

(
t′ +

v

c2
x′
)

=

(
1− v2

c2

)
t⇔

⇔ t =

√
1− v2

c2

1− v2

c2

(
t′ +

vx′

c2

)
=

1√
1− v2

c2

(
t′ +

vx′

c2

)
Ahora, sustituyendo el valor obtenido de t en la ecuación 5.5.2, obtenemos:

x =

√
1− v2

c2
x′ +

v√
1− v2

c2

(
t′ +

vx′

c2

)
=

=

(
1− v2

c2

)
x′ + v2

c2
x′ + vt′√

1− v2

c2

=
x′ + vt′√

1− v2

c2

Q.E.D.

Observación 41. Para obtener la transformación de Lorentz inversa (ver corolario 28 en la página anterior)
a partir de la directa (ver proposición 50 en la página 202) únicamente hay que cambiar «primas» por «no
primas» y v por −v.

5.5.3. Transformación de velocidades unidimensional

Proposición 52 (Transformación de velocidades). Sean dos observadores S y S′ tales que el observador S′

se desplaza a velocidad constante u con respecto a S en el sentido positivo del eje X. El observador S mide
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la velocidad de una partícula ~v = (vx, vy, vz) y el observador S′ mide la velocidad de la misma partícula
~v ′ =

(
v′x, v

′
y, v
′
z

)
. Ambas magnitudes están relacionadas por la expresión:

v′x =
vx − u

1− u
c2
vx

v′y =

√
1− u2

c2

1− u
c2
vx
vy

v′z =

√
1− u2

c2

1− u
c2
vx
vz

Demostración. Tenemos la siguiente situación:

S

S′

u

v

El observador S mide una velocidad ~v = d~r
dt , mientras que el observador S′ mide una velocidad ~v′ = d~r ′

dt′ .
Tomando d~r = ~r2 − ~r1, dt = t2 − t1, d~r ′ = ~r2

′ − ~r1
′ y dt′ = t′2 − t′1, como la transformación de Lorentz es

lineal por la proposición 50 en la página 202, será:

L ((d~r,dt)) = L ((~r2 − ~r1, t2 − t1)) = L ((x2 − x1, y2 − y1, z2 − z1, t2 − t1)) =

= L ((x2, y2, z2, t2))− L ((x1, y1, z1, t1)) =
(
x′2, y

′
2, z
′
2, t
′
2

)
−
(
x′1, y

′
1, z
′
1, t
′
1

)
=

=
(
~r2
′, t′2
)
−
(
~r1
′, t′1
)

=
(
~r2
′ − ~r1

′, t′2 − t′1
)

=
(
d~r ′,dt′

)
De esta forma, aplicando la transformación de Lorentz (ver proposición 50 en la página 202), tenemos que:

dx′ =
1√

1− u2

v2

(dx− udt)

dy′ = dy

dz′ = dz

dt′ =
1√

1− u2

v2

(
dt− u

c2
dx
)

De esta forma, simplemente dividiendo, obtenemos:

v′x =
dx′

dt′
=

1√
1−u2

v2

(dx− udt)

1√
1−u2

v2

(
dt− u

c2
dx
) =

dx− udt

dt− u
c2

dx

1
dt
1
dt

=
dx
dt − udt

dt
dt
dt − u

c2
dx
dt

=
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=
vx − u

1− u
c2
vx

v′y =
dy′

dt′
=

dy
1√

1−u2

v2

(
dt− u

c2
dx
) 1

dt
1
dt

=

√
1− u2

v2
dy
dt(

dt
dt − u

c2
dx
dt

) =

=

√
1− u2

v2

1− u
c2
vx
vy

v′z =
dz′

dt′
=

dz
1√

1−u2

v2

(
dt− u

c2
dx
) 1

dt
1
dt

=

√
1− u2

v2
dz
dt(

dt
dt − u

c2
dx
dt

) =

=

√
1− u2

v2

1− u
c2
vx
vz

Como es dt′ 6= dt, cambian todas las componentes de la velocidad: en particular, es v′y 6= vy y v′z 6= vz. Q.E.D.

Corolario 29. Sean dos observadores S y S′ tales que el observador S′ se desplaza a velocidad constante
u con respecto a S en el sentido positivo del eje X. El observador S mide la velocidad de una partícula
~v = (vx, vy, vz) y el observador S′ mide la velocidad de la misma partícula ~v ′ =

(
v′x, v

′
y, v
′
z

)
. Si es u � c,

recuperamos la transformación de Galileo: 
v′x ≈ vx
v′y ≈ v′y
v′z ≈ v′z

Demostración. El resultado se obtiene trivialmente al sustituir u = 0 en las expresionies de la proposición 52
en la página 207. Q.E.D.

Corolario 30 (Transformación de velocidades inversa). Sean dos observadores S y S′ tales que el observador
S′ se desplaza a velocidad constante u con respecto a S en el sentido positivo del eje X. El observador S
mide la velocidad de una partícula ~v = (vx, vy, vz) y el observador S′ mide la velocidad de la misma partícula
~v ′ =

(
v′x, v

′
y, v
′
z

)
. Ambas magnitudes están relacionadas por la expresión:

vx =
v′x + u

1 + u
c2
v′x

vy =

√
1− u2

c2

1 + u
c2
v′x
v′y

vz =

√
1− u2

c2

1 + u
c2
v′x
v′z

Demostración. Por la proposición 52 en la página 207, se cumplen las ecuaciones:

v′x =
vx − u

1− u
c2
vx

v′y =

√
1− u2

c2

1− u
c2
vx
vy

Licencia: Creative Commons 209

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 5. RELATIVIDAD ESPECIAL

5.5. TRANSFORMACIÓN DE LORENTZ UNIDIMENSIONAL

v′z =

√
1− u2

c2

1− u
c2
vx
vz

De la primera, despejemos vx:

v′x =
vx − u

1− u
c2
vx
⇔ v′x

(
1− u

c2
vx

)
= vx − u⇔ v′x −

u

c2
v′xvx = vx − u⇔

⇔ v′x + u = vx +
u

c2
v′xvx ⇔ v′x + u = vx

(
1 +

u

c2
v′x

)
⇔ vx =

v′x + u

1 + u
c2
v′x

(5.5.3)

Vamos con la segunda ecuación:

v′y =

√
1− u2

c2

1− u
c2
vx
vy ⇔ vy = v′y

1√
1− u2

c2

(
1− u

c2
vx

)
Sustituyendo el valor de vx obtenido en la ecuación 5.5.3, obtenemos:

vy = v′y
1√

1− u2

c2

(
1− u

c2

v′x + u

1 + u
c2
v′x

)
=

= v′y
1√

1− u2

c2

(
1− uv′x + u2

c2 + uv′x

)
= v′y

1√
1− u2

c2

c2 + uv′x − uv′x − u2

c2 + uv′x
=

= v′y
1√

1− u2

c2

c2 − u2

c2 + uv′x
= v′y

1√
1− u2

c2

c2

c2

1− u2

c2

1 + u
c2
v′x

=

= v′y

√
1− u2

c2

1 + u
c2
v′x

=

√
1− u2

c2

1 + u
c2
v′x
v′y

Actuando análogamente con la tercera ecuación, se llega al resultado. Q.E.D.

Observación 42. Para obtener la transformación de velocidades inversa (ver corolario 30 en la página anterior)
a partir de la directa (ver proposición 52 en la página 207) únicamente hay que cambiar «primas» por «no
primas» y u por −u.

Ejemplo 26. Tenemos un cohete que se mueve a velocidad u = 0,8c con respecto a la Tierra. Lanzamos
proyectiles hacia delante con v′ = 0,6c (velocidad relativa al cohete). ¿A qué velocidad se ven los proyectiles
desde la Tierra?

Según la transformación clásica, obtendríamos:

v = v′ + u = 1,4c

Pero esto violaría el segundo postulado de la relatividad especial. Mediante la transformación de velocidades
inversa (ver corolario 30 en la página anterior), obtenemos:

v =
v′ + u

1 + u
c2
v′

=
0,6c+ 0,8c

1 + 0,8c
c2

0,6c
=

0,6c+ 0,8c

1 + 0,48
=

1,4

1,48
c =

140

148
c =

70

74
c =

35

37
c ≈ 0,946c

Q.E.F.
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Ejemplo 27. El cohete del ejemplo 26 en la página anterior lanza fotones con v′ = c. ¿Cuál es la velocidad
de dichos fotones vista desde la Tierra?

v =
v′ + u

1 + u
c2
v′

=
c+ 0,8c

1 + c
c2

0,8c
=

1,8c

1,8
= c

Como vemos, efectivamente, se cumple el postulado 5 en la página 195, es decir, c es invariante bajo la
transformación de Lorentz.

Q.E.F.

5.6. El grupo de Lorentz

A continuación, vamos a desarrollar la transformación de Lorentz desde un punto más general. Para ello,
vamos a olvidar momentáneamente todo el desarrollo hecho hasta ahora y vamos a deducir la forma de las
transformaciones de Lorentz desde el punto de vista del Álgebra.

Proposición 53. El postulado 5 en la página 195 implica que, dado un suceso de coordenadas (x, y, z, t) para
un observador S que representa un «punto espacio-temporal» de un frente de ondas esférico de luz, entonces
la cantidad:

x2 + y2 + z2 − c2t2

no depende del observador S.

Demostración. Sean dos observadores S y S′ tales que el observador S′ se desplaza a una velocidad constante
~v con respecto a S. En t = t′ = 0, supondremos que se emite una onda esférica de luz. Por el postulado 5
en la página 195, para ambos observadores, el frente de ondas de la luz es esférico, ya que se propaga a
velocidad c en todas direcciones. Para el observador S dicho frente de ondas viene descrito por la ecuación:
x2 + y2 + z2 = c2t2 y para S′ viene descrito por x′ 2 + y′ 2 + z′ 2 = c2t′ 2. De esta forma, debe ser:

x2 + y2 + z2 − c2t2 = 0

x′ 2 + y′ 2 + z′ 2 − c2t′ 2 = 0

De esta forma, la cantidad x2+y2+z2−c2t2 debe ser nula para cualquier observador inercial y, en consecuencia,
no depende del observador. Q.E.D.

La proposición 53 motiva la construcción de una norma (en nuestro caso, será una pseudonorma) que debe
mantenerse invariante para cualquier observador. En otras palabras, si tenemos un suceso de coordenadas
(x, y, z, ct) para un observador S y coordenadas (x′, y′, z′, ct′) para un observador S′, entonces, esperamos que
la pseudonorma de ambos vectores sea la misma. Además, dicha pseudonorma tiene que tener la propiedad
de que sea nula para todo (x, y, z, ct) perteneciente a un frente de ondas esférico de un rayo de luz. Hemos
introducido el factor c multiplicando a la t para que todos los elementos de los vectores tengan las mismas
unidades. Esto nos facilitará las cuentas y la definición de los conceptos más adelante. Nótese que introducirlo
no afecta absolutamente en nada, más que a la definición que tendremos que dar a la pseudonorma, ya que c
es una constante que no depende del observador por el postulado 5 en la página 195.

Como es bien sabido en Álgebra, construir una norma es equivalente a construir un producto escalar (en
nuestro caso, será un pseudoproducto escalar). De esta forma, definimos:

Definición 34. Llamaremos pseudoproducto escalar de Minkowski al pseudoproducto escalar que, en
base canónica, viene dado por la matriz:

Λ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


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Observación 43. De esta forma, la pseudonorma de un suceso de coordenadas (x, y, z, ct) para un observador
S sería:

〈(x, y, z, ct) , (x, y, z, ct)〉 =
(
x y z ct

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



x
y
z
ct

 = x2 + y2 + z2 − c2t2

que coincide justo con la cantidad dada en la proposición 53 en la página anterior.

Proposición 54. El pseudoproducto escalar de Minkowski es, efectivamente, un pseudoproducto escalar.

Demostración. Para poder ser un pseudoproducto escalar deben cumplirse dos cosas: la aplicación que lo
define debe ser bilineal y además, debe ser simétrica.

En nuestro caso (la definición 34 en la página anterior), la aplicación es claramente bilineal (ya que nos
dan su representación matricial) y dicha matriz es claramente simétrica. Por ende, el pseudoproducto escalar
de Minkowski es un pseudoproducto escalar. Q.E.D.

Definición 35. Llamaremos espacio de Minkowski a R4 dotado del pseudoproducto escalar descrito en la
definición 34 en la página anterior.

Con todo esto, ya tenemos construido el aparato matemático necesario para dar la definición más general
posible de una transformación de Lorentz.

Definición 36. Llamaremos transformación de Lorentz a toda isometría del espacio de Minkowski.
En otras palabras, una transformación de Lorentz es toda aplicación lineal de R4 −→ R4 que preserva la

pseudonorma que se deduce del pseudoproducto escalar de Minkowski (ver definición 34 en la página anterior).

Teorema 10. El conjunto de todas las transformaciones de Lorentz tiene estructura de grupo respecto a la
composición de aplicaciones.

Demostración. Lo primero que debemos demostrar es que la composición de dos transformaciones de Lorentz
L1 y L2 es también una transformación de Lorentz. Escojamos una base B cualquiera de R4 y llamemos AL1

a la matriz coordenada de L1 en base B y AL2 a la matriz coordenada de L2 en base B. Por último, llamemos
Λ a la matriz que representa el pseudoproducto escalar de Minkowski (ver definición 34 en la página anterior)
en la base B. Dado que L1 y L2 son transformaciones de Lorentz, sabemos que se verifica:

ATL1
ΛAL1 = Λ, ATL2

ΛAL2 = Λ

(donde el superíndice T indica traspuesta) puesto que L1 y L2 preservan el pseudoproducto escalar de Min-
kowski (ver definición 34 en la página anterior). De esta forma, estudiemos si L := L2 ◦ L1 es también una
transformación de Lorentz. Llamaremos AL = AL2AL1 a la matriz coordenada de L en base B y consideremos:

(AL2AL1)T Λ (AL2AL1) = ATL1
ATL2

ΛAL2︸ ︷︷ ︸
=Λ

AL1 = ATL1
ΛAL1 = Λ

Luego, L es una transformación de Lorentz.
A continuación, debemos comprobar que la composición de transformaciones de Lorentz es asociativa, pero

esta propiedad se hereda de la composición de aplicaciones lineales.
Además, claramente la identidad id es una transformación de Lorentz, luego el elemento neutro de la

composición de aplicaciones es una transformación de Lorentz.
Por tanto, únicamente queda verificar que existe la inversa de cualquier aplicación de Lorentz y que dicha

inversa es otra aplicación de Lorentz. Primero probemos la existencia. Para ello, sea L una transformación de
Lorentz y sea AL su representación coordenada en una base cualquiera B de R4, estudiemos:

ATLΛAL = Λ⇒ det
(
ATLΛAL

)
= det Λ⇔
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⇔ detATL det Λ detAL = det Λ

Como es det Λ 6= 0 (véase la definición 34 en la página 211), tenemos:

detATL detAL = 1

Como se da detATL = detAL, llegamos a:

(detAL)2 = 1⇒ detAL 6= 0

luego AL es una matriz invertible y, por consiguiente, L es una aplicación lineal invertible. Luego, la inversa
de una aplicación de Lorentz siempre existe. A continuación, veamos que dicha inversa es, necesariamente,
otra aplicación de Lorentz. Para ello, consideramos:

Λ = Λ⇔
(
ALA

−1
L

)T
Λ
(
ALA

−1
L

)
= Λ⇔

(
A−1
L

)T
ATLΛAL︸ ︷︷ ︸

=Λ

A−1
L = Λ⇔

⇔
(
A−1
L

)T
ΛA−1

L = Λ

donde el paso marcado se debe a que L es una aplicación de Lorentz. Por consiguiente, L−1 también será una
aplicación de Lorentz.

Recapitulando, hemos probado que la composición de dos aplicaciones de Lorentz cualesquiera es una
aplicación de Lorentz, que el elemento neutro de la composición de aplicaciones también es una aplicación
de Lorentz, que la composición de aplicaciones de Lorentz es asociativa, que siempre existe la inversa de una
aplicación de Lorentz y que dicha inversa es otra aplicación de Lorentz. Por ende, el conjunto de todas las
aplicaciones de Lorentz cumple todos los requisitos para tener estructura de grupo. Q.E.D.

Definición 37. Llamaremos grupo de Lorentz al grupo descrito en el teorema 10 en la página anterior.

5.6.1. Tipos de transformaciones de Lorentz

El conjunto de las transformaciones de Lorentz tiene cuatro componentes disconexas. El resto de transfor-
maciones pueden obtenerse como composición de dos de las anteriores.

Transformaciones octócronas propias: constituyen el conjunto de las transformaciones de Lorentz que
tienen determinante igual a uno y que, además, satisfacen que en base canónica la componente (4, 4) de
su matriz coordenada es positiva. Se pueden obtener como exponenciales de otras matrices.

Transformaciones octócronas impropias: están formadas por aquellas transformaciones de Lorentz
con determinante igual a menos uno y que satisfacen que en base canónica la componente (4, 4) de su
matriz coordenada es positiva. Especialmente interesante de esta categoría resulta la paridad espacial,
que representa una inversión respecto al origen de las coordenadas espaciales:

P =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


Transformaciones no-octócronas impropias: constituyen el conjunto de las transformaciones de Lo-
rentz que tienen determinante igual a menos uno y cuya componente (4, 4) de su matriz coordenada en
base canónica es negativa. Especialmente interesante de esta categoría resulta la paridad temporal,
que representa una inversión en la dirección del tiempo:

T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


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Transformaciones no-octócronas propias: son el conjunto de transformaciones de Lorentz cuyo de-
terminante es igual a uno y que satisfacen que la componente (4, 4) de su matriz coordenada en base
canónica es negativa. Especialmente interesante de esta categoría resulta la paridad espacio-temporal,
que constituye una inversión simultánea en las direcciones espaciales y temporales:

PT =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Se puede probar que cualquier transformación de Lorentz puede escribirse como el producto de la matriz
coordenada de una transformación de Lorentz octócrona propia y una de las matrices P , T o PT .

Es interesante notar que el grupo de Lorentz incluye como subgrupo al grupo de rotaciones espaciales de
R3. Estas transformaciones giran los ejes espaciales y dejan fijo el tiempo. Un ejemplo de matriz de este tipo
sería:

Lx =


1 0 0 0
0 cosα senα 0
0 − senα cosα 0
0 0 0 1


Igualmente, existen transformaciones que «rotan» en torno al eje temporal. Éstas reciben el nombre de boots.
Un ejemplo sencillo corresponde a la matriz:

Bx =


coshα 0 0 − senhα

0 1 0 0
0 0 1 0

− senhα 0 0 coshα


De hecho, la transformación presentada en la proposición 50 en la página 202 se corresponde con un boost.

5.6.2. Cuadrivectores

Definición 38. Sean S y S′ dos observadores inerciales tales que el observador S′ se desplaza a velocidad
constante con respecto a S. Llamaremos cuadrivector a cualquier vector de R4 cuyas coordenadas vistas por
S q = (q1, q2, q3, q4) tomen valores correspondientes a magnitudes físicas medibles por S y S′ y que, además,
cumplan que si q son los valores medidos por S, entonces q′ = L (q) son los valores medidos por S′ (donde
L es la transformación de Lorentz entre S y S′); es decir, q y q′ deben estar relacionadas a través de la
transformación de Lorentz que conecta S con S′.

Notación 5. En general, denotaremos los cuadrivectores en negrita q para distinguirlos de los trivectores ~q y
de los escalares q.

Corolario 31. Las coordenadas de un suceso (multiplicando el tiempo por c) para un observador S: r =
(~r, ct) = (x, y, z, ct) son un cuadrivector.

Demostración. La demostración es trivial a partir de la definición de suceso (ver definición 31 en la página 195)
y la de cuadrivector (ver definición 38). Q.E.D.

Definición 39. Llamaremos cuadriposición al cuadrivector que describe un suceso:

r := (~r, ct) = (x, y, z, ct)
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A continuación, queremos definir algún concepto relacionado con la velocidad, pero que sea un cuadrivector.
Si recordamos la transformación de velocidades dada en la proposición 52 en la página 207, veremos fácilmente
que la transformación de velocidades no es una transformación de Lorentz. En consecuencia, el vector (~v, c)
(que sería la opción más sencilla) no es un cautrivector. Por tanto, vamos a tener que recurrir a una definición
distinta:

Definición 40. Llamaremos cuadrivelocidad v al caudrivector:

v :=
dr

dt0
=

(
d~r

dt0
, c

dt

dt0

)
donde t0 es el tiempo propio.

Observación 44. La cuadrivelocidad es, efectivamente, un caudrivector. Veamos por qué. Por una parte, como
las transformaciones de Lorentz son lineales, dr «cambia» de un observador a otro del mismo modo que lo
hace r; en otras palabras, dr es un cuadrivector. Además, como el tiempo propio t0 no depende del observador,
dt0 tampoco lo hará. En definitiva, v es el cociente entre un cuadrivector y un escalar que no depende del
observador. Por consiguiente, v también es un cuadrivector.

Corolario 32. La cuadrivelocidad puede expresarse como:

v =
1√

1− v2

c2

(~v, c)

donde v = |~v|.

Demostración. Partimos de la definición 40:

v =

(
d~r

dt0
, c

dt

dt0

)
Mediante la proposición 48 en la página 196, podemos relacionar dt con dt0:

dt =
1√

1− v2

c2

dt0

Así, por la regla de la cadena, tenemos:

v =

(
d~r

dt

dt

dt0
, c

dt

dt

dt

dt0

)
=

dt

dt0

(
d~r

dt
, c

)
=

dt

dt0
(~v, c) =

1√
1− v2

c2

(~v, c)

Q.E.D.

Notación 6. En lo sucesivo, con frecuencia se usará:

γ (v) :=
1√

1− v2

c2

5.6.3. Cono de luz

Definición 41 (vectores tipo espacio, tiempo y luz).

Diremos que un vector v de R4 es tipo espacio si su pseudonorma según el producto escalar de
Minkowski (ver definición 34 en la página 211) es positiva.
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Diremos que un vector v de R4 es tipo tiempo si su pseudonorma según el producto escalar de Min-
kowski (ver definición 34 en la página 211) es negativa.

Diremos que un vector v de R4 es tipo luz si su pseudonorma según el producto escalar de Minkowski
(ver definición 34 en la página 211) es nula.

Para dar una interpretación física a cada tipo de vector, tenemos que recurrir al cono de luz. Con el fin
de que podamos hacer la representación en tres dimensiones, eliminaremos una de la dimensiones espaciales,
es decir, supondremos que tenemos dos coordenadas espaciales x e y y una temporal ct. La figura del cono de
luz es la siguiente:

X

Y

ct

tipo tiempo

tipo espacio

tipo luz

Con el fin de entender la figura, supongamos que somos un observador S que se encuentra en el vértice
del cono. Los ejes representados son X,Y en el plano horizontal y ct en la dirección vertical; la ecuación del
cono de la figura es x2 + y2 = c2t2.

Un vector tipo luz tiene pseudonorma nula y, por tanto, para todo vector tipo luz se da x2 + y2 − c2t2 =
0 ⇔ x2 + y2 = c2t2. Es decir, todo vector de luz se encuentra contenido en el cono. Por otra parte, la
pseudonorma de un vector tipo tiempo satisface x2 + y2 − c2t2 < 0 ⇔ x2 + y2 < c2t2 y, por ende, todo
vector tipo tiempo se encuentra en el interior del cono. Por último, la pseudonorma de un vector tipo espacio
satisface x2 + y2 − c2t2 > 0 ⇔ x2 + y2 > c2t2 y, en consecuencia, todo vector tipo espacio está situado en el
espacio exterior al cono.

El cono de luz representa, precisamente, todas las «trayectorias» de todos los rayos de luz que nos han
llegado desde el pasado y todos los rayos de luz que emitimos hacia el futuro.

Además, los vectores tipo tiempo representan trayectorias en las que no se supera la velocidad de la luz.
Para ver esto, consideremos una partícula cuya cuadrivelocidad sea v = dr

dt0
=
(

d~r
dt0
, c dt

dt0

)
= 1

dt0
(d~r, cdt) y

estudiemos:

〈v,v〉 =

(
1

dt0

)2 [
(dx)2 + (dy)2 − c2 (dt)2

]
< 0

ya que dr = (dx, dy, cdt) es un vector tipo tiempo. Por un razonamiento análogo, los vectores tipo espacio
representan trayectorias en las que la velocidad nunca es inferior a la de la luz.

Licencia: Creative Commons 216

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es


Laín-Calvo-Cano-Guerrero
CAPÍTULO 5. RELATIVIDAD ESPECIAL

5.7. MOMENTO LINEAL RELATIVISTA Y ENERGÍA

Como la información no puede viajar a mayor velocidad que la de la luz, el interior del cono contiene todos
los sucesos que han podido afectar a nuestro pasado y todos los sucesos a los que podemos afectar en nuestro
futuro; es decir, nuestro pasado se encuentra debajo del plano XY (y en el interior del cono) y todos nuestros
posibles futuros se encuentran encima del plano XY (y en el interior del cono). Por tanto, hay una amplia
zona del espacio-tiempo (el exterior del cono) de la que estamos causalmente desconectados (pues ningún rayo
de luz puede viajar entre esas zonas y nosotros o al revés).

Un aspecto muy importante de esta figura es que, como el pseudoproducto escalar de Minkowski es
invariante Lorentz, los vectores tipo tiempo, son de tipo tiempo para cualquier observador, los vectores tipo
luz, lo son para cualquier observador y los vectores tipo espacio lo son, también, para cualquier observador.
Esto significa que todos los observadores coinciden en qué conjunto de sucesos son el futuro y el pasado de
todos los observadores, aunque las coordenadas de cada suceso sí que dependan del observador. Es por esto
que la parte del interior del cono de luz que se corresponde con el futuro de un observador recibe el nombre de
futuro absoluto, mientras que la parte del interior del cono que se corresponde con el pasado de un observador
recibe el nombre de pasado absoluto.

5.7. Momento lineal relativista y energía

5.7.1. Por qué la definición clásica de momento lineal falla

Recordemos que la definición clásica de momento lineal era:

~p = m~v

Entonces, parece lógico considerar el vector de R4 m (~v, c), pero como (~v, c) no es un cuadrivector, entonces
m (~v, c) tampoco podrá serlo.

Además, veamos un ejemplo para convencernos de que la definición clásica de momento lineal nos plantea
varios problemas (además de que no cambie de sistema de referencia mediante transformaciones de Lorentz).

Ejemplo 28. Consideremos la colisión entre dos partículas. En física clásica, el momento lineal debería
conservarse. Veamos que con la definición clásica, el momento lineal no se conserva. Imaginemos la siguiente
situación:

El observador A se encuentra en reposo con respecto a S y A lanza un proyectil en vertical. El observador
B va montado en un tren (el tren constituye el observador S′), es decir, el observador B está en reposo con
respecto a S′, y quiere lanzar una pelota para que colisione con el proyectil lanzado por el observador A. Visto
desde S, tenemos:

S

S′

u

A

B
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Y visto desde S′:

S

S′

u

A

B

En resumen:

El observador A está en reposo con respecto a S, lanza un proyectil de masa m en vertical con velocidad
v0 y ve a B avanzando a la derecha con velocidad u.

El observador B está en reposo con respecto a S′, lanza un proyectil de masa m en vertical hacia abajo
con velocidad v0 y ve A avanzando hacia la izquierda con velocidad u.

Supondremos que el choque entre ambos cuerpos es completamente elástico. A continuación, vamos a estudiar
si se conserva el momento lineal con respecto a cada uno de los sistemas de referencia:

La partícula A vista desde S:
Las velocidades iniciales son:

vA,x = 0
vA,y = v0

}
⇒ P inicial

A,y = mv0

Como el choque es completamente elástico, la velocidad final es:

vA,x = 0
vA,y = −v0

}
⇒ P final

A,y = −mv0

De esta forma, tenemos:
∆PA,y = −mv0 −mv0 = −2mv0

La partícula B vista desde S′:
Las velocidades iniciales son:

v′B,x = 0

v′B,y = −v0

}
Como el choque es completamente elástico, las velocidades finales son:

v′B,x = 0

v′B,y = v0

}
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La partícula B vista desde S:
Usando la transformación de Lorentz para velocidades (ver proposición 52 en la página 207), obtenemos
que las velocidades iniciales son:

vB,x =
v′B,x + u

1 + u
c2
v′B,x

=
0 + u

1 + u
c2

0
= u

vB,y =
v′B,y

γ
(

1 + u
c2
v′B,x

) =
−v0

γ
(
1 + u

c2
0
) = −v0

γ

donde es γ = 1√
1−u2

c2

.

Las velocidades finales quedan:

vB,x =
v′B,x + u

1 + u
c2
v′B,x

=
0 + u

1 + u
c2

0
= u

vB,y =
v′B,y

γ
(

1 + u
c2
v′B,x

) =
v0

γ
(
1 + u

c2
0
) =

v0

γ
= v0

√
1− u2

c2

De esta forma, la variación en momento lineal queda:

∆PB,y = m
v0

γ
+m

v0

γ
= 2m

v0

γ
= 2mv0

√
1− u2

c2

Por consiguiente es:
∆PA,y 6= ∆PB,y

En otras palabras, el momento lineal clásico no se conserva.

Esto nos lleva a buscar una definición de momento lineal relativista que sí se conserve en las colisiones y
que, si es posible, cambie de sistema de referencia a través de las transformaciones de Lorentz. Dicha definición
existe y es la que presentamos a continuación:

Definición 42. Llamamos cuadrimomento o cuadrivector energía-momento de una partícula de masa
m al cuadrivector:

p := mv = m
dr

dt0
=

(
m

d~r

dt0
,m

dt

dt0

)
=

1√
1− v2

c2

(m~v,mc) = (γ (v)m~v, γ (v)mc)

donde v es la cuatrivelocidad introducida en la definición 40 en la página 215 y t0 es el tiempo propio (ver
definición 32 en la página 195).

Fijémonos en que p es, efectivamente, un cuadrivector ya que v lo es y m es una constante que no depende
del observador.

El cuadrimomento también recibe el nombre de cuadrivector energía-momento. La idea es que, la cuarta
componente del cuadrimomento multiplicada por c tiene unidades de energía:

[
γ (v)mc2

]
= kgm2

s2 = kg·m
s2 ·m =

N ·m = J. Como c es una constante que no depende del observador (véase el postulado 5 en la página 195), la
cuarta componente del momento será siempre proporcional a la energía. Esto motiva la siguiente definición:

Definición 43. Sea una partícula de masa m. Definimos su energía como la cuarta componente de su
cuadrimomento multiplicada por c. Es decir:

E = γ (v)mc2 =
m√

1− v2

c2

c2

donde v es la velocidad de la partícula.
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Definición 44. Llamaremos momento lineal relativista o trimomento a las tres primeras componentes
del cuadrimomento (ver definición 42 en la página anterior):

~p := m
d~r

dt0
= m

d~r

dt

dt

dt0
= mγ (v)~v =

m√
1− v2

c2

~v

Observación 45. Nótese que el d~r depende del observador, mientras que el tiempo propio es el medido por el
que está montado en la partícula. Como siempre, si v � c, entonces ~p ≈ m~v.
Observación 46. Nótese que según la expresión dada en la proposición 44, no es posible alcanzar nunca la
velocidad de la luz, ya que la expresión del trimomento diverge para v = c. Esto puede verse gráficamente con
la siguiente figura:

0.200 0.400 0.600 0.800 1.00

v
c

0.500

1.00

1.50

2.00

2.50

3.00

p
mc

Relatividad Especial
Mecánica Clásica

De esta forma, la conservación del cuadrimomento va a suponer la conservación del trimomento y la energía
todo en la misma ecuación. Es decir, en física relativista, la conservación del momento y la conservación de la
energía ya no van por separado como lo hacían en física clásica. En relatividad, no puede conservarse uno si
no se conserva el otro, porque la verdadera magnitud conservada es el caudrimomento.

Veamos que esta nueva definición de momento lineal relativista se conserva en el ejemplo 28 en la pági-
na 217:

Ejemplo 29.

Partícula A vista desde S:
Velocidades iniciales:

vA,x = 0
vA,y = 0

}
⇒ P inicial

A,y =
m√

1− v2
0
c2

v0
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Como el choque es completamente elástico, las velocidades finales quedan:

vA,x = 0
vA,y = −v0

}
⇒ P final

A,y = − m√
1− v2

0
c2

v0

De esta forma, la variación total de momento lineal es:

∆PA,y = − 2m√
1− v2

0
c2

v0

Partícula B vista desde S:
Velocidades iniciales:

vB,x = u

vB,y = −v0

√
1− u2

c2

}
donde este último dato lo hemos obtenido a partir de la transformación de Lorentz de velocidades (ver
proposición 52 en la página 207), algo que ya hicimos en el ejemplo 28 en la página 217.

vinicialB =

√(
vinicialB,x

)2
+
(
vinicialB,y

)2
=

√
u2 + v2

0

(
1− u2

c2

)

P inicial
B,y =

−m√
1−

u2+v2
0

(
1−u2

c2

)
c2

v0

√
1− u2

c2

Como el choque es perfectamente elástico, llegamos a las siguientes velocidades finales:

vB,x = u

vB,y = v0

√
1− u2

c2

}

vfinalB =

√(
vfinalB,x

)2
+
(
vfinalB,y

)2
=

√
u2 + v2

0

(
1− u2

c2

)

P final
B,y =

m√
1−

u2+v2
0

(
1−u2

c2

)
c2

v0

√
1− u2

c2
(5.7.1)

Operando, obtenemos: (
1− u2

c2

)(
1− v2

0

c2

)
= 1− v2

0

c2
− u2

c2
+
u2v2

0

c4
=

= 1− u2 + v2
0 −

u2v2
0

c2

c2
= 1−

u2 + v2
0

(
1− u2

c2

)
c2

De esta forma, podemos reescribir la ecuación 5.7.1 como:

P inicial
B,y =

−m√(
1− u2

c2

)(
1− v2

0
c2

)v0

√
1− u2

c2
=

=
−m√
1− v2

0
c2

v0
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P final
B,y =

m√(
1− u2

c2

)(
1− v2

0
c2

)v0

√
1− u2

c2
=

m√
1− v2

0
c2

v0

Así, llegamos a:

∆PB,y =
2m√
1− v2

0
c2

v0 = −∆PA,y

Por ende, el momento lineal relativista se conserva.

Proposición 55 (boost del cuadrimomento). Un observador S mide un trimomento ~p = (px, py, pz) y una
energía E. Por otra parte, un observador S′, que se desplaza a velocidad constante u a lo largo del eje X
positivo con respecto a S, mide un trimomento ~p ′ =

(
p′x, p

′
y, p
′
z

)
y una energía E′. Los valores medidos por S

y los medidos por S′ están relacionados por las expresiones:

p′x =
px − uEc2√

1− u2

c2

p′y = py
p′z = pz

E′ =
E − upx√

1− u2

c2

Igualmente, se cumple: 

px =
p′x + uE

′

c2√
1− u2

c2

py = p′y
pz = p′z

E =
E′ + up′x√

1− u2

c2

Demostración. Vamos a probar el resultando basándonos en el hecho de que el caudrimomento es un cuatri-
vector. Como el cuadrimomento es un cuadrivector, la aplicación que nos da el cambio de coordenadas entre S
y S′ es una transformación de Lorentz, en concreto la transformación de Lorentz a usar será la misma que la
dada en la proposición 50 en la página 202, dado que estamos ante un boost, al igual que en dicha proposición.
Por tanto, recordemos las ecuaciones dadas en dicha proposición:

x′ =
1√

1− u2

c2

(x− ut) =
x− u

c ct√
1− u2

c2

y′ = y

z′ = z

t′ =
1√

1− u2

c2

(
t− ux

c2

)
⇔ ct′ =

1√
1− u2

c2

(
ct− u

c
x
)
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Teniendo en cuenta que el cuatrimomento es p =
(
px, py, pz,

E
c

)
, en nuestro caso px jugará el papel de x, py

jugará el papel de y, pz jugará el papel de z y E
c jugará el papel de ct. Así, obtenemos:

p′x =
px − u

c
E
c√

1− u2

c2

=
px − uEc2√

1− u2

c2

p′y = py

p′z = pz

E′

c
=

1√
1− v2

c2

(
E

c
− upx

c

)
⇔ E′ =

E − upx√
1− v2

c2

Por último, para obtener la transformación inversa no tenemos más que recordar que, por el teorema 10 en
la página 212, las transformaciones de Lorentz forman un grupo y, por tanto, la inversa de una transformación
de Lorentz es otra transformación de Lorentz, en concreto, la que cambia las coordenadas entre S′ y S. Por
tanto, únicamente es menester cambiar primas por no primas y u por−u en las expresiones de la transformación
directa. Q.E.D.

Antes de pasar al apartado correspondiente a energías, vamos a hacer una breve mención al papel de la
fuerza en relatividad especial. El concepto de fuerza no resulta aquí tan útil como lo hace en física clásica.
Además, existen varias definiciones, todas con sus ventajas e inconvenientes. Aquí vamos a presentar la que
nos va a permitir derivar la definición de energía cinética relativista.

Definición 45. Llamamos trifuerza ~F que actúa sobre una partícula de masa m a:

~F :=
d~p

dt
=

d (γ (v)m~v)

dt

donde ~p es el trimomento (ver definición 44 en la página 220) y t es el tiempo medido por el observador que
mide ~p.

Una de las ventajas que tiene la definición anterior, además de permitir el desarrollo del concepto de
energía relativista, es que preserva, en cierta medida, la Segunda Ley de Newton, aunque el momento que
aparezca sea el momento relativista. Además, para velocidades v � c, la definición anterior tiende a la clásica.
Por último, esta definición nos va a permitir heredar el teorema de conservación del momento lineal de la
física clásica.

También existe un cuadrivector asociado a la fuerza, que recibe el nombre de cuadrifuerza (y que, por ser
un cuadrivector, presenta todas las ventajas en lo que se refiere a cambios entre sistemas de referencia, es
decir, sigue la transformación de Lorentz), pero que no vamos a definir aquí porque no nos va a ser de utilidad
este curso.

5.8. Energía cinética relativista

Una de las ventajas de la definición de fuerza escogida en la definición 45 es que nos va a permitir definir
la energía cinética del mismo modo del que lo hacíamos en física clásica (a través del teorema de la energía
cinética).

Definición 46. Sea una partícula de masa m que recorre una trayectoria µ, siendo µ un camino. Llamaremos
ganancia en energía cinética al trabajo realizado por la trifuerza a lo largo del camino µ. Podemos expresar
dicho trabajo como la integral de la 1-forma asociada a la fuerza a lo largo del camino µ.

∆T := Wµ =

∫
µ

~F
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Definición 47. Llamaremos energía cinética de una partícula de masa m y velocidad v al trabajo necesario
para acelerar dicha partícula desde el reposo hasta su velocidad actual.

Proposición 56. La energía cinética relativista de una partícula de masa m y velocidad v viene dada por la
expresión:

T = (γ (v)− 1)mc2 =

 1√
1− v2

c2

− 1

mc2

Demostración. Partimos de la definición 47. Por tanto, debemos calcular el trabajo que debe actuar sobre la
partícula para acelerarla desde el reposo hasta su velocidad actual v.

Para ello, supondremos que la partícula recorre una trayectoria µ desconocida para nosotros pero que es
tal que la velocidad al comienzo de dicha trayectoria era nula. De esta forma, aplicaremos la definición 46 en
la página anterior:

T = Wµ =

∫
µ

~F

Parametrizamos el camino anterior mediante la función ~µ(t) con la que parametrizamos la posición de la
partícula en función del tiempo. Llamamos t0 al instante correspondiente al origen del camino y tf al instante
correspondiente al extremo del camino. Así:

T =

∫ tf

t0

~F (~µ (t)) · d~µ

dt
(t) dt

donde d~µ
dt es justo el vector velocidad de la partícula a lo largo del camino. De esta forma, llamando ~v (t) :=

d~µ
dt (t), podemos reescribir lo anterior como:

T =

∫ tf

t0

~F (~µ (t)) · ~v (t) dt

Por la definición de trifuerza (ver definición 45 en la página anterior), tenemos:

~F (~µ (t)) =
d
(
γmd~µ

dt

)
dt

(t) =
d (γm~v)

dt
(t)

donde hemos aplicado d~µ
dt (t) = ~v (t). Por consiguiente, la energía cinética queda:

T =

∫ tf

t0

d (γm~v)

dt
(t) · ~v (t) dt

Ahora, vamos a hacer partes en la expresión anterior. Tomaremos:

db =
d (γm~v)

dt
(t) dt = d (γm~v) (t)

a = ~v (t)

De esta forma, es:
b = (γm~v) (t)

da =
d~v

dt
(t) dt

En consecuencia, por el teorema de integración por partes:

T = [(γm~v · ~v) (t)]
tf
t0
−
∫ tf

t0

(γm~v) (t) · d~v

dt
(t) dt =
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=
[
γ (ν)mν2

]ν=|~v(tf)|=v
ν=|~v(t0)|=0 −

∫ ~v(tf)

~v(t0)
γ (|~v|)m~v · d~v

donde es |~v (t0)| = 0, porque la partícula parte del reposo. Por ende:

T = γ (v)mv2 −
∫ ν=|~v(tf)|=v

ν=|~v(t0)|=0
γ (ν)mνdν =

= γ (v)mv2 −m
∫ v

0

ν√
1− ν2

c2

dν = γ (v)mv2 +mc2

∫ v

0

− 2
c2
ν

2
√

1− ν2

c2

dν =

= γ (v)mv2 +mc2

[√
1− ν2

c2

]ν=v

ν=0

= γ (v)mv2 +mc2

(
1

γ (v)
− 1

)
=

= γ (v)mv2 +
mc2

γ (v)
−mc2 = m

γ (v)2 v2 + c2

γ (v)
−mc2 = m

1

1− v2

c2

v2 + c2

γ (v)
−mc2 =

= m

v2+
(

1− v2

c2

)
c2

1− v2

c2

γ (v)
−mc2 = m

v2+c2−v2

1− v2

c2

γ (v)
−mc2 = m

c2γ (v)2

γ (v)
−mc2 = mc2γ (v)−mc2 =

= (γ (v)− 1)mc2

Q.E.D.

Observación 47. A primera vista, la energía cinética relativista parece bastante diferente de la clásica:

T =
1

2
mv2

No obstante, si es v � c, haciendo un desarrollo de Taylor de primer orden centrando en 0 cuando v2 → 0,
obtenemos el resultado clásico. Veámoslo. Por la proposición 56 en la página anterior, es:

T (v) =

 1√
1− v2

c2

− 1

mc2

T (v = 0) = 0

∂T

∂ (v2)
= mc2

(
−1

2

)
1(

1− v2

c2

) 3
2

(
− 1

c2

)
=

1

2

m(
1− v2

c2

) 3
2

[
∂T

∂ (v2)

]
v=0

=
1

2
m

Así, obtenemos:

T (v) =
1

2
mv2 cuando v → 0

De esta forma, recuperamos el resultado clásico.

Observación 48. Nótese que según la expresión dada en la proposición 56 en la página anterior, no es posible
alcanzar nunca la velocidad de la luz, ya que la expresión de la energía cinética diverge para v = c. Esto puede
verse gráficamente con la siguiente figura:
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Relatividad Especial
Mecánica Clásica

Nótese que teniendo en cuenta la definición de energía dada en la definición 43 en la página 219 y la
expresión obtenida en la proposición 56 en la página 224 se da:

E = T +mc2

Esto motiva la siguiente definición:

Definición 48. Llamamos energía en reposo E0 de una partícula de masa m a:

E0 := mc2

Observación 49. La definición 48 es posiblemente, una de las ecuaciones más famosas de la relatividad y
establece una equivalencia entre masa y energía.

Proposición 57. La energía total de una partícula de masa m y velocidad v satisface la ecuación:

E = T + E0

donde T es la energía cinética de la partícula y E0 es su masa en reposo.

Demostración. Partimos de la expresión de la energía cinética (ver proposición 56 en la página 224) y de la
definición de energía en reposo (ver definición 48):

T + E0 = (γ (v)− 1)mc2 +mc2 = (γ (v)− 1 + 1)mc2 = γ (v)mc2 = E

donde el último paso se debe a la definición 43 en la página 219. Q.E.D.

Proposición 58. Sea p el módulo del trimomento de una partícula, sea E0 su masa en reposo y E su energía.
Se satisface la relación:

E2 = p2c2 + E2
0
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Demostración. Partimos de la definición de trimomento (ver definición 44 en la página 220):

~p = γ (v)m~v ⇒ p = γ (v)mv ⇔ p2 = γ (v)2m2v2 ⇔ p2c2 = γ (v)2m2v2c2

Por otra parte, por la definición 48 en la página anterior, tenemos:

E0 = mc2 ⇔ E2
0 = m2c4

Sumando ambas ecuaciones, llegamos a:

p2c2 + E2
0 = γ (v)2m2v2c2 +m2c2c2 = m2c2

(
γ (v)2 v2 + c2

)
=

= m2c2

(
1

1− v2

c2

v2 + c2

)
= m2c2

v2 +
(

1− v2

c2

)
c2

1− v2

c2

=

= m2c2 v
2 + c2 − v2

1− v2

c2

= m2c2 c2

1− v2

c2

= m2c4γ (v)2 =
(
γ (v)mc2

)2
= E2

donde el último paso se debe a la definición 43 en la página 219. Q.E.D.

Observación 50. El enunciado de la proposición 58 en la página anterior normalmente se interpreta geométri-
camente a través del llamado triángulo relativista, ya que si nos fijamos en la expresión:

E2 = p2c2 + E2
0

vemos que es justo la expresión que daría el teorema de Pitágoras para un triángulo de catetos pc y E0 y con
hipotenusa E. Gráficamente:

E
=
γm
c
2 =

mc
2 +

T

|p|c

mc2

mc2

En particular, para velocidades mucho menores que la de la luz v � c ⇒ γ ≈ 1 ∧ E ≈ mc2, el triángulo
queda:

E = γmc
2 ≈ mc2

|p|c
mc2

v � c =⇒ γ ≈ 1 =⇒ E ≈ mc2
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Por el contrario, para el caso v / c⇒ γ � 1, tenemos:

E
=
γ
m
c2

=
m
c2

+
T

|p|c

mc2

v → c =⇒ γ � 1

Otra ecuación interesante que relaciona la energía con el trimomento y la velocidad es la siguiente:

Proposición 59. Sea una partícula de velocidad ~v, trimomento ~p y energía E. Se cumple la relación:

~v

c
=
~pc

E

Demostración. Partimos de lado derecho de la ecuación y llegaremos al izquierdo. Por la definición de trimo-
mento (ver definición 44 en la página 220), tenemos:

~pc

E
=
γ (v)m~vc

E
=
γ (v)mc2

E

~v

c

Por la definición de energía (ver definición 43 en la página 219), tenemos:

~pc

E
=

=E︷ ︸︸ ︷
γ (v)mc2

E

~v

c
=
E

E

~v

c
=
~v

c

con lo que llegamos al enunciado. Q.E.D.

5.8.1. Partículas sin masa

Nótese que en las expresiones dadas en las proposiciones 58 en la página 226 y 59 no aparece la masa
de forma explícita. Esto hace que sea natural preguntarse si existe alguna otra definición de trimomento que
permita que se sigan cumpliendo las expresiones dadas en las proposiciones 58 en la página 226 y 59 para
partículas sin masa. Resulta que dicha definición existe.

Proposición 60. Existe una definición de trimomento ~p para partículas sin masa tal que, respetando la
definición 48 en la página 226, se siguen cumpliendo las expresiones dadas en las proposiciones 58 en la
página 226 y 59. Dicha definición es:

~p =
E

c
v̂
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siendo v̂ el vector unitario de la velocidad de la partícula sin masa. Además, toda partícula sin masa, compatible
con las proposiciones y definición mencionadas, debe cumplir que el módulo de su velocidad sea siempre igual
a la velocidad de la luz v = c. Por último, el módulo del trimomento y la energía satisfacen la relación:

E = pc

Demostración. Como debemos respetar la definición 48 en la página 226 y las partículas que consideramos no
tienen masa m = 0, debe ser:

E0 = mc2 = 0

Sustituyendo el valor de la energía en reposo en la expresión dada en la proposición 58 en la página 226,
obtenemos:

E2 = p2c2 ⇔ E = pc⇔ p =
E

c
(5.8.1)

luego el módulo del trimomento debe ser la energía partida por la velocidad de la luz.
A continuación, considerando la proposición 59 en la página anterior en su forma vectorial, obtenemos

que ~v debe ir en la dirección de ~p. De esto y de la ecuación 5.8.1, deducimos que la definición de trimomento
buscada es:

~p =
E

c
v̂

Además, considerando la expresión dada en la proposición 59 en la página anterior en módulo, obtenemos:

v

c
=
pc

E

Por la ecuación 5.8.1, es E = pc y, por ende:

v

c
=
E

E
= 1⇔ v = c

Por lo tanto, el módulo de la velocidad de una partícula sin masa ha de ser siempre la velocidad de la
luz. Q.E.D.

5.9. Problemas

Ejercicio 18 (Problema 5.1). Para un observador O, una varilla en reposo tiene longitud L y forma un ángulo
α con el eje X. ¿Cuál es la longitud y la orientación relativa para el observador O′, que viaja respecto a O
con velocidad v según el eje X?

Datos: v = 0,8c, L = 1[m], α = 45◦.

Solución. El sistema descrito en el enunciado puede visualizarse con mayor facilidad a partir de la imagen
siguiente:

Puesto que la varilla se encuentra en reposo en relación al observador O, este medirá la longitud propa de
la varilla; para este observador, la varilla mide una longitud L y se encuentra rotada un ángulo α, así pues:

Lx = L cosα

Debido a efectos relativistas, la componente horizontal de la varilla medida por el observador O′ es la que
sigue:

L′x =
Lx
γ

= L cosα

√
1− v2

c2
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O
O’

45◦

v

Figura 5.1: Sistema problema

Puesto que el observador O′ se desplaza de forma completamente horizontal con respecto a O, tendremos
que las componentes horizontales de la varilla no se verán transformadas, es decir Ly = L′y. Podremos ahora
deducir el ángulo α′ según la cual la varilla está orientada según el observador O′, siendo esta:

α′ = arctan

(
L′x
L′y

)
= arctan

(
L′x
Ly

)

α′ = arctan

(
cosα

senα

√
1− v2

c2

)
A partir de este dato, podremos deducir la longitud de la varilla medida por el observador O‘, esta será:

L′ =
L′x

cosα′

Empleando los valores que nos ofrece el enunciado tendremos los siguientes resultados:

α′ = arctan

[
cos(45)

sen(45)

√
1− (0,8c)2

c2

]
≈ 30,95◦

L′ ≈ 1 · cos(45)

cos(30,95)
= 0,82[m]

Q.E.F.

Ejercicio 19 (Problema 5.2). El radio de nuestra galaxia es, aproximadamente, de 30000 años-luz. ¿Con qué
velocidad debería viajar un cohete para trasladarse desde el el centro hasta el extremo de la galaxia en 30
años (medido por un observador en el cohete)? ¿Cuánto dura el viaje para un observador fijo en el centro de
la galaxia? ¿Y para otro en reposo en el punto de destino?

Solución. R = 30000 años luz y t′ = 30 años.
Debemos notar que el observador S′ que está montado en el cohete mide el tiempo propio, ya que, para

él, el cohete no se mueve a lo largo de t′.
Por otra parte, el observador S que está situado en el centro de la galaxia mide la longitud propia de la

galaxia.
En ecuaciones, tenemos:

t =
1√

1− u2

c2

t′

R′ =

√
1− u2

c2
R
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u =
R′

t′
=

√
1− u2

c2

R

t′
⇔ u2 =

(
1− u2

c2

)
R2

t′ 2
⇔

u2

(
1 +

R2

c2t′ 2

)
=
R2

t′ 2
⇔ u = ±

√√√√ R2

t′ 2

1 + R2

c2t′ 2

Descartamos la solución negativa, pues consideramos que el cohete se desplaza hacia delante. Así, obtenemos:

u =

√√√√ R2

t′ 2

1 + R2

c2t′ 2

Sustituyendo por los valores numéricos, llegamos a:

u =

√√√√ (
30000

30

)2
1 +

(
30000
1·30

)2 =

√
10002

1 + 10002

En vez de introducir el valor anterior en la calculadora, podemos hacer Taylor de primer orden de
√
x:(√

x
)

(x = 1) = 1

(√
x
)′

(x = 1) =

(
1

2
√
x

)
(x = 1) =

1

2

√
x ≈ 1 +

1

2
(x− 1) cuando x→ 1

De esta forma, tenemos:

u ≈ 1 +
1

2

(
10002

1 + 10002
− 1

)
=

= 1 +
1

2

10002 − 1− 10002

1 + 10002
= 1− 1

2

1

1 + 10002
≈ 1− 1

2

1

10002
= 1− 1

2

1

106
=

= 1− 10

2

1

107
= 1− 5

1

107
= 1− 5 · 10−7 = 0,9999995

años luz

año

Notemos que tanto el observador que está en el centro de la galaxia como el que está en el extremo se ven en
reposo el uno al otro (suponemos que la galaxia no gira). Por tanto, la respuesta para ambos observadores va
a ser la misma: es cuestión de aplicar la siguiente fórmula:

t =
1√

1− u2

c2

t′

Sustituyendo por los valores numéricos, llegamos a:

t ≈ 30√
1−

(
1− 5 1

107

)2 =
30√

1−
(

1− 10 1
107 + 52

1014

) =
30√

1
106 − 52

1014

=
30√

108−52

1014

=

= 30

√
1014

108 − 52
= 30 · 107

√
1

108 − 52
= 30 · 107

√
1

108

1

1− 52

108

=

= 30 · 107

104

√
1

1− 52

108

= 3 · 104

√
1

1− 52

108
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(√
1

1 + x

)
(x = 1) = 1

(√
1

1 + x

)′
(x = 1) =

 1

2
√

1
1+x

−1

(1 + x)2

 (x = 1) = −1

2

t ≈ 3 · 104

(
1− 1

2

(
1− 52

108
− 1

))
= 3 · 104

(
1 +

1

2

52

108

)
=

= 3 · 104

(
1 +

10

2

52

109

)
= 3 · 104

(
1 +

53

109

)
≈ 30000,00375 años

Q.E.F.

Ejercicio 20 (Problema 5.3). Un cohete, cuya longitud en reposo es de 60[m], se aleja de la Tierra. Desde
ésta se envía una señal de luz que se refleja en dos espejos situados en los extremos del cohete. La primera
reflexión llega a la Tierra 200[s] después de enviar la señal, y la segunda 1,47[µs] más tarde. Encuentra a qué
distancia de la Tierra se encontraba el cohete en el momento de lanzar el destello. ¿Con qué velocidad viaja
el cohete?

Solución. Sea t1 ≡ 200[s] y t2 ≡ 1,47 ·10−6[s] y L la longitud del cohete medida por un observador situado en
la tierra. Puesto que la señal de luz debe ir hasta el cohete y volver, el tiempo que tarda la señal en alcanzar
el extremo del cohete más cercano a la tierra es igual a t1/2, por lo tanto:

D{⊕,cohete} = c
t1
2

= 3 · 108 200

2
= 3 · 1010[m]

La señal tarda un tiempo t2/2 en llegar a un extremo del cohete desde el otro, sin embargo, al estar el
cohete en movimiento con una cierta velocidad v, el espacio recorrido por la señal en este tiempo será igual a
la suma de la longitud del cohete (vista por un observador en la tierra) con el espacio recorrido por el cohete
en este tiempo, es decir:

c
t2
2

= L+ v
t2
2

Así pues, la velocidad v del cohete será:

v =
2

t2

(
c
t2
2
− L

)
Sabemos por Lorentz que la relación entre la longitud del cohete medida desde la tierra L y la longitud del
cohete en reposo L0 = 60[m] es la siguiente:

L =
L0

γ
= L0

√
1− v2

c2

Sustituyendo este valor en la expresión para la velocidad del cohete:

v =
2

t2

(
c
t2
2
− L0

√
1− v2

c2

)
Despejando v:

t2
2

(c− v) = L0

√
1− v2

c2

L2
0 −

L2
0

c2
v2 =

(
t2
2

)2

(c2 + v2 − 2cv)
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[(
t2
2

)2

+
L2

0

c2

]
v2 − 2c

(
t2
2

)2

v +

[(
t2
2

)2

c2 − L2
0

]
= 0

[
c2

(
t2
2

)2

+ L2
0

]
v2 − 2c3

(
t2
2

)2

v +

[(
t2
2

)2

c4 − c2L2
0

]
= 0

v =
2c3
(
t2
2

)2 ±√[4c3
(
t2
2

)2]2
− 4

[
c2
(
t2
2

)2
+ L2

0

] [(
t2
2

)2
c4 − c2L2

0

]
2
[
c2
(
t2
2

)2
+ L2

0

] =

=

2c3
(
t2
2

)2 ±√4c6
(
t2
2

)4 − 4
[(

t2
2

)4
c6 − c2L4

0

]
2
[
c2
(
t2
2

)2
+ L2

0

] =

=
2c3
(
t2
2

)2 ± 2cL2
0

2
[
c2
(
t2
2

)2
+ L2

0

] = c

[
c2
(
t2
2

)2 ± L2
0

c2
(
t2
2

)2
+ L2

0

]

Así pues, tendremos dos posibles soluciones, siendo una de ellas, que el cohete se desplaza a la velocidad de
la luz y la otra con velocidad:

v = c

[
c2
(
t2
2

)2 − L2
0

c2
(
t2
2

)2
+ L2

0

]
= c

(3 · 108)2
(

1,47·10−6
2

)2
− (60)2

(3 · 108)2
(

1,47·10−6
2

)2
+ (60)2


v ≈ 0,86c

Q.E.F.

Ejercicio 21 (Problema 5.5). Un astronauta, que viaja en un cohete de longitud en reposo L′ a una velocidad
v respecto a la Tierra, envía hacia la misma dos destellos luminosos simultáneos, uno desde cada extremo del
cohete. Ambos destellos se envían cuando para el astronauta ha transcurrido un tiempo t′0 desde su partida.
¿En qué instantes de tiempo recibe el observador terrestre, medidos con su propio reloj y a partir de la salida
del cohete, estos dos destellos?

Solución. Comencemos definiendo la posición del cohete más cercana a la tierra como x1 mientras que la
posición del extremo más alejado será x2.

Sea t{O,1} el tiempo que ha transcurrido desde la partida del cohete medido por un observador en la tierra,
por ello, tendremos que:

x1 = vt{O,1}

Por teoría, sabemos que la relación entre el tiempo de dos observadores es la que sigue:

t = γ

(
t′ +

vx′

c2

)
Suponiendo el origen de coordenadas del cohete en el extremo más cercano a la tierra, tendremos que x′ = 0,
por lo que:

x1 = vγ

(
t′0 +

v · 0
c2

)
= vγt′0

Siendo que el observador terrestre registra una longitud L para el cohete, tendremos que:

x2 = x1 + L
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Puesto que es el observador en el cohete el que mide la longitud propia del mismo, la longitud del cohete
medida por el observador terrestre será la siguiente:

L =
L′

γ

Con esto, tendremos la posición del extremo del cohete más alejado de la tierra:

x2 = vγt′o +
L′

γ

La luz tardará un tiempo t1 = x1
c en realizar el trayecto desde el extremo más cercano del cohete a la

tierra, mientras que tardará un tiempo t2 = x2
c en hacerlo desde el extremo alejado.

t1 =
v

c
γt′0 t2 =

v

c
γt′0 +

L′

γc

El observador en el cohete envió los destellos cuando su reloj marcó un tiempo t′0, sabemos que para el
observador en la tierra este tiempo es igual a:

t = γ

(
t′0 +

v · 0
c2

)
= γt′o

Así, el tiempo total T1 que un observador en tierra tarda en recibir el destello emitido por el extremo más
cercano será:

T1 = t1 + γt′o = γt′o

(
1 +

v

c

)
mientras que el tiempo T2 que tarda en recibir el destello emitido por el extremo más alejado será:

T2 = t2 + γt0 = t′oγ

(
1 +

v

c
+

L′

cγ2

)
Q.E.F.

Ejercicio 22 (Problema 5.9). (Junio 2017) Un tren de longitud en reposo L se mueve con velocidad 4
5c hacia

la derecha, y otro tren de longitud en reposo 3L se mueve con velocidad 3
5c hacia la izquierda. Calcule qué

velocidad ~u (módulo y sentido) debería llevar un observador externo (que se mueve en paralelo a los trenes)
para que las dos cabezas y las dos colas de los trenes queden enfrentadas simultáneamente. ¿Qué velocidad
relativa lleva cada tren respecto al tercer observador? ¿Cuánto diría un observador en el primer tren que mide
el segundo tren?

Solución. LA,A = L, LB,B = 3L, vA,O = 4
5c, vB,O = −3

5c.

¿Cuánto diría un observador en el primer tren que mide el segundo tren?: Hallemos la velocidad
relativa entre A y B:

vB,A =
vB,O − vA,O

1− 1
c2
vB,OvA,O

=
−3

5c− 4
5c

1−
(
−3

5

)
4
5

=
−7

5

1 + 12
25

=
−7

5
37
25

c = −7 · 25

5 · 37
c = −7 · 5

37
= −35

37
c

Aplicando contracción de longitudes, obtenemos:

LB,A =

√
1−

v2
B,A

c2
LB,B =

√
1−

(
35

37

)2

3L ≈ 0,97297297L
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Calcule qué velocidad debe llevar un observador externo C para que vea las dos cabezas y las
dos colas enfrentadas simultáneamente: Buscamos un tercer observador C que vea ambos trenes de la
misma longitud. Vamos a usar la siguiente notación: vA,B es la velocidad con la que el observador B ve al A.
Matemáticamente, debe cumplirse:

LA,C =

√
1−

v2
A,C

c2
LA,A

LB,C =

√
1−

v2
B,C

c2
LB,B

LA,C = LB,C ⇔
(

1−
v2
A,C

c2

)
L2
A,A =

(
1−

v2
B,C

c2

)
L2
B,B ⇔

⇔
(

1− 1

c2
v2
A,C

)
L2
A,A

L2
B,B

= 1− 1

c2
v2
B,C

Definimos:
uA,C :=

vA,C
c
, uB,C :=

vB,C
c

, l :=
LA,A
LB,B

De esta forma, la ecuación anterior queda:(
1− u2

A,C

)
l2 = 1− u2

B,C

Por otra parte, por la transformación de Lorentz para velocidades, obtenemos:

vA,C =
vA,O − vC,O
1− vC,OvA,O

c2
⇔ uA,C =

uA,O − uC,O
1− uC,OuA,O

vB,C =
vB,O − vC,O
1− vC,OvB,O

c2
⇔ uB,C =

uB,O − uC,O
1− uC,OuB,O

De esta forma, obtenemos:[
1−

(
uA,O − uC,O
1− uC,OuA,O

)2
]
l2 = 1−

(
uB,O − uC,O
1− uC,OuB,O

)2

⇔

⇔ l2

[
1−

u2
A,O − 2uA,OuC,O + u2

C,O

1− 2uC,OuA,O + u2
C,Ou

2
A,O

]
= 1−

u2
B,O − 2uB,OuC,O + u2

C,O

1− 2uC,OuB,O + u2
C,Ou

2
B,O

⇔

⇔ l2
1− 2uC,OuA,O + u2

C,Ou
2
A,O − u2

A,O + 2uA,OuC,O − u2
C,O

1− 2uC,OuA,O + u2
C,Ou

2
A,O

=

=
1− 2uC,OuB,O + u2

C,Ou
2
B,O − u2

B,O + 2uB,OuC,O − u2
C,O

1− 2uC,OuB,O + u2
C,Ou

2
B,O

⇔

⇔ l2
1 + u2

C,Ou
2
A,O − u2

A,O − u2
C,O

1− 2uC,OuA,O + u2
C,Ou

2
A,O

=
1 + u2

C,Ou
2
B,O − u2

B,O − u2
C,O

1− 2uC,OuB,O + u2
C,Ou

2
B,O

⇔

⇔ l2

(
1− u2

C,O

)(
1− u2

A,O

)
(1− uC,OuA,O)2 =

(
1− u2

C,O

)(
1− u2

B,O

)
(1− uC,OuB,O)2
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Obtenemos las soluciones triviales uC,O = ±1⇔ vC,O = ±c. Al descartarlas, podemos dividir por
(

1− u2
C,O

)
,

obteniendo:

l2
1− u2

A,O

(1− uC,OuA,O)2 =
1− u2

B,O

(1− uC,OuB,O)2 ⇔ l2
1− u2

A,O

1− u2
B,O

=

(
1− uC,OuA,O
1− uC,OuB,O

)2

⇔

⇔ ±l

√√√√1− u2
A,O

1− u2
B,O

=
1− uC,OuA,O
1− uC,OuB,O

⇔

⇔ ±l (1− uC,OuB,O)

√√√√1− u2
A,O

1− u2
B,O

= 1− uC,OuA,O ⇔

⇔ ±l

√√√√1− u2
A,O

1− u2
B,O

− 1 =

±luB,O
√√√√1− u2

A,O

1− u2
B,O

− uA,O

uC,O ⇔

⇔ uC,O =

±l
√

1−u2
A,O

1−u2
B,O
− 1

±luB,O
√

1−u2
A,O

1−u2
B,O
− uA,O

Sustituyendo por nuestros valores iniciales, obtenemos:

uC,O =

±1
3

√
1−( 4

5)
2

1−(− 3
5)

2 − 1

±1
3

(
−3

5

)√ 1−( 4
5)

2

1−(− 3
5)

2 − 4
5

=

=

±1
3

√
1− 16

25

1− 9
25

− 1

∓1
5

√
1− 16

25

1− 9
25

− 4
5

=

±1
3

√
9
25
16
25

− 1

∓1
5

√
9
25
16
25

− 4
5

=
±1

3

√
9
16 − 1

∓1
5

√
9
16 − 4

5

=

⇔ ±1
4 − 1

∓1
5

3
4 − 4

5

= 5
±1

4 − 1

∓3
4 − 4

= 5
±1−4

4
∓3−16

4

= 5
±1− 4

∓3− 16
=

{
5 1−4
−3−16 = 5 −3

−19 = 15
19

5 −1−4
+3−16 = 5 −5

−13 = 25
13 ⊥

Nótese que el último resultado es absurdo, ya que es mayor que 1 (y, de esta forma sería vC,O mayor que c).
En consecuencia, debe ser:

vC,O =
15

19
c ≈ 0,789474c

A continuación, volvemos a:

vA,C =
vA,O − vC,O
1− vC,OvA,O

c2
=

4
5c− 15

19c

1−
15
19
c 4

5
c

c2

=
4
5 − 15

19

1− 15
19

4
5

c =
76−75

95

1− 12
19

c =
1
95
7
19

c =
19

95 · 7c =

=
19

19 · 5 · 7c =
1

35
c ≈ 0,028571c

vB,C =
vB,O − vC,O
1− vC,OvB,O

c2
=
−3

5c− 15
19c

1−
15
19
c(− 3

5
c)

c2

= −
3
5 + 15

19

1 + 15
19

3
5

c = −
57+75

95

1 + 9
19

c− =
132
95

19+9
19

c = −
132
95
28
19

c =

= −132 · 19

95 · 28
c = − 66 · 2 · 19

19 · 5 · 14 · 2c = −11 · 3 · 4 · 19

19 · 5 · 7 · 4 c = −11 · 3
5 · 7 c = −33

35
c ≈ 0,942857c
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Q.E.F.

Ejercicio 23 (Problema 5.15). En cierto sistema de referencia se observa que una partícula posee una energía
total de 5[GeV] y un momento de 3[GeV/c]. ¿Cuál es su masa en reposo? ¿Cuál es la energía de la partícula en
un sistema en el que su momento es 4[GeV/c]? ¿Cuál es la velocidad relativa de los dos sistemas de referencia?

Solución. Recordemos la relación entre la energía total de una partícula con su momento:

E2 = p2c2 +m2c4

A partir de esta expresión, podemos despejar el valor de m como:

m =

√
E2 − p2c2

c2

sustituyendo los valores aportados por el enunciado, tendremos que el valor de la masa en reposo es de:

m =

√
(5)2 − (3/c)2c2

c2
= 4[GeV/c2]

Siendo que esta masa permanece constante para todos los observadores, la energía E′ de esa misma partícula
con un momento p′, será:

E′ =
√
p′2c2 +mc4 =

√
(4/c)2c2 + (4/c2)2c4 = 4

√
2[GeV]

La relación entre las energías medidas por dos sistemas de referencia moviéndose con una velocidad relativa
v es la que sigue:

E′ = γ(E − vp)
de modo que sustituyendo por los valores anteriormente calculados, deberemos despejar el valor de v:

4
√

2 =
1√

1− v2

c2

(
5− 3

v

c

)

1− v2

c2
=

1

32

(
25 + 9

v2

c2
− 30

v

c

)
41

32

v2

c2
− 15

16

v

c
− 7

32
= 0

v

c
=

15
16 ±

√(
15
16

)2
+ 4

(
41
32

) (
7
32

)
2
(

41
32

)
v

c
=

15
16 ±

√
2(

41
16

) =
15± 16

√
2

41

v1 ≈ 0,918c v2 ≈ −0,186c

Debido a que las velocidades relativas deben ser positivas, debemos descartar la velocidad v2, por lo que la
velocidad relativa entre los dos sistemas de referencia será de:

v ≈ 0,918c

Q.E.F.
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Ejercicio 24 (Problema 5.18). (Septiembre 2017) Un pion sin carga (energía en reposo 135 MeV) se mueve
a velocidad v = 0,98c y se desintegra en dos fotones, que emergen con el mismo ángulo a cada lado de la
dirección inicial de movimiento. Encuentre ese ángulo y la energía de cada fotón.

Solución. v = 49
50c y E0 = 135 MeV

Lo primero, notemos que podemos hallar la masa del pion mediante la expresión:

E0 = mc2 ⇔ m =
E0

c2
(5.9.1)

Llamemos θ al ángulo de desviación de los fotones con respecto al ejeX. Así, por conservación del momento
lineal tenemos en el eje X (la dirección del pion):

p = γmv =
1√

1− v2

c2

mv = 2pγ cos θ = 2
Eγ
c

cos θ ⇔

⇔ 1√
1− v2

c2

E0

c2
v = 2

Eγ
c

cos θ ⇔ E0

c
√

1− v2

c2

v

c
= 2

Eγ
c

cos θ ⇔

⇔ E0

2
√

1− v2

c2

v

c
= Eγ cos θ (5.9.2)

Por conservación de la energía, tenemos:

E = γmc2 =
1√

1− v2

c2

mc2 = 2Eγ ⇔

⇔ 1√
1− v2

c2

E0

c2
c2 = 2Eγ ⇔

E0

2
√

1− v2

c2

= Eγ

Por último, sustituimos en la ecuación 5.9.2, obteniendo:

E0

2
√

1− v2

c2

v

c
=

E0

2
√

1− v2

c2

cos θ ⇔ cos θ =
v

c
⇔ θ = arctan

(v
c

)
Sustituyendo por los valores numéricos, llegamos a:

Eγ =
135

2

√
1−

(
49
50

)2 ≈ 339,200 MeV

θ = arctan

(
49

50

)
≈ 0,775297 rad ≈ 44,4213o

Q.E.F.

Ejercicio 25 (Problema 5.19). (Junio 2018) Dos cuerpos idénticos de masa m se aproximan el uno al otro con
velocidades de igual módulo v (comparable a c) respecto a un observador O. Tras un choque perfectamente
inelástico queda una única partícula. Determine la masa del nuevo cuerpo, según el observador O. Repita de
nuevo el problema según un observador O′ que se encuentra en reposo respecto a uno de los cuerpos iniciales.

Solución.
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Para el observador O: Nótese que, según el enunciado, las partículas quedan quietas tras el choque. Por
conservación de la energía tenemos:

2γmc2 = Mc2 ⇔ 2γm = M

M =
2m√
1− v2

c2

Para el observador O′ ≡ 1: Primero, tenemos que hallar la velocidad con la que el observador O′ ve a la
partícula que no está en reposo:

v2,1 =
v2,O − v1,O

1− v1,Ov2,O

c2
=
−v − v
1 + v2

c2

=
−2v

1 + v2

c2

Por conservación del momento lineal, obtenemos:

m√
1− 0

c2

0 +
m√

1− v2
2,1

c2

v2,1 =
1√

1− V 2

c2

MV ⇔

⇔ m√
1− v2

2,1

c2

v2,1 =
M√

1− V 2

c2

V ⇔

⇔ m2

1− v2
2,1

c2

v2
2,1 =

M2

1− V 2

c2

V 2 ⇔

⇔
m2v2

2,1

1− v2
2,1

c2

(
1− V 2

c2

)
= M2V 2 ⇔

m2v2
2,1

1− v2
2,1

c2

=

 1

c2

m2v2
2,1

1− v2
2,1

c2

+M2

V 2 ⇔

⇔
m2v2

2,1c
2

c2 − v2
2,1

=

(
m2v2

2,1

c2 − v2
2,1

+M2

)
V 2 ⇔ V 2

c2
=

m2v2
2,1

c2−v2
2,1

m2v2
2,1

c2−v2
2,1

+M2
=

A

A+M2

Por otra parte, por conservación de la energía:

E1 + E2 = Ef ⇔ mc2 + γ2mc
2 = γfmc

2 ⇔

⇔ mc2 +
m√

1− v2
2,1

c2

c2 =
M√

1− V 2

c2

c2 ⇔

⇔ m

1 +
1√

1− v2
2,1

c2

 =
M√

1− V 2

c2

Sustituyendo, tenemos:

m

1 +
1√

1− v2
2,1

c2

 =
M√

1− A
A+M2

=
M√

A+M2−A
A+M2

=
M√
M2

A+M2

=
M
M√
A+M2

=
√
A+M2 ⇔

⇔ m2

1 +
1√

1− v2
2,1

c2

2

= A+M2 ⇔
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⇔M2 = m2

1 +
1√

1− v2
2,1

c2

2

−A =

= m2

1 +
2√

1− v2
2,1

c2

+
1

1− v2
2,1

c2

− m2v2
2,1

c2 − v2
2,1

=

= m2

1 +
2√

1− v2
2,1

c2

+
m2c2

c2 − v2
2,1

−
m2v2

2,1

c2 − v2
2,1

=

= m2 +
2m2√
1− v2

2,1

c2

+
m2

c2 − v2
2,1

(
c2 − v2

2,1

)
=

= 2m2 +
2m2√
1− v2

2,1

c2

= 2m2

1 +
1√

1− v2
2,1

c2

 =

= 2m2

1 +
1√

1−
4v2(

1+ v2

c2

)2

c2

 = 2m2

1 +
1√

1−
4v2

(c2+v2)2

c4

c2

 = 2m2

1 +
1√

1− 4v2c2

(c2+v2)2

 =

= 2m2

1 +
1√

(c2+v2)2−4v2c2

(c2+v2)2

 = 2m2

1 +
1√

c4+v4+2c2v2−4v2c2

(c2+v2)2

 =

= 2m2

1 +
1√

c4+v4−2v2c2

(c2+v2)2

 = 2m2

1 +
1√

(c2−v2)2

(c2+v2)2

 = 2m2

(
1 +

c2 + v2

c2 − v2

)
=

= 2m2 c
2 − v2 + c2 + v2

c2 − v2
=

4m2c2

c2 − v2
⇒M =

2mc√
c2 − v2

=
2m√
c2−v2

c2

=
2m√
1− v2

c2

Q.E.F.
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